CHAPTER=-III

INADMISSIBILITY OF STANDARD ESTIMATES AND CONFIDENCE
. INTERVALS . e

3.0 1ntroduction s

In chapter I we have seen that ra common formulation
of statistidal degision theory invol?es a sample space and
a glass of probequity distributions By wheké © is a
parameter, The loss depends on a acripﬁ to solve the prd-
blem and is a function of the parame%er ©, Thus to choose
a proper action we must'know about Og.ﬁmdinarily the para-
meter is not cénsidered to be a randem. If this will be
the case, then we shall choose a decision rule so that the
risk from assuming its worst possible value., In many
preblems, certain extreme values of rhe parameter are not
allowed completely but the experimenter may be allow such
v alu s of the parameter for to re-formulate its recommend-
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atrong §9 suit thelr judgement. Some statisticians accept

v
p?\

thls But some are rejected, such type of dlfferent judge-
ments there will be a incentive poWér to reformulate the
standard decision procedure so that Fhere may be exact
use of prior information with more e?ficient. If nothing
is known about the distribution of parameter we can do as
usual formulat:on. In this chapter We discuss some stande

ard estimates cealing with the admi551b111ty in the

r



. diaiing with ‘the adm1531bll;ty of the best ;invariant
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presenCe of prlor inf@rmatlon. '
In the pext ﬁWQ sgﬁsectlons we show that eertaxn
moment conditions are essentlal for the adm1551b111ty ef
vVérious 'good' statistical procedures wh;ch a;e translﬁ
a'tiqﬁ iAvariant, 3ackgvell (1951) flrst gave an exampié inwhz.ch
he prqved that é best invarlant decision rule may be .

inadmisiible. ] Af%er this many papers have been publiéhed b

o d

procedurex In case of point estimatlon, the pmblem of

adm1551bility of a lOCaulon parameter was eonsidered by
Blyth (1951), Blackwell (1951); Stein (1958), Farrell
(1964), Browm (1966). The preblemn éf admissibility of
éertain confadehce intervals was treated by Joshi (1966),
In_qaCb of the above paper, the admissibility requires

%ﬁe existeﬁ@e of one more foment than what is needed fox

#3ite Ti5K,. In the Followihg we can show that without
%hid ¢xtza giement inadmissibility mey result,
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3,1 Inadmiséibility of some-standard éstimates :

In binomial distribution we take into account the
prior information about ©, the probability of success.
We are to estimate this probability from an observation
on the number X of successes in n trials., The conventi-
onal estimate is g . We. assume that the probability of
success in our 'trials is‘the value of a random variable
(B . Note that if nothing is known about the distri-
bution of. (g}',’we can do no better than the usual formu-
lation.. However, we assume that () has a distribution

which. belongs to a subclass of the distributions on [0,1]

as_a prior information to the experimenter. If we now

regard the binomial distribution to be conditional on (:) ’
the members of this subclasé generate a family of joint
‘§;§t;ibptibns for X and, (:) » - With-this as background
we may, view,.our_ problem as,a special case of conventional
prediction theory. In this:section we discuss the.re§hlts
of Skibinsky-and Cote_(1964), .In'the fqllewing we .pre-
sant-a generalized maximum likelihood principle  as. applied
to this: example aﬁd“inuestigate a, class of: predictors
which iteﬁugggstsé Under appropriate, conditions to be dis-
cussed below erch of these-.has.a uniformly-smaller mean
square error-:tran-the conuentional estimate. - SR

- f -y
» t, o . ‘ t,
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Let n, 8, o be given, n is a positive integer,
o<b<2,o<a<1.

The random variables () , X the former distributed
on the unit interval and the latter distributed discretely
over Ehe numbers 0,1,2,..,n..

