
CHAPTER- 0

INTRODUCTION

Statistical decision theory was introduced by Abraham 
Wald (1939) as a generalization of the classic statistical 
theories of hypothesis: testing and estimation. After 
Wald's work important contributions have been made by 
Girshick and Savage (1951) and Steiin (1956)*, A detailed - 
introduction is given by Ferguson (1967) and Berger (1980)

l *

in their texts.
In a decision problem the statistician has to select 

a decision rule from a' set of available decision rules. A 
strategy (also called a decision rule) is a plan that 
tells how to use the data to select a decision and is 
evaluated by reference! to the cost of its expected conse- 
quences. The difficulty in selecting the best strategy

i

derives from the fact .that the consequences of a decision 
depend on the unknown jstate of nature.

11 The proper role of decision theory is the subject
i

of considerable controversy. Because it makes essential
■

use of costs, many- statisticians feel that'decision theory
i

may be suitable for problems of the market place but not 
those of pure science. Another issue is the difficulty

Iin assigning costs or values to the consequences" 
(Encyclopedia PP 131,).

i
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Tfstiftg hypothesis, estimation and confidence inter

vals are ^he three main classical theories of statistical 
inference* A hypothesis testing problem corresponding to 
at '^v^astion p^obl^m. The possible actions are to accept 
§ ^ypothes^f or to reject it.

In estimation problems one attaches a loss to estima
ting $ by t* A popular special cate is the loss (tw©)^. 
Then a gepd procedure tends to minimize E(t - 0) (called 
the mean squared error of the estimator)# which is the 
traditional measure of the- goodness of an estimate,.

The theory of confidence intervals is mathematically 
Regent, appealing, and popular but does not fit naturally 
in to the decision theory framework. The introduction of 
"Costs in a reasonable fashion would undoubtedly lead t© 
Substantial -modification of the theory of confidence inter
vals..

As we are interested in the study of admissible rales*, 
so for this we introduce the preliminaries of this theory 
and are given in Chapter I of the dissertation, In the 
following we give the chapterwise summary of the disser
tation.

A common formulation of statistical decision theory 
involves the sample space and the class of probability 
density functions (pdf) f(x,0) where 0 is a parameter,
0 € (Si A problem of interest is to choose an ’optimum'
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decision rule d(x) (estimator) from the set of all possi

ble decisions ( (R) ') based'on a sample X^,X2»,..>XH drawn
t

from the distribution withpclf. f (x,9). That is based on a 
,,random sample X^Xgi^fX^ we wish to-estimate 0, correspo-

*• i ^ '

- bding to- oep&cified -loss function L(9,d). The loss 

ftinhtion L(&»d) represents the loss incurred if we-estimate 
9 by d(x) *. Further EQ 1(9,d), the average loss of the

i

estimator d(x ), Eg L(9,d) called the risk of the estimator 
d(x) and is denoted by R(©,d), the related terms are exp-

i

lained in section 1*0* We further note that two estimators 
that is decision rules say d^(x) and d2(x), can be compa

red based on their corresponding risks; preference is to 
be given to that estimator with smaller risk. In general 
the risk functions of two estimators may cross, that is 
one risk function being smaller.for s,ome 9 and the pther 
smaller for. other 9. ; Then since © • is,; unknown L. it ;is f not .'

i

possible tp. make.' a .choice between the two . estimators*
If, one has. some additional information about. 9,,let.. ••
this information about © -(called the, prior information)

i

be. expressed in the form ..of a density function n(Q) with • 
the support (|p- *. We^have ,ar’natural-way of removing the 

dependence of the,.risk.function on Qf namely by averaging 
out the 9, usirg the density it(9). The Bayes risk of an 

estimator is an average risk, the.average being taken over- 
the parameter space (H) with respect to the prior density
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/

fl(9). For given loss function L(9,d) and prior density 

n (©) the Bayes risk of an estimator is a real number. So 
two competing estimators can be easily compared by compa

ring their repective Bayes risk, prefering that estimator 

with smaller Bayes risk. An. estimator with smallest Bayes

risk is called a Bayes estimator and this will be discu-
< 1 when thessed in section 1.1, Even in those p'roblems^prior distri

bution is unknown the concept of Bayes estimation can 

benefit us. Each possible prior distribution has a corr-
* I

esponding estimator, whose merits can be judged by using 

our standard methods of comparison, 'Bayes estimation is 
useful in obtaining an estimator possessing some desira

ble property that does not depend on prior distribution. 

The property of minimax is sOch a property and this will 

be-.discussed, im.sectior 1.1. According.ito minimax, princi

ple; wg choose a,decision rule for whiph•the maximum of 
risks .(over, the parameter, space (H) );,is minimum, that is 

arule-afris minimax .if, • .!! ,
.. Sup,; * R(9,e*) =., inf -• Sup R(0, o)

9 £(S> cr £ D* Q€; ®
.. 3 ' « .r r. . i • v j 1

where D* is the class of all randomized decision, rules.» k , * j

Let the problem be to choose one among the r'ules d, ,d0,
. 4 * i I , » X <£*

< . \ \ ' * . i1,. ' f ^ : \ t *

d3 and d^ which have the risk function as shown in the 

following figure
?-'*•

,'l I f

t i \



Observe that there is no rule which is uniformly better 
(smaller risk) than the others. However according^ to 

minimax principle dg is to be preferred, as it has smallest 
maximum of the risk.

