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FACTORIAL EXPERIMENTS .

In this chapter we give the detail about 'factorial experi­
ments'. In section 3.1 we g^ve introduction of it along with 
the historical account. Section 3.2 is used for notaions and 
some definitions. Analysis of ‘symmetrical factorial experimen-ints' is given^the section 3.3 . The necessity of confounding and 
different methods of confounding are given in section 3.4 . In 
section 3.5 the need of 'fractional replication' is explained 
and different plans are given.
3.1. : INTRODUCTION

At the end of Chapter 1 4 we have introduced the term ,
'factorial experiments '. In chis chapter and in the remaining 
chapters we will discuss about it , in detail.

In practical life factorial experiments are widely applied. 
As an illustration let us consider the following situtation :

We know that the yield of a particular type of crop mainly 
depends upon the irrigation levels and the different manures to 
be applied on it. Suppose there are different levels of irrigat­
ion and different types of marures. And suppose, the investiga­
tor has to find the effects of these factors on the yield of a *
crop.

One way to ascertain the effects is to carry out two separ—
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ate simple experiments- One for testing the effects of different 
levels of irrigation and other -.o test the effects produced by 
different manures. In the first experiment one can find the opt­
imum level of irrigation and thereafter in the second, one can 
determine the optimum level of manures.

In the above set up we have assumed that the two factors act 
independently, on the yield of .::rop. Obviously this cannot true 
in practice. The yield of a crop does depend upon the combined 
effects of these.two factors. For, many times high level of irr­
igation with strong dose of manures gives more yields and on the 
otherhand the lowest level of irrigation with strong dose of man­
ure /nay give less yield.' .Hence it is cl ear that above two 
factors are correlated. In such situations it is essential to 
consider all possible combinations of different levels of differ— 
ent factors and to select which combinations affect the? yield 
really. And, precisely this can be achieved by performing, 'fac­
torial experiments '. In the next paragraph, we give in brief 
the historical development of 'factorial experiments

Prior to 1926 , factorial experiment was called the, 'comp­
lex experiment '. Fisher designated it as, 'factorial experi­
ment '. Now it is known almost exclusively as a 'factorial exp­
eriment *. Yates (193b) states that the factorial experiments 
have been used on wheat trials at Broadbalk since 1843 and on ba­
rely trials at Hoosfield since 1852 .

Fisher and Yates are mainly responsible for the development 
and analysis of factorial experiments. The classic work on fact­
orial experiment is, 'the pamphelt written by Yates (1937), enti-
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tied, 'The Design And Analysis of Factorial Experiments’. Besid­
es these two, Barnard (1936), Bose (1938, 1939, 1942, 1947, etc.) 
Cochran and Cox (1959), Kempthrone (1952), Fedrer (1955), among 
the others deserve no small amount of credit. And precise lit.ei— 
ature on this topic is available in the books by Kempthrone 
(1952), Fedrer (1955), Cochran and Cox (1959), John (1971), Ogawa 
(1974), Das and Giri (1979), Fedrer, Hedayat and Raktoe (1981) 
among others.

It must be mentioned here that in the literature, many a 
time, the phrase "Factorial Design" is being used. However, this 
is actually a misnomer for, there is no such thing as a factorial 
design. The adjective "factorial " refers to a special way of 
forming treatment combinations and not to any basic type of 
design. Yates (1937), and others have recognized this situation 
and they refer it to as 'factorial experiments’ rather than 'fac­
torial designs ’. In our discussion, we will follow Yates .

In the next section we give some notations and difinitions 
which are helpful in further discussion.
3.2. : NOTATIONS AND DEFINITIONS

In the study of factorial experiments we will use the foll­
owing notations . \

The factors are denoted by capital letters such as by
A , A , A , - - - - or by A, B, C, ----. We use 'X ’ to de- 12 3'
note a factor, in general. The i th factor is at s levels

iand these are denoted by 0, 1, 2, - - - s or x , x , - -
i-1 li 2i

- ; 1 £ i <: n . A factorial experiment with n
s , i

43 um. BALASAHtB UBMH
MHVAJ! UNIVERSITY. KOMUM’Mfc



factors : A , A , - - - , A with s , s , - - - , s levels 12" n i' 2 n
respectively is denoted by ' s * s * - - - * s - factorial exper—

12 n
iment ' , with v = s#s#---~*s treatment combinations.

12 n

i

Further, treatment combinations are denoted by corresponding sma-
11 letters, such as (1) I| 8 , cl J cl a J

i' 2’ 12'
a ^ a a3' 1 , a a

3 2 3
, - - -or

by (1) , a, Idji ab, c ^ ac, be, - - - etc. or

by
A

a
X X
be - - - ■*1 where

i

denotes the x th 
i

level of corresponding factor ; 0 ^ X Jn S *
i i-1

Next, we use (x) and [>;] to denote mean and total of all 
observations receiving treatment combination, ‘x A main effe­
ct of factor X is denoted by X ; and interaction between ,the 
factors X, Y, Z is denoted by XYZ , and so on .

Further, let r denotes the number of replications of j th
j

treatment combination ; l^:j<s # s * - - - * s
12 n

SOME DEFINITIONS

Below we present few definitions [ Raktoe, Hedayat and Fed- 
rer (1981)] which are necessary in further discussion : 
Definition : 3.2.1. : COMPLETE FACTORIAL EXPERIMENT ( CFE ):-

A factorial experiment is a complete factorial experiment or
simply ' a complete replicate ', if r 0 for all j ;

jl<J(v in each replication , i.e. every treatment combination
should appear at least once in each replication. Shortly we can
CaH i(r as CFE-



Definition : 3.2,2.: MINI I'lD I l.illll i I It I AC 11 llv I HI EXPERIMENT (MOL)

A complete factorial experiment (CF-E) is said to be minimal
complete if r = 1 , for all j ; 1 ^ j ^ v i.e. each tr-

j
eatment combination occurs once and only once in each replication 
Shortly it can be called as 'M C F E
Remark The MCFE is often refered to as a single complete rep­
licate of the s * s # - - - * s —factorial experiment.