We suppose ghat )

Prob ( X = x./ @ =) = £(x,0) (1)

where"

()% (1 -e)™*, x =0,1,2,..,n, 0<&X1

‘f(x,g)= i . | x=0 Or X>O,l g=0
l or O , according 'as x=n or x<n, =l

is the value at. x of the binomial frequency function with
parameters n and © (n is“known). Let Vv be a c.d.f. on the
unit in'llj,erva'li., We shall'write P, to indicate any probabi-
lity measuré on the domain of (g) and X which satisfies (l)
éhd has 'v as marginal c.d.f. for (E) { and Ey for expect-
atioﬁ iélati&e to P, . Let

m($, @)=y v €1=-2) -v(2-021-a]
That. is, ﬁn(é'é) ié the class of priors whose concentrati-
on on (9; 1—6) is greater than l-a.. e.g.-In the follow-
ing figure, Let hl(Q) the pdf correSpondlng to prior
dlstrlbutlon be such that the area under the curve from
d to 1- is 0.7 (say).- For a different prior corrcspond-
ing to the pd.f. ﬁé(g) the corresponding area be 0.5 (say).

Let Hi be the distribution funétion corresponding to

AR BALASAYER
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the pdf  h;; and assume that l-a = 0.6 (say).

= ok ®

- -
- -
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) . 1§t e i
clearly Hl(Q) € md, o),

H) (8) is the cdf Sofresponding ta h,(0) and-
Hy(0) € m(d, @)
Theorem (3,1.1): . _

" Let v belong tom(d,x), then for >0 and sufficiently
small; % is an inadmissible predictor of (E) relative to
the squared difference loss function, in the sense that
there exists a predictor which is uniformly betier over
‘m(b,q). Ig‘{?ct there exi;tg a mapping t% from the range
of.X to the unit_interval-such that ° = -

ev[<6‘<x>-®>21<ﬁ [ E- @21,
' for all v E‘m(b, ).
Proof: |

The proof of this theorem consists’ of three stages.

(I) -A-maximum. 11ke11hood method for prediction of. Gﬂq

roa We proceed in two.steps
teg (i) We ,choose corresponding to each x, a c.d.f.
Vg & m(d, @) such that

Pyt (X =x) 2P (X'=x) , allv €m(d, a) - (2 '

.
Nz o o T - e

PO . - v f
: ' . v or ¢ ~
—_— . ST [P .
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By definition of P, and (1), we have for each c.d.f., v on

{0,1] that
P, (Xx=.x)=ESf(x, @), x =0,1,2,...,n.
But for each x, the likelihood function f(x,.) is strictly

monotone on [0,1] to each side of & unique maximum at

e = ;—’:. Hence 'vx defined by,

/lo(i \\1’9(
) T T R b e
o x .
%0 e !
P (@ = %) =1, nd £ x<'n-my
v o4 - .
,/T«\
AN
A by
’// - ' \\\
—— | Detdoth el
° % @ L
Pv (@:l—-b)zl-cx, P, (@:%):a,x)n—n&
X X

. ° - D X/ 1
satisfies (2) uniquely for x = 0,1,2,...,n.

Step (ii) = We obtain corresponding to earh x, a value of

[a)
@ » we shall call it @, a(x), whose a posterior proba-
»
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~bility is maximum, i,e, a value © which maximizes the

conditional probability (() )
wa = @, X=X
Py (@ =0/ x=0) = —Hpmyrry @)
x\

The numerator of the RHS of (3) can be written as
p_(() 0, X=x) = Py (Q=e)=f(xe), (4)

and thls may be 1nterpreted for each fixed x as an ' a

posterlor llkellhood of € '. Clearlyg maximizing this is
for flﬁed X equlvalent to maximizing (3). In view of the

definition of Vx wHeh x <'nd,

Py, () =6).£(x, 0) = va’(@s 2 et(x,8), 0 =%
= f(x, h)S) , © =;):-
=(1-a)#£(x,d)  ,0=2
= o . y QoW

Similarly, when x > n - nd then,
|

-va., (@ =0). £f{x;0) = «a £(x, ﬁ), 2]

X
: n
=(1-a) f(x, 1 -3), 0 =1-9

|

| PN
= Q » OoWy

i »

|

|

1
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When N3 g xgmn-nd’ then,
P (® =0) £(x,0) = £f(x,3) , o=2%
x = 0 ’ OwWe
Now let n(X,@) =.f(xy x/n) / f(xsb) i
N
define @ 9, a (x) as follows, |
when x £ na
8 _ X 1-g
Qa’x(X) == y n(x,d) > ===
.= ., n(x,9) 8
When x > n - nd
a N o x 1-0
03 (%) =§ » o nlx, 1-8) > ==
=1l1-9 , ntx, 1-¢) K i;':ég
When nd £ x { n - nd |
A _x
' gjaau(x) T n
It is clear from the above description of (4) that for
each x . : ‘
; A
b, (® =8, ,(x)/ x=x) 2 (P_(B] =0/ X=x), a11 &
xna ! ' x ..(5)
To find a simple cxpression for gb,a(x),
|

we proceed as follows.

