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CHAPTER- O

INTRODUCT ION

Statistical decision theory was introduced by Abraham
Wald (1939) as a generalization of .the classic statistical
theories of hypotheéis:testing and estimation., After
Wald's work important contribution§ have been made by
Girshick'and Savage (1951) and Steﬂn (1956), A detailed-
introduction is given ﬁy Ferguson ('1967) and Berger (1980)
in their texts. ‘ I

In a decision problem the statistician has to select
a decision rule from a set of available decision rules. A
strategy (also called a decision rule) is a plan that
tells how to use the data to select a decision and is
evaluated by reference to the cost of its expected conse-
quences, The difficu%ty in selecting the best strategy
derives from the fact that the conéequences of a decision
depend on the unknownistate of natur?.

''" The proper roie of decision theory is the subject
of considerable contréversy. Because it makes essential
use of costs, many-stétisticians feel that decision theory
may be suitable for p%oblems of the market place but not
those of pure science, Another issue is the difficulty
in assigning costs or:vé;ues to the congequences"

(Encyclopedia PP 131 ).



2

Testing hypothesds, estimation and confidence inter-
vg@; égg the three main classical theories of statisticﬁl
inference, A hypdthesis testing problem corresponding to
2 twomaction problem. The possible actions are to aceept
3 hypothesis or to zgject it.

In e¢stikation problems one attaches a loss ta estima-
ting é by ty A popular special case is the less (+0)2,
Then a goed progedure tends to minimize E{t - 9)2 (called
the mean squared epror of the estimator), which is the
traditional measurg of the goodness of an estimate,

The theory of comfidence intervals is mathematicaliy

dlegant, appedling, and popular but does not fit maturelly
in to the decision theory framework. The intreduction of
costs in a reasopnable fashion would undeoubtedly lead te
substamtial ‘modiFication of the theory of confidence inter-
vals,

As we ‘are interested in the study of admissible rumles;
so for this we introduce ‘the preliminaries of this theory
and are given in -Chapter I of the dissextation. In the
‘following we give the chapterwise summary of the disser-
tation. ‘

A common formulation of statistical decisicn theorny
invaolves the sanple space and the class of probability
density functions (pdf) f(x,8) where © is a parameter,

o € @. A problem of interest is to choose an 'optimum'
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décision rule d(x) festimator) from the set of all possi-

‘ble decisions ( (B ) based on a sample X;,X,y.e. X, drawn

from the dzstrlhutlcn with- pdf f(x e). That is based on a

. random sample xl,xz,..,x we wish to .estimate @, correspo-

- hdlng to a~spé01f1ed ‘1oss function L(e, d) The loss

functlon L(b;d) represents the loss incurred if we-estimate

'Q‘by d(x). Further Eg L(e,d), the average loss of the

esti@ator a(x ), Eg L(8,d) called the risk of the estimatay
d(x) and is denoted by R(®,d), the related tetms are exp-
lained in section 1,0, We further note that iwo estimators
that 'is decision rules say dl(x) and d2(x), can be compa=-
red based on their corresponding risksj preference is to
be given to that estimator with smaller risk. In general
the risk functions of two estimators may cross, that is

one risk functien 'being smalléer .for some 8 and the other
smaller -for. other ®.: Then since Q'iscdnkmowqg,it{;sfnotr
possible to make-a .choice between the twd.estimators.

If one has some additional ‘information-about @, .let.

this information about © .(called the prior information)

be expressed in the form .of a density function (@) with
the support Q@} .. We:have,a’natural~way of rémeving,the
dependence of the. risk. function on @, namely by averaging
out the @, usirg the density #(8). The Bayes:risk of an
estimator is an average risk, the.average being taken over-

the parameter space (H) with respect to the prior density
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®(8). For given loss function L(6,d) and prior density
n(©) the Bayes risk of an estimator ;s a real number., So
two competing estimators can be easiiy cémpared by compa~
ring their repective Bayes risk, prefering that estimator
with smaller Bayes risk. An estimator with smallest Bayes
risk is called a Bayes estimator and this will be discu~
ssed in section 1.1. Even in thosz éroblemslggigrtgistri—
bufion is unknown the concept of Bayas estimation can
benefit us. Each possible prior distribution has a corr-
esponding dstimator, whose merits cao‘be'judged by using
our .standard methods of comparison. '‘Bayes estimation is
useful in obtaining an estimatox possessing some desira=-
ble property that does not depend on prior distribution.
The property of minimax is such a property and this will
be..discussed inr sectior 1l.1. Acgord;ngumo minimax, princi-
ple:we -choose a,decision rule for which:the maximum of
risks .(over. the parameter.space (H) ).is minimum, that is
a-rule- o*-is minimax if, = - A ‘ '

Sup.: : R(®,0%) =., inf -. Sup R(®, ©)
Qe® ’ ceDr oe @ ’

1 3
3 1

where D* is tqe class of all randomlzed deC1810n rules.~

:x..