12 n
And if r = r , then a GFE is said to consist of r com-

j
plete replicates of the s # s # - - - # s —factorial experi-

1 2 n
men t .

Definition : 3.2.3 : SYMMETRICAL. FACTORIAL EXPERIMENT .

A factorial experiment is defined as ssymmetrical if s = s,
i

for all i, l^i^n ; otherwise it is asymmetrical.
Further, a factorial experiment is said to be prime powered

Uj*
if s = p , for each i and p is a positive prime numb-

i i i
er and iL is a natural number greater than or equal to 1 

i
Remark An factorial experiment may be symmetrical prime powe­
red or asymmetrical prime powered.

In symmetrical factorial experiment,
s=s=- - - - = s = s „ so we get
12 n

n
v=s#s#~ - — * 5 = s —treatment combinations.

12 n
n

And factorial experiment is called s —factorial expriment.



Definition : 3.2.4. : INCOMPLETE FACTORIAL EXPERIMENT .

A factorial experiment is se*id to be an incomplete factorial
experiment, or fractional factorial, or more simply fractional
replicate, if r = 0 for some j ; i-e. some of

jtreatment combinations out of tctal, are not occuring in that 
replicate.

For the illustration, let t_s consider an exmple of a 2 # 3 
factorial experiment with two factors A and B at levels 2 
and 3 respectively. The levels of factor A are { 0, 1 > and 
that of B are { 0, 1, 2 } . The possible treatment combinat­
ions with these levels are

( 0, 0 ), ( 0, 1 ), ( 0, 2 ). (1,0), ( i, 1 ), ( 1, 2 ) .
A factorial experiment with treatment combinations , in each

.replication ( 0, 0 ), < 0, 0 ). ( 0, 1 ), ( 0, 2 ), ( 1, 0 ),
( 1, 0 ), ( 1, 1 ), ( 1, 2 ) is a CFE and it is minimal comp­
lete with treatment combinations ( 0, 0 ), ( 0, 1 ), ( 0, 2 ),
( 1, 0 ), ( 1, 1 ), ( 1, 2 ) . And a factorial experiment with
treatment combinations , f, 0, 0 ), ( 0, 2 ) , ( 0, 2 ) , ( 1, 1 ) ,
( 1, 2 ) is fractional factorial . Further, since s =/= s ,it

1 2
*is asymmetrical factorial experiment and s = 2, s = 3 so it is. 1 ’ 2

asymmetrical prime powered factorial experiment.
Definition 3.2.5 THE ORTHOGONAL POLYNOMIAL MODEL

For simplicity, we develops the case for n=l , i.e. for
single factor and at later stage we generalise it for n factors.

Denote? the levels of this single factor by (x ,x ,- - ~,x )
12 s



and let Y be the observation at the x th level, 
x J J

Definition 3.2.5 The full polynomial model for the single
factor factorial is given by the equation LRaktoe,Hydat etc.]
E (Y ) = p p (x ) + J5 p (x ) +-----+ f p (x )----- (3.2.1}

X 0 0 j 1 1 j ' s-1 s-i j
Where,

w
p ( X ) X ,

j j
H ■ •, s ; w = 0, 12, — -,5-l

and fH ,p 
0 1

tp are the parameters. As in regression 
s-1

theory, here also p is called intercept, p is the linear reg- 
' 0 " 1

ression coefficient, jc is the quadratic regression coefficient
* oX.

and so on. In matrix for the model (3.2.1) can be written as,
E (Y ) = P p ------- (3.2.2)

Where, P is a sxs matrix with ( j,w) th entry being equal to 
w

X ; W — O , 1, 2, — — — , S “ 1 3J j — 1, , ej m
j

Let, H be the triangular Gram-Schmidt transformation 
matrix that orthonormalises the columns of P from left to right 
It follows that equation (3.2.2) can be written as

-1
E (Y) = P H H JB = -- -—(3.2.3)

-1
Where, M = P H and = H B . This model is called the single
factor orthogonal polynomial model.

The Gram-Schmidt process is explained as follows .
Indicate the columns of P and M by P ,P , - - -,P ando' l' ’ s-1

M ,M , - - —,M respectively. Then, the Gram-Schmidt process 
0 1 s—1
is given by -



and

Here, 
U and

vis .

p
0 o

W P
O 1

W ~,z P w *
1 1 W W 0

0 0
W P W P
12 0 2t/lj =3 P — — — —

2 2WW 1 WW 0
11 0 0

W P
C“ -*••* v r~* <*<h I!s a 1^ asp — ----- --- W ™ —

5-1 S“1 W W 5—2
S 1 t» 1

w p 
0 s-1

—--------- w
W W 0
0 0

w
i

M = ------ , i — 0, 1 j, — — —, s—1
i ;; w :;

U. V means the usual dot. product > __ u ,v of the vectors
i i

V, and
2 1/2

1 ill! ! = ( >__ u ) , is the length of vector U .
i.