Let b denbtes the largest integ%r less than nd.

: |
It can be shown that for x = 0,1,...}b, n(x,9) is stric-

i

tly decreasiné in x and bounded belo@ by 1. It follows

that

Y S G . T gy g S A

1+ n(x,d)

o—
=1

c(x, 9), (say)

(6)
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is strictly increasing for these x, with C(b, 9) 5_% .
By the above discussion and simple consideration of symmetry,
T
Qb,a(x) = %, when a > C(b,d).
For o £ C(b,d), if we define a to be the smallest non-
negative integer x such that n(x,9) < 1-a / ¢ ( or equi~-

valently, such that C(x,8) > a), then

"a’ ' ’a\gxib
N
e = -3 < < -
a,a(x) 1 ‘ b<x<n-a (7)
x , O.W,
95 q 1S uniquely op%imum in the sense of (5) unless
9

C(x,d) = a, for some’ x £ b, in which case it may be modi-

fied at x, by replacing its value 9, there with g without

affecting the value of the left hand side of (5), Thus

A
S, 0‘(X) is optimal as a predictor of @D relative to the
? ‘.

tlass m(d,/a)- is given by (5)-and!(2)." 7 . "' . =,
(II) A.class of predictors for (ZT g STL.T Lt i f vy

We conside%-the folldwing class of predictors for (B
which are’ suggested by ‘the:maximum likelihood’predictor

A
Oy o(X). Define % .for j = 0,1,25...,b on the range:of
211 J

Y

Xby 'te. o Tt Yo
a ’ J £x£b

() = 17/ 1.9, nb < xS (8)

D ’ :-1‘ T, ouw. '

t A
The relationship of 8y , to the %j follows directly
3 . . . I . 9 : '

;S T 3
) R
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from the definition of a. Indeed for j =0, 1,.., b,

we have

A . .

©5,a{X) = §;(x), when C(j-1,0) < @ <& C(],0) (9)

We take C(~1,8) = O.
(III) Now we shall compare QS(X) with X/n as a predictor
of @ , We examine for v € m(90,0) the difference,
' 2 X 21_

By [(§(x) -@») ] - g (5 - @)= 85 (@) (10

where Hj(ﬁﬁ) is the conditional expectation giveq,@@

of the difference between the two squares. It can be shown

that

Hj(G) hj(Q) + hj(l - @), where

b

L (3-3%) (2+ % - 20) £(x, 0).

x=j

It can be seen that Hj are polynomials in © each of which

h;(e)

is symmetric about © = % .  Also for j =0,1,2,..,b,

(9) < Owhen 8 © £ k-d-and H (@) > O for 'sufficiently

2

'small ‘0 > 0, also note that HO(O) = 9“ and H4(8) =0,

j = l_,2,'o°o ’bo . .‘
Thus' using ‘the above results, the largest value att-
.dined by (10) for any.viE m(d,x) is . -

'@ max H.(8) + (l-a) max HJ(Q) - (1)
. 086<y I <941/2

N "i

The flrst term in (ll) is p051t1ve and second term .
T . A

is negatlve. For suffiC1ently small a > O, (ll) is neg-

atlve.
-
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E, [(§,(0) -® )] < B [(F -@)*1yem(® ) Clearly,

any one of the predictors gj(x) is uniformly better over

Thus

m(9,a) than the standard estimate % relative to the squared

difference loss function provided that a is sufficiently

small, Hence é is inadmissible proedictor of (:)

0

3.2 Inadmissibility of 'the best in Lant _estimate of
a locatlon_paramqgg;

In this section we shall show tiat a unique best tran-
| - .

slation inwariant estimate may be inadmissible if a cert-

ain moment conditgon fails to be satisfied,

Let the losslfunction be is giveﬁ by

L(e, a) = w(g a) = |0 - al®f k2

Accordlng to Brownls (1966) theorem, a unique best
1nvar1ant estlmate is adm1581ble 1f the follow1ng moment

3

condition is satisfied.