Another procedure is by restricting to the class of 
estimators that are unbiasedness or/and invariant, which 
will be'discussed in section 1.1 .

Bayfes principle and minimax principle have there own 
limitations. Asi the Bayes rule depends very much on the 
prior distribution, it is not desirable-to adopt Bayes 
principle when the choice of prior distributions is not 
stmongly justified. In such situations one can adopt the 
criteria of admissibility wherein we compare the decision 
•fcules via risk functions. This concept of admissibility 
will be discussed in section 1.2. A rule a is said to be 
admissible if there exists no rule better than or. Thus 
any admissible rule is one that cannot be' dominated.
It is clear that an inadmissible decision rule should not 
be used, sines a decision rule with smaller risk can be 
found. In section 1.2 we will show that admissiblity



of 3? (with respect to the squared error loss) for m, the 

mean of the poisson distribution by using two different 

approaches. Iri section 1.4 the admissibility of linear

estimates in case of .Exponential family will be discussed,.
n'

In this case, we cons^clpr the. admissibility of linear 

estimates aX+b of Eq(X) with respect to the squared'error 

16s$. when the probability density funcjtion is of tKg,^fAopi 
P(x, S) = 0(a) e® T('x) ! • (1)

Let(fi) be the natural parameter space. Then (H) is an 

interval with end points, say, © attd (@ (-*>,<, 0 < © < °°) 0 

We discuss the admissibility of such estimators aX+b forI, 1
different values of ’a' and *bT, It can be shown that if 

(i) a > 1 (ii) a < 0 (iii) a = 1. b j£!0, th,e estimate
1 1 1

1
1

aX+b is an inadmissible for estimating,© when X is a random
I J

2 1 I |variable with mean © and variance a ,,]with respect to the
1 1

i 1

squared error loss. Admissibility of linea'r(estimate aX+b 

for b = 0 was first discussed by Karlin (l958)a He con

sidered the one parameter exponential,family as in (l).

His proof was extended to the othey values pf ’b* by Ping 

(1964). By the above result aX+b is inadmissible if a< 0 

or a > 1 and is a constant for a = 0, To state Karlin*s
I

sufficient conditions in the remaining cases, it is coa-

venient to write the estimator as !
T v ,1
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with 0 < u < 00 corresponding to 0 < a < 1,

Under the above assumptions, a sufficient condition 

for the admissibility of the estimator S for estimating 

Eq(T) = g(©) (say) with respect to the squared error loss 

• the :two integrals, that is
' " ■ fo e-r^

and
f° ®zY u e

e [p(ej]u d9

tend to infinity as © tends to § and 9 respectively. This 

result is given in the form of a theorem 1.4.2 due to 

Karlin (1958). An example is given to illustrate these

results.

In continuation of Karlin's theorem we discuss-. / in 

chapter II the admissibility of estimators for the expo

nential families with quadratic loss,function. Suppose 

we have to estimate g(9) by a(x) corresponding to the 

squared error loss. The risk for the estimate a(x) when 

the true parameter value is 9 is calculated by using the 

formula,
, ‘ ' 2 

R (9,a) i / [a(x)- - g(©)] P(x,9) dp,(x)

where p(x,9;) is the density function of x with respect

to a c-finite measure jj.„ Our object is to select the

estimate a(x)- which minimizes RL(9ba). The quadratic loss

as a measure of the discrepancy of an estimate from the
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two characteristics (i) when a(x) "represents the unbiased 
estimateof g(«) ,then R(0#a) is the variance of a(x) and 
(ii) from a technical and mathematical view point squared 
error loss is easy to manipulation and- computation. So

i

jf'car,,. this we shall use the squared error loss for estimation
1 ■ H ‘tV; .-ii'

of g(0)In section 2.1 for our convenience we take p(9) 
as devisor instead of multiplier as taken in (l)'. We have 
seen the estimate aX+b is inadmissible if a < 0 or a > 1.
If b * 0 in the above, then aX is inadmissible if a < 0 
or a > 1. Hence the admissibility of aX is to be discu
ssed only for 0 < a < 1. For our .convenience a and
the admissibility of x(l+ u)"”^ is1 to be discussed only 

for u >, O* Karlin has considered the admissibility of 
linear estimate JC(l+u )7^ u _> 0 for estimating Eq(X) and 

proved the result as given in theorem 2.1,1. Karlin 
has conjectured that the conditions in theorem 2^1,1. are 
not merely sufficient, but are necessary al,so for the 
admissibility of x(l+ u)™^ . Karlin has shown that 

x(l+u is inadmissible for g(©) for certain values of 
H* In this respect he proposed a result as given in 

lemma 2.1.1. Further work is done by Joshi (1969) he
i

gave the improved criteria for inadmissibility of the 
estimate x(l+u)”^ in the form of lemma as given in 2.1.2. 