For the illustration we consider a factor at three levels
0, 1 and 2 Then

p =

2
1 X X 1 0 O

1 1
2

1 X X = 1 1 1
2 2

2
1 X X 1 2 4

3 3

4B



Then by using Grams-Schmidt procedure we get

m
1 /y.3 --1 /yf 2 1 /j6~
1 /Jz 0 ~J2/Z~

i /fz i /J2 i /JtT

and - O 1 2
Cp = , 4s s 'f5' ) is the parametric vector. If

012 s-Ic|> = ( <£- , , <4* cp> ) , then in regr—

0 1
ession theory «£» is called the intercept , «4» is the linear 
regression coefficient eliminating the intercept and ignoring all

zhigher degree terms, e|> is the quadratic regression coefficient 
eliminating the intercept and the linear coefficient and ignori­
ng all higher degree terms and so on. This is due to the ortho­
gonality of matrix .
Definition 3.2.6 A real n - tuple (x ,x 1'

. f - - -,: 
c* x ) is said

n
tobe less than a real r -tuple ( y i.y * - 1 2 ~ -»y )n

if and only

if for the first u such that. x = /-- y , we have :x < y ;l^u^n
u u u u

And a set of real n -tuples is said to be lexicographically 
ordered if it is ordered as above.
Definition 3.2.7 ;- The left Kronecker product of two matrices 
A = (a ) and B = (b ) is equal to the m.r x n.s matrix

- - a B
In

- — a B
2n

- - a B
mn

mxn ij rxs ij
! a B a B
) 11 12
! a B a B
j

I
: a B a B
! ml m2

1



Definition 3.2.8 :- The symbolic left Kronecker product of two
VQC-f"QkJS X OK»d Y IS +£> m-ri X 1 v£c+OVmxl n y .1.

X 0 Y = ( x y , x y x y . - - -, x y , x y , - -, x y ) .
1112 In m 1 m 2 mn

With these definition now we generalise the orthogonal polynomial
model for the case n >/ 2 ' Let the levels of each factor be
ordered in increasing order. Let Y be the observation vect-

Por corresponding to minimal complete factorial design p . The
n -factor orthogonal polynomial model is given by

f£ (Y ) = X p * ------ (3.2.3)
P P P

where, the subscripts of Y are lexicographically ordered .
P

X = M » M «---•« M ------(3.2.4)
p 1 n

and
P = dF 0 c£ 't'Il —---(3.2.5)
P 1 . 2 n

The matrix M and the vector^ are the design matrix and par
i

ametric vector for the
i

i th factor after left to ’right ortho-
normalisation. The Kronecker product M 'ft> M <>} - - - M and

12 n
the symbolic Kronecker product ^ 0O 0 — - - & are

1 '2 3 , n
obtained by generalising the definitions 3.2.7 and 3.2.8 .
It follows that the superscripts of the elements of B are

Palso lexicographically ordered . The elements of B are called
Pas factorial effects . For the illustration we refer the analy-

jC.

sis of 3 -factorial experiments in the section 3.3.
In the remaning part of this chapter, we will discuss symm­

etrical factorial experiments in detail and in chapter 4, we will
discuss about asymmetrical factorial experiments.



3.3 s SYMMETRICAL FACTORIAL EXPERIMENTS

Suppose there are, n factors each at s levels. Then we 
nwill have v = s , total treatment combinations. And these v 

treatment combinations can be compared by using any one of stand­
ard designs such as CRD, RBD or LSD .

Now for the simplysity we study some particular cases, such
JU. •»' •as 2,2, ---- - etc. factorial experiments.

2
THE 2 —FACTORIAL EXPERIMENT

Suppose there are two factors, A and B each at two leve­
ls, so the total treatment combinations, v = 4 . And these are 
(i) a, b and ab . These four treatment combinations can be 
tested by using RBD . For this we develop a model as
Y = Ai +4 + f -i- ) + e 5 i, j - 1, 2 .......(3.3.1)i j i. j i j i j

Where, Y denotes the random variable corresponding to the obse- 
i j

rvation y is the observation on i th level of factor A and

j th level of factor 0 . /.t is grand mean , ^ , is the effect
i

-rhdue to ith level of factor A, p is the effect due tojlevel of
j

factor B . ( c(P ) is the interraction effect of i-th level of
ij

factor A with j th level cf factor B and e is the err—
ij

or term, which is assumed as distributed independently normally

with mean and constant variance 6
2



To get least square estimates, we minimise
n r

___ x. 4

>_ C y - /u - p - ) 1 ---- (3.3.2)
1 J i J i J U i j U

with respect to , /u , , /J . and ( f( B ) . And to get unique
i j i j

solutions for normal equations we assume ,

>_< = 0 , >_ JB 
i=l i j j

that is ',

Similarly ,

and
(<P )* n

* + <
1 2

which gives,

P =

= ~ ( >

o, >_ (K A1 ) = o , >_ (/p ) = o ,
i i j J i J

0

of = of , say

- />

up ) («( jB ) = ( *( B ) . say.
1112 ' 21

with this change, equation ( 3.3.2 ) can be rewritten as
....  i I i 12

>_ Cy - u -(-i)c( - ( -l) p ~ (-D (<<B ) j
i ;i ij

----- (3.3.2)
i, j “ 1, ■*— *

;.? H
i j i j

Differentiating partially and equating with zero, we get the lea­
st square estimates ir"-, ^ and jp" of ,u , tfc and JE^ respectively.
Hence

i ,e. 
Also,

4 U-"' — y + y + y + y
11 12 21 22

Au" = (ab) + (b) + (a) + (v)

(ab) - (b) + (a) - (1)
or, in the simplifieel form

A
' 4 /S ' = ( a-1 ) ( b+i )

,(3.3.4)

,(3.3.5)

(3.3.6)

,(3.3.7)
Similarly, we get

4 JB-- = (ab) (a) + (b) (1)



or

and
or

A

A
4< A? )

( a+1 ) ( b-1 )

(ab) - (a) - (b) + (1) 
( a-1 ) ( b-1 )

_(3.3.8).

_(3.3.9 ) . 
(3.3.10).