EX]W (X) <= for a = 1 (1)
It is 1nterest;nglto see whether thlSlls the weakest
moment condition we can have. Brown (1966) gave a part1a1
answer to this questlon by giving an example. He gave
hprobablllty‘cen31ty function such that (l)_l§ valid for

0K acX -EE— . :?ut the unique best ;invariant estimate is
-1 '



127

inadmissible. Now question is, a unique best invariant
estimate is admissible if the moment condition (1)
satisfied for X < a <1, We answer 'this question by
the following 2x;;ple in the form o% theorem due to
Perng (1970).

Theorem (3,2,1) ¢

In the fixed sample size case,'if tﬁe loss function
is W(t) = }tlk for k > 1 then for every a (0 £ @ < 1) there
exists a family of probability densities.such that E|X]*W(X)<e
and the best invariant estimate of the.real‘location para-
meter is unique but it is inadmissible,
Proof:
Let © be an unknown real parameter - <@ <K e, Y be
a random variable according to the kno#n distribution G
such that
dG(y) "’";E-T-zgﬁ,""’ dy , ¥ > 1
= o) T O.W, (2)
where n, C are positive constants and n < 1. Assume
‘that X giveny is distributed according to F(x-8/Y)

where .
dF (x- O/), =-3-,1— . ég dx , for | :3‘-,9.'“-9 | < b

= 0, - otherwise
and b is a positive constant.

It can be seen that the unique best invariant estimate
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Rd

of © is X. Also it can be seen to be E |X|% W(X) < = for
) _<_ @ « l-n. Now we shalk snow that X is inadmissible.
Conaider the estimdte of the form

#(x, vy) =7 -lll(g'f,) (3)
where
Xy _ X X
P = 2+ () (4)
£(2) = -ed i 2| <} (5)
= o) ’ ‘otherwise

€, O are constants. such that 0 <93 K& < % .
Then the risk of ¢ is

R (4, 0) = E[|d - o]¥]

> kK C 1
= _{Y ol% - © RIS ey X

-] by+g ) .
by+0 ¢
b k
k X e
= -) - - ......_.. d
1f —£y+0 vl Y '-I 2b, kTN x (6)

Lot ¥ =z and % =71 Thus for > 0, then (6) becomes

k -
R(g.0) = B J‘ Mpee) -z  az ] TF 4T (D)

By (4) replace lIJ(z) by z + f(z) and z-T= w, We have

R(g;0) = -'25- f L I if(m+t)+w] dw] tndl' (8)

Now we will evqluate the inner integral in (8).
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For k > 1, |w] &b and |£f] £ 3< = ,

considerx

|w + f(m—?)lk = !wlk + f(w+T) lek”l sgn w+ O(f(w+T))

”»

Hence

«e(9)
b
{)‘ | £(w+T )+w]¥ dw =

bk b 1o kel
= [ |wl® aw + £ f(w+T) k |w| sgn w dw +
b 5 =

b X
+ SO (f(w+T) dw
-b
k+1 , 3 :
=2 ik S Flw+T) ]w]k-l (sgn w)aw +
k+1 -b .
CL 0 (it 1EmTID (10)
Thercfore (8) becomes '
o™l O opktl

b .
R(G,8) =B S 2 4k [ £(wtT)|w|¥! (sgn w) aw +
2 0O - k+1 -b

Al

+0 ( Julep [EmeTIN]T TN a7

S g8 ® on ] k-1
(k+1)(l-n)+ 2b K'ko'[ T dt_‘,{)‘bf(w"'?)iwﬁ (sgn w) dw

]

2]
+0j‘ 0 (lvsvl“gblf(w?)) T at

- <.(11)
-+ It has been shown that the risk of @ is
k n-1 _ l-m,_k+1
R(6,8) < Cb* + 28 { 2¢ 30~ p + o(éég)}
(k+1)(1~-n) 2b (1-n)

if 0 < @< gL -b (12)



k n-1 ¢ -1 . oy ile
R(@,8) < ~CPoeen b ~22 {;72§§H§~_ [min( ¢~1-b,8) "