Let the problem be to choose one among Fhs ru]es dl’ 2,

oé and d4 Whlch have the rlsk functlon as shown in the

. ' - fv r
[ . - o

- -

follow1ng flgureh
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Observe that there is no ‘rule which is uniformly better

(5,
i

(smaller risk) than the others., However according to
minimax principle d2 is to be preferrea, as it has smallest
maximum of the risk.

Another procedure is by restricting to the class of
estimators that are unbiasedness or/and invariant, which
will be discussed in section 1,1 .

Bayes principle and minimax principle have there own
limitations. As the Bayes rule depends very much on the
prior distribution, it is not desirable:to adopt Bayes
principle when‘the choice of prior distributions is nob
strangly justified., 1In such situations one can adopt the
criteria of admissibility where_in we compare the decision
fules via risk functions. This concept of admissibility
" will be discussed in section 1.2, A rule o is said to be
admissible if there exists no rule better than o. Thus
any admissible rule is one that cannot be dominated.

It is clear that an inadmissible decision rule should not
be used, since a decision rule with smaller risk can be

found, In section 1,2 we will show that admissiblity
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of % (with respect to the séuared error loss) for m, the
mean of the poiséon'distribution by using two'different
approaches, Ir section 1.4 the admissiﬂility of linear
estimates in case of exponentlal family will be discussed.
In this case, we cons;dsr the.admissibility of linear
estimates aX+b of Eg(x) with respect to the squared=error
loss when the probability density Func%lon 1s of thq,ﬁ@&m

p(x, ©) = p(o) £ T | (1)
Let ) be the natural parameter space. Then (H) is an
interval with end points, say, © and B (-=. < 8 < 8 & =),
We discuss the admissibility of such %stimafors aX+b for
different values of 'a' and 'b', It can be shown that if
(i) a> 1 (ii) a<0 (iii) a=1.b #!O the estimate
aX+b is an inadmissible forx estlmatlng e when X is a random
‘variable with mean © and variance 62,!Wlth mesnect to the
squared error loss. Admissibility of anear,estlmate aX+b
for b = 0 was first discussed by Karlin (1658), He con~
sidered the one paraﬁeter exponential, K family as in (1).
His preof was extended to the othey véluesléf 'b! by Ping
(1964). By the above resuli aX+b is inadmissible if a< O
or a > 1l and is a constant for a = 0, To state Karlin's
sufficient conditions in the remaininé cases, it is com~

venient to write the estimator as
T Yu
+ = S(say) -
1+u 1+ u
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with O { y < @ corresponding to 0 < a £ I,

Under the above assumptions, a sufficient condition
for the admissibility of the estimator S for estimating
EQ(T) = g(®) (say) with respect to the squared error loss
.the ;two ihtegrals, that is

' 9 Yue
Il S‘ ! -.-——u-'—u
6, [pe)]
and

o [se)1"

tend to infinity as © tends to © and @ respectively. This
result is given in the form of a theorem 1,4.2 due to
Karlin (1958). An example is given éo illustrate these
results, ; |

In continuation of Karlin's theorem we discuss..” in
chapter II the admissibility of estimators for the expo-
nential families with quadratic lbssffuﬂction; Suppose
we have to est?mate g(e) by a(x) corresponding to the
squared error loss. The risk for the estimate a(x) when
tﬁe true Parameter vglue is © is calpulafed by using the
formula, | .

R (6,a) = [a(x) - 9(9)]2 P(x,0) dp(x)

where p(x,0) is the density function of x with respect
to a o-finite measure p, 'Our object is to select the
estimate a(x) which minimizes R(€,2). The quadratic loss

as a measure of the discrepancy of an estimate from the



8

two characteristics (i) when a(x) represents the unbiased
estimateofgﬂe);then R(B,a) is the variance of a(x) and

(ii) from a technical and mathematical_view point squared
error loss is easy to hanipulation‘and-computation. So
‘;ﬁ%%ﬁihis we shall use the squared error loss for.%i&%ﬂfﬁﬁon
of g(®). 1In section 2.1 for our convenience we take B(®)
as devisor instead of multiplier as taken in (1), We have
seen the estimate aX+b is inadmissible if a < O or a > 1.
If b =0 in the above, then aX is inadmissible if a < o

or a > 1. Hence the admissibility of aX is to be discu~
ssed only for 0 £ a £ 1. For our;convenience a ;l%tz
the admissibility of x(1+ u)~1 is to be discussed only

and

for u 2 O. Karlin has considered the admissibility of
linear estimate K{1+u )3’ u 2 O for estimating Eg(X) and
proved the result as given in theqrem 2.1.1. Karlin
has conjectured that the conditions in theorem 2@1,1. are
not merely sufficient, but are neéessary also for the
admissibility of x(1+ u)"'l . Kariin has shown that
x(1+L;)’l is inadmissible for g(®) for certain values of
W. In this respect he proposed a result as given in
lemma 2.,1,1. Further work is doqe by Joshi (1969) he
gave the imprcved criteria for inadmissibility of the

estimate x(l+t1)'1 in the form of lemma as given in 2,1,2.