From equation number (3.3,5),(ab) - (b) can be interpreted 
as the difference in average yield when factor A is changed fr­
om first level to second level,, when factor B is at second lev­
el . And this difference is called 'simple effect ' of factor A 
at the second level of B . And (a) - (1) is simple effect of 
A when factor B is at first level. Further, the average of 
these two simple effects is called as, " main effect " of factor 
A . And it is denoted by A.
Hence ,

A = 1/2 £ (ab) - (b) + (a) - (1) ]________ (3.3.11).
By comparing equation numbers (3.3.5) and (3.3.11), we get

A.A = 2i<
Similarly, we get " main effect " due to factor B , as

AB = 2 JB
Further, when two simple effects of factor A at different 

levels of factor B are not equal to each other , it implies 
that factors A and B are depending upon each other . And the 
half of difference of (a) - (1) from (ab)-(b) is defined as 
interaction effect or measure of dependence between A and B.

•

AB = 1/2 C (ab) - (b) - (a) - (1) 1______,(3.3.12).
which is also

/\AB = 2 ( )

Here,the right hand sides of equations (3.3.6),(3.3.8) and 
(3.3.10) are expanded algebrically and treatment combinations are



replaced by corresponding treatment means.
Remark Here from tile equations (3.5.5), ( 3.5.7) and (3.5.9)
it is seen that main effects and interaction are contrast and

i

further we note that they are orthogonal contrasts to each other.
The s.s. due to factorial effect is obtained by dividing 

the square of factorial effect by 4 r . , where r is the comm­
on number of replications, [we follow this from the definition] 
And this s.s. carries one d.f. Adding up these s.s. 
due to factorial effects we get s.s. due to treatments which 
carries 3 d.f.

However, it is more ea .y to obtain the factorial effects and 
their s.s. from the treatment totals rather than those obtained 
from treatment means .

Suppose factorial effect total due to factor A is defined
as [ ft ] = [ ab ] - [ b ] + [ a ] - [ 1 ] .
Similarly, we can define [ B ] and [ AB 3. Then s.s. due to

main effect A = s = [A]/ [4 r] and it carries 1 d.f.
A

Similarly ,
2 2 2 2 

s = (B) / [4 rj and s = LAB] / [4 r]
B AB

are the s.s. due to main effect B and interaction AB respec­
tively each carring i d.f.

Here our main hypothesis to be tested is to test the signif­
icance of interaction effect AB . We state the null hypothesis
H , as H : Interaction effect is not significant 
0 0
l. e, (K/3) =(,</3) =(/^) =(KP) = 0

li 12 21 22
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Let S.S.E. denotes the sum of squares due to error and it
carries 3(r—1) d.f. Using standard results [ Rao,(1985) ], 
we can give ,

M S ES S E

3( r—i )6
is distributed as

AB
x with 3(r—1) d.f. and is distributed, under H

0
as x with i d.f.

And , since these two are distributed independently to each
other [ RaOj,( 1985 ) ] , so to test H , we use the following

0
statistics

•?

AB
MSE

which follows Snedecor's

F -distribution with [ 1, 3 (r-1)] d.f. under H only. We
0

reject H at o( ’/. level of significance [Kempthrone (1966) p. 12] 
0

(1.0.S), if
F calculated value \ F,, [1,3 ( r-1) ] ;/ *'' '

Otherwise, H is accepted.
0

In the similar way the other hypathesejabout the significan­
ce of factorial effects A and B are tested.

bb



We below give the 'anal.ysjt.u ol variance ' table (ANOVA)
TABLE NUMBER 3.3.1

ANOVA For 2 —Factorial Experiment In RBD With 'r' replications.
II II I
II III

Sources of Variation ! d.f. Sum of Squares ! M.S. 1 F

Replication r-1 S.S.due to repl- 
~ cates .

T reatment "7
s2-

2 2 A
Main effect A 1 s s F =----

A A MSE
S2"

*7 nA. B
“ " B 1 s s F =----

B B MSE
Qu-s
AB

Interaction AB 1 S s F =----
AB AB MSE

Error 3 (r-1) SSE! MSE

Total 4r - 1 T S S

For the construction purpose, we may have an alternative mo­
del. We associate co-oridanates x and x with factors A and B

1 2
respectively.

Where,
when factor A is at second level.
when factor A is at first level.

In the same way, x has significance about factor B. So
r:>

the four treatment combinations are
(-1-1), (+1,-1), (-1+1), (+1+1).-

With these values, we can lave the model

Dfa



y = jp +p +p x +B : x + e -----(3.3.13)
ij 0 1- 1 2 2 12 1 2 ij

and, we shall have, B = u , B = e{ , B = B , and f) = ( «^ B) .
0 .1 2 12

y*
THE 2 FACTORIAL EXPERIMENTS

Suppose there art? three factors A,B and C each at two lev­
els, soothe total number of treatment combinations are eight, and 
they are — (1), a, b, ab, c, ac, be, abc. These eight
treatment combinations can be-tested with the help of RBD, with 
r' replications. For this, we develop a model as
y = ju +<< +p + (XjEi) +y +UV) + (p^JBV) +e ---(3.3.14)
ijk i j ij k ik jk ijk ijk

9 i J j J k 1 9 .
All the terms in the model have same corresponding meaning 

as earlier.
To get unique solutions for normal equations, we impose the 

conditions ;
>Z< = 0 ,>I £ = 0, >1 * = 0,>I(»O) = 0, >!(*(/*) = 0 .
i i j j k k i i j j i j

and so on , which implies
»(+^=0, i.e. ^ say.
12 2 .1 1

Similarly, jS =p V = V ,
2 1 2

= io(p) == - (o^B), say, and so on.
11 22 12 21

Further, the eight second order interaction terms (c^V)
ij k

have the same absolute value. If they are not all zero, four 
of them are positive and the other four are negative [John(1971)3

/



Hence, we have 9

>_ >_(*/3V) = 0, >_
i j i j fc i k i j k

= 0, >I(VpV) = 0
j k ijk

, lead to

(i^BV) = -f { r-y
UW) OO 1X

- up*-)
212

“(oftfl/) = (*(By)
122 211

H'BJ/)
121

- Ufw) = -
112

upv)
111

Mjsv) -...— say.