+0eMed +0 (min(2, 20)) }
| if @8> T' <b (13)
Hence by choosing € sufficiently <mall and then choosing

& so that g is sufficicntly small, then we have

" cpK
R(g,8) < for all & > O. (14)
(k+1){1-n)

By the symmetry of the problem, we con show (14) still
holds for 8 < 0. For 8 = 0 we can prove (14) by direct
computation. Thus for fixed n&(0,1), k> 1, 0 < 8 <&< b1
and € , % sufficicently small we have,
R(#,0) < ot , —®» <0< (15)
‘ (k+1) (1-n)
It can be seen that the risk of the best invarient cstimate

X of 8 is,

k

Cb
R{X, ©) = 6
(X, ©) (k+1) (1-n) (16)

Hence we have R(@, ©) < R(X, ©) , ~=2 < 0 < o

This shows that a unique best invariant estimate X is

inadmissible. i
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-3.3 Admissibility of Gonfidence intervq&g :

In section 2 , we have seen the admissibility of est-
imators of a location parameter in continuous frequency
functions., Hcre the analogous question is tonsidered rege—
arding confidence intervals. The adm;ssiblity of confidence
intervals is proved for the location parameter in a wide
class of continuous frequency funciions which includes the
normal and some other commonly occuring ones. An applica-~
tion ‘of the result is that the usual symmetrical confidence
interveals for the mean of a normal .population are seen to
be admissible whether the population variance is known or
not, . In the folipwfhg,x denotes a real random variable,
with a densityffunction inyolving a parameter © which assu-—
mes values in a set {H) of %hé real line,

Let xl{xz,...,xnwbe independe§t observations of X, and

X = (xl,...,xn) a point in the sample space ¥ ..

Lebesgue measure is defined on¥ and(H} . .- Let a(x),. b(x)
denote measurable functions defined on ¥ and (a{x), b(x))

denotes the set of confidence intervals [a(x) < © < b(x)].

We define admissibility of confidence intcrvals as below:

<

Definition (3.3.1) :
A set of confidence intervals fa(x), b(x)] is said to
be admissible if and only if, there exists no other set of

confidence intervals (al(x), b“x)) satisfying,
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(i) bl(x)-al(x) € b(x) - a(x) for almost all x £ ¥ and
i1) P (a;(x) £ 6 & by (x)/3) 2 P(a(x) < 8 < b(x)/6)

for all 6 € )
fofr all @ & @where @ is the parameter space, the strict
inequality in (ii) holding for at "east one® €¢® .
Theorem (3.3,1) :

If X1 9Xpyee X, are independent observations from a
known frequency fghction f(x,8) containing an unknown
parameter 8, ~x £ e f +o, and if,

(a) £(x,0) admits a sufficient statistic T(x) for ©, where
o £3{x) is a function of X19Xpses,%, With a frequency function
¢ of the form P(T - ©) i.e. the distribution of (T -~ 8) given
D 45 independent of 6 for -= < @ < oo
“(b) the frequency function p(t) in (a) strictly decreases

for t 2 O as t increases, and for t g'o as t decrcases, is

continuous for all t and is such that

o0 oo ...t
S [ Jp(e) at+ J 1 P(t) at] at;
or % o
converges 1

(¢) the frequency function f(x,8) of x is positive (>0) and
continuous in x for all x = (xl,xz,..,xn) and all @,

~c0 { @ < 400,

(d) Vl(x),\12(x) are non-ncegative statistics distributed
independently of T and © such that for every x £ X and

P(t) in (a),
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P(=v,(x)) = P( v (x)
and further such that v(x) = max ( Vlﬁx), V2(x)) has finite
expectation and variance, then the confidence interval
for © :

[T- vi(x) £ © £ T+V,y(x)] are admissible according
to the definition (3.3.1).

For g proof refer Joshi (1966).

Exariple (3,3.1): |

Let Xl,X2,..,Xn be iid N(e,l1). ;In this case X is
sufficient and the distribution of which is normal with

mean @ and variance %. It is casy to verify the above

conditions (a), (b) and (e). We need to verify the
condition (d).. Since thc density P(.) is symmetric about

zero, Define

"vl(x) =,n32 ='v2(x) |

aal

which are independently distributed of T and 8, and the

distribution of ns> is in__l.