Also the necessary conditions for the convergence or
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divergence of the integrals in theorem 2.1,1 are easily 
obtained. Now using the improved criteria as in lemma 
2,1.2, the range of values of u for which Karlin's conj
ectures remains open is narrowed down, which can be seen 
as given in the diagram page no.77 • An example is gi
ven- to illustrate these results.

The effect on1 admissibility due to truncation will be 
discussed in section 2.2 and the results are due to Kale 
(1964). Let (Iff) j denotes the natural range of the para*» 
meter when the distribution is truncated -and note that 
® ® 9 As the Admissibility’of an estimate is

closely connected with the structure of the natural range 
of the parameter, the admissibility of an estimate may be 
destroyed by truncation. This will be shown by giving - 
suitable examples. In lemma 2,2,3 we show that for any mode 
of truncation all the estimates yx , yXL continue to be 
inadmissible even after truncation. Further an example 
2.2.3 is given to show that an admissible estimator

i >

continue to be admissible one even after truncation.
Now consider the negation of the statement of Karlin's 
theorem, we have the following results
If x( 1+u )~'L is inadmissible then one of the integrals must 

be convergent. If Karlin's conjecture be true then the
i

convergence of atleast one of the integrals iinplies in
admissibility of x{l+u r1 • Then, when = (S) j
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i't can be shown that (refer lemma 2,2.3) if Karlin's 
conjecture be true than an inadmissible estimate x(l+u)"*\ 

u> 0 continues to remain inadmissible after truncation*
If in the non-truhcated case certain estimate is inad
missible but in the truncated case, the estimator is 
admissible, such type pf transition has not occured. If 
such a case is possible then from lemma 2.2.3 it implies 
that Karlin's conjecture is not true.

The admissibility of scale parameter in the exponen
tial family will be discussed in section 2.3. Zidek (1969) 
has shown that when the estimation problem is invariant 
under a group of transformations and the induced group G 
acts transitively on the parameter space the best invariant 
estimator is formal Bayes. Portnoy (1971) has given Suff
icient conditions for the admissibility of a foffimaU Bayes 
estimator when the loss is quadratics So to begin with we 
give Portnoy conditions and then apply Portnoy conditions 
for estimating a power of the scale,parameter by the 
best scale invariant estimator. For a ready reference

i

we state the Portnoy (1971) theorem in which the formal 
Bayes estimator is admissible under certain conditions 
as in theorem 2.3.1. With this background we discuss

v

the results of Sharma (1973) for admissibility of scale 
parameter. It is shown that under certain condition the
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formal Bayes estimator,^is, .admissible (see theorem 2.3,2), 
basically the result qf Portnoy (1971) is-used. An

i »example is given to illustrate, the result.
In chapter III we shall discuss Inadmissibility of 

some standard estimate and the admissibility of confidence
interval in presence of prior information. Consider the

! ybinomial distributionthe conventional estimate is - .
!

Let 9 have a distribution which belongs to a subclass of 
the distributions, on [Q,l] as a prior information to the

I
Iexperimenter. Now we regard the binomial distribution to - 

be conditional on dS) , the members cf this subclass gene-
for X and (2) Withrate a family of joint distributions

this as background we may view our problem as a special
i

case of conventional prediction theory. We give a genera-
Ilized maximum - livelihood principle as applied to tfris '| j

example and investigate *a class of predictors which it 
suggests. Under appropriate conditions, each of these 
has a uniformally smaller mean square error than the 
conventional estimate., These results are due to Skibinsky 
and Cqte (1964.) , and these results-w:.11 be discussed in 
section; 3.1. In case of point estimation the problem, 
of admissibility of a location parameter was -treated by 
B'lyth. (1951), Blackwell (1951), Farrell (1964), Brown

i(1*966). In each paper above, the. admissibility require

i
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the existence of one more moment than what is needed for
finite risk. Now we can show that, a unique best transla
tion invariant estimate may be inadmissible if a certain 
moment condition fails to be satisfied. These results are 
due to Perng (1970), and this will be discussed in section 
3.2. j

Farrell (1964) has proved regarding the admissibility
I

of estimators of the location parameter in a class of fre-|
quency functions. The analpgfcus question regarding confi-

i ,

dence intervals is considered in section 3,3. Joshi (1966) 
proved a theorem which gave a set of, sufficient conditions 
for the admissibility of a certain confidence interval 
procedures for a location parameter.! .Instead of this 
theorem we state a simple theorem (d^ue to Fox Martin,
Perng (1970) ) which includes moment1 condition. Now

i

we show that a certain translation invariant confidence 
interval procedure may be inadmissible if a certain mo
ment condition fails to hold, ,by giving an example in
the form of theorem. 
(1970).

These results are due to Perng