Hence, the least square estimates are given as,
A.

8 fi = (abc)+(be)+(ab;+(ac)+(a)+(b)+(c)+(1) -------- (3.3.15)
A

8 = (abc ) - ( be ) + (ac < - (c ) + (ab)-(b) + (a)- (1) -------- (3.3.16)
A

8 fJ = (abc ) + ( be ) - (ac i - (c ) + ( ab) -i- ( b) - (a ) - (.1) -------- (3.3.17)
A

8 V - (abc ) +( b) +(ac )-*-(c )-( ab)~ ( b)--(a )-(1) -------- (3.3.18)
A.

8 (>(B) ~ (abc) + (be) — £ aci + (ab)-(a)~(b) + (c) + (1) -------- (3.3.1?)

8 (t(BV) = (abc ) - ( be ) - (ac > - (ab) + (a; + (b) + (c)-( .1) (3.3.20)

In equation (3.3.16), (abc)-(be) gives difference in average

response by changing the levels of factor A from first to second, 

when factors B and C are at second level. And it is called as 

the? simple effect of factor A, when factors B and C are at second 

levels. Similarly we have the other three simple effects of fact­

or A, at the various levels of factors B and C. And an average? 

of these four simple effects is defined as, 'main effect' of fac­

tor A, which is denote;! by A.

Hence,

(abc ) - ( be ) + (ab) - ( b) + (ac ) - (c ) + (a) -- (1)
4

which can be written in more simplified form as,

(a-1) (b+1) (c + i)

A.
~ = 2*

4
--- (3.3.21)

or A



In the similar way, we will have four simple? effects of

factor B, at various levels of factors A and C. And these simple 

effects are

(abc)-(ac), (ab)--(a), (bc)~(c, (b)-(l).
And an average of these four simple effects is defined as the 

"main effect of factor B". ,

Hence,
(abc)-(ac) + (ad)-(a) + (be)-(c) + (b)-(1)

4

(a+1) (b--l) (c-i-1)

4

or,
B

A
P •

Also, in equation (3.3.19)

(abc) -- (ac ) - ( oc ) + (c )
O

gives an interaction A 3 when C is at first level. Then average 

of these above two interactions :s called, interaction AB.

Hence,

1
AB = --- L (abc)~(be)-(ac)+(c)+;ab)-(b)-(a)+(1) ] ---- (3.3.23)

4

In the similar way, we define BC and AC. And, one half differe­

nce of second from first is defined as the interaction ABC. 

Hence,

1
ABC = --- C (abc)-(bc)-(ac)+(c)-(ab)+(b)+(a)-(l) ]

4
which can be written in the more simplified form, as 

1
ABC ----- (a-1) (b-1) (c-l) -------(3.3.24)

4



The right hand side of equations 
(3.3.21), -3.3.22), (3.3.23 ) and (3.3.24 )

have same meaning as earlier.
Further, we note that all main effects and interactions are 

contrasts and they are orthogonal to each other. Hence S.S.due 
to any Factorial effect, X is given by

2 [ X 3
X S.r

which carries 1 d.f.

25 )

Here we are mainly interested to test the significance of
interaction effects we put H : Interaction effect is absent

0
i.e. (/pV) = Wp*) == («/ Bit) = - - - = 0 .

Ill 121 122
Then from the well known results from Rao (1985 ) , we 

have test statistic as, under H
0

S
ABC

SSE/7 ( r~-l)
Which follows Snedecor's F -distribution with [l,7(r—1)3 d.f. 
Where SSE is a sum of squares due to error. We reject H , if.

F calculated > F^: Cl,7(r—1)3 , 
Otherwise we accept it.

In the similar way we can have tests for 
of other effects.

0

the significance

yt
E-felow we give structure of ’ANOVA' for 2 -factorial e:<per— 

intent in EBD with r repl ications.



Table No
Structure of 'ANQVA *

Sources of Variation d. f .

Replicates r - 1
Treatments 7

Main effects
A 1
B 1
C 1

I st order interactions -
AB 1
AC . 1
BC 1

II nd order interactions
/•

ABC ' x

Error 7(r - 1)

Total 8r - 1

n
2 “FACTORIAL EXPERIMENT

Suppose there are n factors A, B, C - - - each at levels
n ’

two, so we will have 2 “treatment combinations. Let X is some 
effect (main effect or interaction). Then X is given by

1
X ~------ (a+l) (b+1) (c+i)..... ....(3.3.26 )

n-l
2 . r

Where the sign of +, is negative for all those letters appe­
aring in X and positive elsewhere. And the right hand side has



same interaction as earlier, and r is the number of replications.
We have following model,

y _ _ _ - ^ + .. ..
ijk i j k

- — + (pCjb ) +(JBV) + — — +(c(p^) + — —
ij jk ijk

~ .. ..... + ” - - 4 e ----( 3.3.27)
ijk '

Where the terms in the
n

The total 2 treatment
model have same meaning as earlier.
com binations are compared by, using

any of the standard designs
n

S.S. carrying 2-1 d.f.
with 'r' replications. The treatment

n
is split up into 2-1 orthogonal

components each carrying 1
n

d.f.
The effects in 2 -factorial experiments may be enumerated

as :

Factorial Effects Numbers

Main effects n
/ n(n-1)

2 -factor interactions -------
oX.

n(n-1)(n-2)
3 -factor interactions ------------

i

Total
n

2 - 1 .

Further, the S.S. due to any factorial effect X is given
by

' 2
L X 1

V s
:< n

2 .r
and it carries 1 d.f. Here we wish to test the significance of



various factorial effects I n genera1,
H : Effect due to factor X is insignificant,* 
0

against,
H : Factor X shows significant effect.
1

This is H is tested, with the test statistic 
0

s
X

MSE
which follows F(l,v), under H . Where v represents d.f.