Now  w(x) = max ( v,(x), v,(x)) s ns2
. _:é v(ix) = é(ns2) = n-1
-and var v(x) = v;r (n82) = 2(n-1)

hence the condition (d) is satisfied.
herice the confidence interval for © H
% ~ns?< 0<%+ ns’]

"is admissible according to the theorem 3.3.1,. ]
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The above theorem ,3;511 which gave a set of sufficient
conditions for the admissibility of certain confidence in-
terval procedures for a location pa&ameter. Now we shall
give the statement of a theorem due to Perng (1970).

Theorem (3,3,2):

Suppose X,,Y have joint distribution given
h(x,y) = £(x~8 /y) g(y).
Suppose f(- V,(y)/y) = £{ ¥i(y)/y), where V,(y), % (y) are
two non-negative statistics, and f(t/y) is.strictly decr-
easing in |t] on the set £(t/y) > O.
Suppose [ g(y) dy [ |t] £(t/y) dt < = (1)
Then the ‘confidence interval procedure given by
X=- Vl(y) £ x+ V2(y) is admissible according to the
definition 3ﬂ3.l .
For a.proof wd refer to Perng (1970).
We have seen in section 2" of this chapter, that
a unique best;translation invariant estimate moy be
inadmissible if a certain moment condition fails to .be
§atisfied.. Now we noticce that the moment condition (1)
in theorem. 3.3.2 is quite similar to the moment condi-
tions .in the estimation problem as in section (2).Heye we
shall.see  whether the moment condition is also essential -
for the admissibility of the specificed confidence
interval piécedure ;s and these sesults are due to

Perng (1970).
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In the following we shall show the moment condition
is necessary for the admissibility of confidence interval,

Theorem (3,.3.3):

For every o (0¢5 a < 1) there is. a family of probabi-
lity density'fupcti&hs such that E|X|% < =, and a confi-
dence interval ﬁmbcedure I such thet pdf satisfy all but
the moment',‘conlditrion (1), and I is inadmissible,

Proof: -
Let © be an unknown recal-valued paramcter =c<@<e,

Y be a random variable according to the known density

function. C
_ 1
o(y) =5 » v>1
Y
=0 , otherwise (2)
where 0 < n < 1, Cy > O are constants,
Let x given y have density function
' C
2 X=0 . X=0
P(x-8/y). = =5 (b=1 |=== f |===| K Db
(X /Y) R (b y l)yl l y l -
=0 s otherwisc (3)

where Cz,b,l are proper positive .constants and b > 2,

We define,

I(x,y) = [x=y, x+yl (4)
I¥*(x,y) = I(x,y) - if y <& |x|+1
= [x(1- £9)~y, x(1~ €3)+y],
if y > €]x|+1 (5)

Where € ,0 are constants such that 0<3¥& < % .
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It can be seen to be E|X|* < » for 0 { a < 1-n and
diverges if a = l-n, Clearly, all but thc moment condi-
tion (1) are satisfied.,

Now We shall show that I*(x,y) dominates I(x,y) in
the sense of definition for sufficient small &, 9 and 1.
Clearly the length of I(x,y) is equal tuv the length of
I*(x,y) for every (x,y).

Hence we need only to show that

Pgl@ £I(x,y)) < Pg(e&I*(x,y)) (6)
for all @ and strict inequality holds for some ©. For
© = 0 clearly (6) holds.

By the summetry of the problem, we need only to
consider the case © > O, That is we wish to‘show

. Pglee I(x,y)) < Po(0€ I*(x,y)), for all @0 (7)
" Showing (7) is equivalent to showing
Po(8 €I(x,y) andy > €|x|+1)<

< Pg(0&I*(x,y)and y > €|x|+1) for all e>0
..(8)

Now we shall evaluate the two probabilities in (8).
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e’

. :‘—&a
=1
N / \ :
—— RINE
e
l-—?a‘
o f
Po(O€ I*(x,y) and y EIXI+l)\ =
1420 - €9 _y_r_g:_ ' :
1 -6~ €d € c C
o J’ j ZEo2.l ( b—ll-’-—e-—-l)dx day #
‘ yo
1+ €9 - €90 " O=y__
1+ € = €3 T 1-€9d .
o ofy..
f ?ea o .
172 1 X—6
1+€0- € oy ¥ D exe
1- €3~ € 1- €3