Also the necessary conditiens for the convergence or
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divérgence of the integrals in theorem 2.1.1 are easily
obtained., Now using the improved criteria as in lemma
2.1.2, the range of values of u for which Karlin's conj-
ectures remains open is narrowed down, which can be seen
as given in the diagram page no. 77 . An example is gi-
ven  to illustrate these results.

The efféct on' admissibility due to truncation will be
discussed in section 2,2 and the results are due to Kale
(1964), Let (:) 1 denotes the natural range of the para=
meter when the distribution is truncated .and note that

@ ;2 @ , As the admissibility'of an estimate is
closely connected with the structure of the natural range
of the parameter, the admissibility of aﬁ estimate may be
destroyed by truncation. This will be shown by giving -
suitable exampleg, In lemma 2,2,3 we show thaf for any mode
of truncation all the estimates yx , y»1 continue to be
inadmissible even after truncation. Further an example
2.2.,3 is given to show that an admissible estimator
continue to be admissible one even af%er trun%ation.

Now consider the negation of ‘the statément of|Karlin's
theorem, we have the following result:

If x(1+u )-l is inadmissible then one of the integralsmust
be convergent. If Karlin's conjecture be trué then the
convergente of atleast one of the integrals iﬁplies in-

admissibility of x(1+u )™} ., Then, when ® =@® T
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1t can be shown that (refer lemma 2.,2.3) if Karlin's

conjécture be true than an inadmissible estimate x(1+11)-l,
u2 6 continues to remain inadmissible after truncation.
If in +the non-truncated case certain estimate is inad-
missible but in the truncated case, the estimator is
admissible, such type of transition has not occured. If
such a case is possible then from lemma 2,2.3 it implies
that Karlin's conjecture is not true,

The admissibility of scale parameter in the exponen-
tial family will be discussed in section 2,3. Zidek (1969)
has shown that when the estimation problem is inuvariant
under a group of itransformations and the induced group G
acts transitively on the parametér space the best invariant
estimator is formal Bayes., Portnoy (1971) has given suff=~
icient conditions for the admissibility of a focwrmal Bayes
estimator when the loss is quadratic So to begin with we
give Portnoy conditions and then apply Portnoy conditions
for estimating a power of the scale, parameter by the
best scale invariant estimator. Fo; a ready reference
we state the Portnoy (1971) theorem‘in which the formal
Bayes estimator is admissible under certain conditions
as in theorem 2.3.1.\ With this background we discuss
the results of Sharma (1973) for admissibility of scale

parameter, It is shown that under certain condition the
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formal Bayes estimator.is..admiséible (see theorem 2.3,2),

basically the result of Portnoy (1971) is.used. An

example is given to iliu§trate‘the result,
. PRI .
In chapter III we shall discuss inadmissibility of

‘\M;'\‘:".' w ,

some standard estimate and the admissibility of confidence
interval in presence of prior information. Consider the
binomial distribution, the conventionkl estimate is % .

. Let © have a distribution which belongs to a subclass of
the aistributions.on [0,1] as a prior information to the
experimenter. No& we regard the binomial distribution to -
be conditional oﬂ @ s the members of this subclass gene-

rate a family of joint distributions [for X and@® . With

this as background we may view our pfoblem as a special
case of conventional prediction theofy. We give a genera-
lized maximum -lﬂkelihéod principle as applied to ihis'
example and invegtigété a class of p%edictors which it
suggests, Undef appropriate conditions, each of these

has a uniformally smalier mean square error than the
conventional estimate.. These results are due to Skibinsky

and Cote (1964), and these results-will be discussed in

section: 3,1. In case of point estimation the problem,

of admissibility of a location parameter was treated by
Blyth_ (1951), Blackwell (1951), Farr?ll (1964), Brown
(1966). 1In each paper. above, the ad?issibility require

i

|

i
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the existence of one more moment than what is necded for
finite risk., Now we can show that, a unique best transla-
tion invariant estimate may be inadmissible if a certain
moment condition fails to be satisfied., These resultsare
due to Perng (1970), and this will be discusséd in section

3.2, !

Farrell (1964) has proved regarding the admissibility
of estimators of the location parame%er in a class of fre-
quency functions., The analpgdus que;tion regarding confi-~
dence intervals is considered in secfioﬁ 3,3, Joshi (1966)
proved a theorem which gave a set of:sufficient conditions
for the admissibility of a certain cpnfidence interval
procedures for a location parameter.:.lnstead of this
theorem we state a simple theorem (d%e to Fox Martin,
Perng (1970) ) which includes momenﬁ condition, Now
we show that a certain translation invariant confidence
interval procedure may be inadmissiéle if a certain mo-
ment condition fails to hold, by giJiﬁg an example in
the form of theorem. These results |are due to Perng

(1970). |