0

corresponding to error S.S. We follow the usual criteria to make 
the decision.

The procedure of getting the factorial effect totals and sum 
of squares due to main effects and interaction is laborious. For 
this,Yates (1937) developed a technique of getting factorial eff­
ect totals and S.S. dues to factorial effects. It is known as, 
'Yates Algorithm' or ’Yates procedure' .

n
We discuss below Yates alcorith^for 2 -factorial experi­

ment (John - 1971).
Yates Algorithm

Step

Step

Following are the? different steps involved in it.
- 1 : Write all the treatment combinations in the standard 

order viz. (1), a. b, ab, c, ac, be, abc - - - etc., 
in the first co1umn.

-2 : Every column out of the remaining is partitioned into 
two parts. Entries in the first, part of the subsequ­
ent columns are obtained by 'addition'. The entry in



the :i. th row of t ie (t. < .1') th column is the sum of

the (2i-l) th and (21) the entries in the K th column, 
n~l

for l^C i. ,< 2

Step -3 : The entries in the second half are obtained by substr—
n-l

action. The entry in (2 + i) th row in the (k+l)th

column is obtained by substracting (2i-l)th entry from
i.

(2i)th entry of K th column.

Step -4 : The first entry in (n+t)th column is the grand total S 

and remaining entries are corresponding contrast total 

with treatment combinations in first column arranged 

in standard order.

We consider 2 -factorial experiment,

. Limn 1

(1)

jU

a+ (1) (a+(1))(b+(1) )

4

(a+(1) ) ( b+1) (c + 1)

a b(a+(i)) c(a+(l))(b+(l)) (a-1) (b+1) (c + 1)

b c(a+(1)) (a-(1))(b+(1)) (a+b) (b-1) (c+1)

ab be(a+(1)) c(a-(1))(b+(1)) (a-1) (b-1) (c + 1)

c (a-(1)) (a+(i))(b-(1)) (a+1) (b+1) (c — 1 )

ac b(a-(1)) c < a+(1))(b-(1)) (a-1) (b+1) (c-1)

be c(a-(1)) (a-U) ) (b~(i) ) (a+i) (b-1) (C-1)

a be be(a-(1) ) c(a~(i))(b-(l)) (a-1) (b-1) (C-i)

Here symbols are used to represent the corresponding totals. 

We note that the entries in column '4th', irrespective of divi­

sors are effects due to different factors. First entry is total 

effect, denoted by 8 and next subsequent are A, B, AB, C, AC, BC 

and ABC effects respectively.

In the similar way the Yaces procedure can be justified for



n
2 -• f ac to rial' e x pe ri men t.
Step 5 : The entries in (n-«-2) th column are obtained by squaring

the corresponding entries in the (n+l)th column and 
n

dividing by 2 and these entries are the sum of square 
of corresponding contrast. The sum of the entries in 
this column is equal to the sum of squares of the 
original observations.

The calculations may be error prone at step 3. To verify 
whether the calculations are correct or incorrect we have? follow­
ing check procedure. Using the fact that* the sum of the squares

n
of the entries in the (n+i)th column is 2 times the sum of squ­
ares of the data Quenouille (1953) suggested a check.

Consider a 2 -factorial experiment. According to Quenou­
ille (1953) replace the first and third entries in th second 
column by any numbers x and y . It is seen that entries in the 
third column are ab+b+x, ab-b+y, ab+b-x and ab-b-y . And sum of 
the entries in third column is 4ab, irrespective of the values 
of the values of x and y. It is obvious that this check is 
vulnerable to errors of sign in the (n+l)th column. However, 
Rayner (1967) has shown that this 'check' is true inspite of mis­
takes in sign at any stage of the algorithm.

Below we give justification of Yates algorithm.
n

THE 3 “FACTORIAL EXPERIMENTS 
n

In 3 -experiment there are n factors each at 3 levels. 
Instead of taking two levels if we take 3 levels the scope of the
experiment increases and it becomes more informative. Further,



for quantitative levels we can study the pattern of change of 
response in better way with the increase of the levels of factors 
When factors are? at three? levels, then it is possible to invest­
igate whether the change is linear or quadratic. From this point 
of view it is better to have (tore number of levels. However, 
the number of levels of factors cannot be increased too much as 
the size of the experiment increases too rapidly with them.

3 -FACTCR1AL EXPERIMENT

Suppose there are two factors A and B each at three levels 
We may use 0, 1 and 2 as the level codes and treat them as the 
three elements of moo 3. For 3 -experiment we have the follo­
wing treatment combinations.

00, 01, 02, 10, 11, 12, 20, 21, 22.
or these may be denoted by

(l),b,b,a,ab,ab,a , a b ,ab 
1 2 1 1 1 1 2 2 2 1.2 2

or also by
ab', ab,ab,ab,ab,ab,ab,ab,ab 
0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2

The mathematical model for two factors each at three levels
may be given as

_2 i __ j _2 J2 i j
E(Y) = jB + >_ p X + >2 b x + >_ >._ p x x ----(3.3.28)

0 i=0 iO 1 j=0 oj 2 i=0 j=0 ij 1 2
Where’ x and x are co-ordinates for the levels of factors 

12 i
A and B respectively. Replacing x by the ith degree orthogonal

1
j

polynomial for 3 levels, u and x by the corrosponding orthog-
i 2

on a1 polynomial v , we obtain
j



0 o \ 
E(y)=i> (f) + /

1 2

i o
<|> <f> LA

i

\ o j \ 
+ /__ 4 <f, V + / 

1 2 j

V o . j 
/_ $ f U V 

1 2 i j

i = 0,1,2
J = 0,1 j 2

5.29)

Consider a two factor factorial with

C3 = {0,1,2} and G « {0,1,2}. The two Vander Monde matrics are 
1 '?