. (9)



138

and
- Pg(@€I(x,y) and y 2 € [x|+1) =
1+€0 y=1
1-€ 7 €
c,C -
= J / 12 1 (p1]228) ax ay +
.1.1'..6:.9 O-y Y ny Y
1+ €
7 N oce, 1 e
X .
- Ej 1 =5 5 (b-1]222]) dx dy
1+t€@e o~y (10)
1- €

Using the, dominated convergence theorcem we have

10 Py (8€I*(x,y) andy € |x|+1) =

1+€6-€0 y=1
1- €o- € € cCp
- ’/” /f =37 dx dy +
Y
1+ €6- €0 S-y
1+ € = &0 1-¢9 (11)
C e oty
‘ ' 1-¢d C.C.b
+ f -»-%-:%- dx dy _ (11)
1+€6- €3 O-y y
1-€0- €  1-6€d ) (1,)
consider )
1-€9d
T , . C.Cxb
I = f / LZ - ax.ay
1+ €= €3 ©-y -y
1- €0~ & 1- €9
_ —H9C,Cop (1+€0 - €)M (1= ¢ - )"

(n-1)(1-¢9)



and
.1.1‘_9..9:..‘:‘.9. Y=l
r
L 1- €0~ € C,Cob
i / , T‘n dx dy
1+ €0--€9 e-
1+ €~ €0 1-;_.;:@ _
That is ' / oo ’
-1
C,C b(l-ea+e)(1+eg—ca)“ 11
I,.= 2 e v (1- € - €3) 1= (1+ €~¢d) ?
€ (1- €3) (n-1) /

£ O n-1
C,Co0 {1+ €0~ €9)

- N I (TR T A g BT WAL e

€ (1~ €¥)(n-2)

Therefore (9) becomes

2-n

3 2-1
-E:-_-(‘—b) ~(14+ € - ¢d)

if{’; o Pole€I*(x,y) and y > &|x[+1) = I+ I,
_ TZCp 1+€0 -¢d )'n—l ,
(1- €3)(n-1) ~ 1-¢d -¢ ;
n-1|

12

€ (1-¢d) (n-—l)

_ iczb(1+69-ja) {(1-

€(1= €d) (n-2)
C,Cp(1+€ o- ed)n-1

b(1- ea+e)(1+<~9- €9)
R nwum\‘(l-(:- éb) ~(l+ €- €9)

e e T P

T € (1- €d) (n-1)(n~2)

+ (1-5a+e)(1-6—€6)

-

"

LN

o
€ - ea) -(1+e €9) n}

1-7
{=2¢ (n—2)(l-ea-é) +

(n-2) - (l+g- eb) (l-c 6+€)(n-2)
!

RCLR!

- (n=1)(1-€- €3)2 ™My (n=1)(1+¢ -€9) g

i
1
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- n-1
C b(1¥ ¢ 6- €3)

€ (1- €2) (n-—l)(n—2)

'{(:He - €3)27N. (1-¢ - €)% 2

C1Coh4 (1+€ - D (1~ -*" ¢
e Al S N | (12)
€(1l- €9) (l—n) (2-n) (1+e9-ea)
Similarly,
liml.__? 0 PG(Q €I(x,y) and y __>_—€Ix]+l) =
1+ €9 ~1 -
Y L C,Cyb SR N
= 7 [ = dx dy + ( f =1 dx dy
1+€9Q 1+€ 0 OB« y
1= e O~y (I3) =I=-= : (1,)
1+€ 3 1-¢€ 4 )
..(13)
Consider,
1+60
TTC" C.C.b
1- € 1600y
- ree Y L
1+ €
b:CiCHELHE ): o e ) 1- %—n)
= = 1~ € =2 (1+¢ ) - .
€ (n-1) {1+ c.e)l . '\— ’ ‘
- CCpb{1+€0, =) =n) " - 2.
- %_(1-5) - (1€) j )
C(n-2)(l+tr@) R
and
cf Tocybp —
G A
I, = f —5==— (Y+G-@+y) dy
omee iyt
1= € ‘