then —

2..
■5* t'\ A

11 11
1 0 0

1 V/•A* A
J

1 1 1

1 V t*
/%

1 ***** 1 *«•*
1 2 4

• and

1 K

21
A

21

1
1
«
i
t
i
i
1

1 0 o

1 X

i

=
)
i
1
1
i
f
1

1 1 , 1

1
2

i
i
i
i
l

t
l
1
l
i

1 4

on orthonormalising the columns of 

in definition 3.2.5 we obtain

P and P 
1

as described



1 -1 1

li
1

The two parametric vectors for this case are —
° A 2 1 0 12

( Y * $ ’ $ > ; “ ( 0 » f » <j> ) .Ail 2 222
Hence the design matrix 

obtained as —
X and parametric vector P

1

X = M01 
P 12

1

-1 1

1 11
J2

1 1 1
JET yJT f(T



1 ”1 1 ”1 1 -1 l -l 1
•«' Jh Jib /T 2 Jl2 JTi Jl2 6
1 P -1 1 i -i
3 3 /FA' ~ /la 3
1 1 1 -1 “1 -1 l ■ 1 1
y Jh j? r JT& Jl2 6
i -1 i

0
1 -i

3
U (J

3 it" 3
i

o O <“i o 11 o
'■;>

T 3 3

i 1 i -j2 -1 -1
JT JiS (_) o

3 nr “•fw
1 -i i 1 -1 i i 1
3 F F r Jl2 Jib 7l2 6
i ~JT i -1 i --i
3

0
3

--- o
jr w Jib

0
c*

1 l 1 i i 1 i 1 1
'i[im A yie J” 2 Jl2 ~Si 6

and l j X 1
= (

3 6 ©
' 1

0 o
= <M »1 oX X.

0 1
fP 0 >1 2

o 2 1 o
fi $ , P 0 , 
12 12

1 1
0 0 
i 2

1 2
,00, 

1 2
2 o 2 1

0 0 , 0 0 , 
12 12

Appling the least squares procedure to the model
Y = X jB + fc. , Where X is in orthogonal form. We P P P P P

obtain the following aest linear unbaised estimator (BLUE) for
p frqm equation (3.3.29) 
P



1-1
B = CX X 3 
rp P P

1 1 
XV = X Y 

p P P P
30)

Then we get ,

0 o

1 2

y +y +y +y +v +y +y +y +y 
00 01 02 10 11 12 20 21 2,

A +A +A 
0 12

6

0 1
P <P

1 2 6

1

6

1

c --y + y -y +y -y +y i
00 02 10 12 20 22

[ y + y +y -y ~y ~y ] 
02 12 22 00 10 20

0 1
♦

1 2

1 o 
\

1

--------------- C B - B 3
6 1

i
-------------- [ V —2y +y +y -2y

18 00 01 02 10

1
L V +y +y -2(y +y

18 00 1 0 20 01
1

ss — — — — — C 3 -2Bi + B 3 -
18 0 1 2

-1
c y +y +y —y +y

+y +y —2y +y 3

2(y +y +y )+y +y +y 3
21 02 12 22

1 1
P P

1 2

6

1

6

1

00 01 02 20 21

C A - A J 
2 0

[ y +y ~y -y 3 
00 22 02 20

O 1 oo

70



12 1p $ ------- t -y +2y -y +y -2y +y ]
1 2 12 00 01 02 20 21 22

1
= ----- C(y -2y +y ) - (y -2y +y )]

12 20 21 22 00 01 02
2 o 1

$ p -------  C y +y +y -2y ~2y -2y +y +y +y ]
1 2 18 00 01 02 10 11 12 20 21 22

1
=----- C A -2A + A,]

18 0 1 2

2 1 1
♦ <f) =----- C -y +y +2y -2y -y +y ]
1 2 12 00 02 10 12 20 22

1

12
C y -y -2(y -y )+y . -y 3 

02 00 12 10 22 20

p sj$ =----— [ y ”2y +y -2y +4y ~2y +y —2y +y 3
1 2 6 00 01 02 i0 11 12 20 21 22

1
=----- [ y -2y +y -2(y -2y +y )+y ~2y +y ]

6 00 01 02 10 11 12 20 21 22

i j
The estimates of p ((> are orthogonal contrasts. The con-jL 2

i o o j
trasts corrosponding to p p and $ (f) are the linear and

12 12
quadratric contrast for A and B and give the subdivision of 
2 2

S and S into single degrees of freedom as before -
A B

l J
And p p ( i > o , j 

1 2
the interaction sum of squares 

The contrast corrosponding to 

usually called the lin A lin

> o ) give us subdivision of

into single degrees of freedom.

11.. 12
P P > P P
12 12

B, lin A quad B, quad Ax lin B

o 1 '■>
|l». 1 .III i 4m

, p C|) and p p are 
12 1 2

71



and quad A x quad B contrasts respectively. All 4 d.f. for inter— 
action can be accounted for in this way by associating single 
d.f. for each interaction effect.

A randomised block design can be adopted for the experiment. 
If there are r replications the analysis of variance for testi­
ng the hypotheses th.r;: fac torial effects are not significant is 
given as follows —

•/ p

tfAUVSAHEB fri* ' ’-*AR UBRAB
•MIVAJI UNIVERSE V KOLHAT**-



table No

ANOVA For 3 -Factorial experiment in RBD with r -replications .

! Sources of Variation d. f. s. s. :

X.

! Replication r - 1 s
; R
! Treatments 8

9

! S s
; A A

I lin. A 1
o *

s ;
al :
9> i

! quad. A 1 s :
2 aq ;

; s S
: b B

9> i

! 1in . B 1 S !
bl :

i quad. B i
o *

s ;
bq ;

9

i s 4 s
: ab AB o »

! 1in A.1in B 1 s :
ALBL .I

! lin A.quad Ef 1 s
1 AtlBfij !