;__" - 20.1.(;2b ;‘}l+€92 )T}-_l - ,
n"‘l l""& o
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Therefore (13) becomes,

2—n D
C\Cob 2 (1+€)" - (1-¢) n}
€(1-n) (1+€0)*™M (2-1)
From (12) end (14) we have

(14)

Il

lim %Pg(O&I*(x,V) and v > ¢ |x|+1) -
150

- PQ(QEI(X,Y) and y,2_613<|+1 ) }
b5\(1+c-- €)% M - (1-¢ o€ )2-'n L

r——— g Y W N ARW WP ML P SR SRNGA S —

E (1-66) (l-n) (2-n) (1+ée-ca)l'“
1Cob3 (146 )M = (12¢)*N)

e(l-m (l+€9)l " (2-n)

P T T )

€ (1= €0)(1-n) (2-n) (1+€ 6= €3) M(14¢ @)2en

4 e - e e o s W

i

{(ueg)l"ﬂ (14€ = €3)2™M = (14€0) 1™ (1= ¢ b= e )2 e

- (1= €03) (1+€0- €)X (146)%™M 4 (1~ €d)(1+€ 0= €)1
| (1-€ )2’”}

C,Cb
= )\[(l+é- €)% _ (1-¢ - €3)Z " (1+c 0) 1™ -

- [(1+€ )% (1- €)™ "] (14€ 6= €d) 1™ (1-@)} (15)
where D = € (1- €3)(1-n)(2-n)(1+€e- €3)1™ (1+¢ o)™’

We have to show that the RHS of (15) is positive for all

"9, it is suffici?»nt to show that the term in the braces
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of the numergtex is positive for all e > O,
Expand (L+ €~ €3)2M, (1-¢€ - €)% and (1+€ 6~ ¢3)*™
by Taylor's expansion taen we have,

(1+€ = ¢3)% "= (1+¢ )2“”-(2-n)(1+.5l)1ff‘”e o+ O €9) .

(1- ¢ ~ ea)z"’k- (1~ @)2"”-(2-71)«(1- ¢ )lf'” €3+ 0O €9) '

6
(1+€ 6~ €3)t™ = (1+€0) 1™ M=(1-n)(1+€0) M e o+ O( ¢ ) (26)

Using (16), the numerator of (15) ca:'n,be written as
[ (1+6- €3)?M o (1~ ¢ - )] (1+€0)1™
- [ (1+€)2™M) 2 (1-¢)%™M] (14 €0 - €)1 (1= ¢d)
1-n
> [ -2(2-n)- (14 )1 Me 0 + (2-n) (1-¢ - €d)e €B(1+e0) ™M
£ (+€)TM 2 (1-¢)?] (1+€0)¥Mecd - 0(€ d) .. (17)
Expand (1+€ )™M, (1-e - ea)l"”,“(1+ €)%

and

(1~ 6)2_11 by Taylor's expansion "thenlwe have

(1 €)1 . = 14 (1en) +0(E )E )
(1-€- €)™ = 1-(1~n) ¢ (1 = d) + O(& )
2_-n 1 ) (18)
(1+¢) = 1+(2=n)e + O(€) !
(1-€)?" = 1-(2-m)e+0(e) : . 3

Substituting (18) into (17), we' Have
[(1+€- €)™ - (1-¢- €2)2"] (ide o)™ -

- [(1+€)% - (1-€)2] (1+€0 ,;~ea)l'“ _(l-éb)
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2603 (1+€0)1™ (2-m) é{2ﬂ-b(ll—n) -~ O(& )} (19)

For given n>0, it is possible to choose ¢ ,04 suffi-
ciently small so that . RHS "of" (19) is positive for all
e > 0.

Equivalently, for sufficiently small & ,9,

nml—ao [P(0& I*(x,y) and vy 2 ¢ |x|+1 ) -

- P(OEI(x,y) and y > elx]|+1)] >0 .. (20)
for all @ > 0.

(20) implies that there cxists a positive 1, such
that
PQ(O € 1%¥(x,y) and y > ¢|x|+1)>
> Pg(g €I(x,y) and y > €&|x]|+1)
for sufficiently small £,d and all © > 0.
But from {(4) and (5) the lengths of I and I* are

equal. Hence from the definition 3.3.1, I is inadmissible.

O