X. i
! quad.A.lin B 1 S !

A^Bfa. !

! quad. A. quad B 1 s ;
t ' AQBQ !

Error 8 (r—1) s s e :

! Total 9r - 1 t s s :

73



Where S , is S.S. due to replication, S is a S.S.
R AL

due to the linear contrast due to factor A and the other terms
have the similar meanirgs.

n
3 FACTORIAL EXPERIMENT

Let the levels of factor be ordered in increasing order and
let Y be the observation vector corresponding to minimal comp- 

P ■
lete factorial design. The n -factor arthogonal polynomial 
model is given by

E(Y ) = X p ------ (3.3.31)
P P P

Where the subscripts of Y are lexico graphically ordered.
P

X = M <£> M ($> - - - <§)M . ------ (3.3.32)
P 1 2 n

• and
B =000© ...- - ©0 3)

The matrix M and the vector 0 are 
i i

and parametric vector for the i th factor 
orthonormalisation (or orthogonalisation). 
superscripts of the elements of B are also

the design matrix 
after left to right 
It follows that the 
jkexls-cographical ly

P
ordered. The elements of jB also called factorial effects, have

P o o o
traditionally named in the following manner p ffi - - p is ca-

12 n
o o P o

lied the general mean or intercept. p is
12 q n

s s o o
called the p th main effect of the q th factor, p (J) p - - p

12 3 n
is called the s th degree of factor F by s th degree of fac-

1 12 i i
tor F interaction effect, and so on. Also, an effect p p ~

2 12



is said to be an k th order interaction if k expo­

nents out of i , i , - - i are non zero.
12 n

Yate's Algorithm ~o Find Main Effects
n

And Inte-actions For 3 -Factorial .

n
Like 2 -factorial, Yates developed the same technique for 

n
3 -factorial experiment. For it following are the different 

steps —

Step I :- Arrange the data in standard order ; such as

(1), a , a , b , ab , a b j b , a b , a b , c ,
l’ 2' l’ ll' 2 1, 2 1 2 2 2 1

a c , a c , and so on
11 2 t

Step II Denote the entries in the k th column by k «

The entries in the (k-H) th column fal 1
JL

into three groups. In

the first group the i th entry is k +k + k j i > 1 . In
3i 3i—1 3i~2

the? second group the i th entry is k -k ; in the last gro-
, 3i 3i-2

up the i th entry is k -2k +k
3i 3i-l 3i—2

Checking procedure :-

Let S = 'k + k +k + - - -
1 14 7

S — k + k + k + — — —
2 2 5 8

S — k "f" k k r — — —

further let X = S +S +S and Y = S -S +3s
i o ~r i <•> ■?JL X

The check is that X in any column should equal Y th prec-

....



eding column
n

For n factors eacn at 3 levels we get 3 number of trea­
tment combinations . As the number of factors increase there 
will be more number of treatments. To handle the situations hav­
ing large number of treatments we will discuss in next section.

n
THE s -FACTORIAL EXPERIMENT

Suppose there are n factors A , A , - - - A , each at
12 n

n
s levels. Clearly there are s treatment combinations carrying 
ns -- 1 d.f. between them. In factorial experiment we partition

n
the treatment sum of squares into s - 1 -orthogonal contrasts
each possessing one d.f. corresponding to the main effects and

n
interactions of n -factors. Fo'* s -factorial experiment the 
main effects and interactions are defined as follows .

Definition (3.3.1) MAINEFFECT
A contrast may be said to represent the main effect of the 

' i th' factor if the coefficients in the linear function consti­
tuting the contrast are .independent of the levels of factors
other than the factor A ; i - 1, 2, - - , n . It is clear

i n
that there are s - 1 contrasts for each main effect of s -fact­
orial experiment.
Definition (3.3.2) INTERACTION :~

A contrast may be said to represent, a two-factor (or first 
order) interaction [Base(1937)j of 'i th' and *j th' factors if 
(a) The coefficients in the linear function constituting the co-



ntrast are independent of the levels of factors other than
the levels of factors A and A and

i j
(b) The contrast is orthogonal to any contrast representing the

main effect of factors A and A
i J

*?

And there are (s - 1) contrasts representing the two fac­
tor interaction of A and A

i J

E<y induction, after defining the (k-1) t.h order interaction
of k. factors, for k- 2, 3, - ---- r—1, we define the 'r' factors
interaction.
Definition :(3,3.3) : A conntrast is said to belongs to (r—1)th
order inteaction of r factors, i ,i - - - i if,

12 r
(a) The coefficients in the linear function constituting the

contrast are independent of the levels of factors other than

(b)

A , A , - - - A ; and
i 1 i 2 i r

The contrast is orthogonal to all contrasts belonging to all
possible main effects and interaction of the A ,A - - A

j/- i i i ^ i r**
factors. And there are (s~l) contrasts representing the
r -factor interaction of factors A ,A ,- - - A

il i2 ir
n

Here we have in al1 s -treatment combinations. For small
n

values of n and s we can test these s treatment combinations 
either.in CRD, or in RBD or in L.S.D.

But if either n or s or both large, we will discuss anal­
ysis for such experiments in next section.



4 CONFOUND TNG

When the number o~ factors n and/or the number of levels 
of the factor increase, the total number of treatment combinatio­
ns becomes large. Obiviously» such an experiment requires large 
number of experimental units in each replication. Due to large? 
size, it may not be possible? to obtain sufficient homogeneous 
field for the complete replication, which results in increase in 
unmanagable cost and error. To overcome this difficulty, Yates 
(1933) suggested a technique of 'confounding

By 'confounding ' we mean the spilitting of a replicate into
desired number of incomplete blacks in such a way that certain

%

effect contrasts (main effect or interaction) are identical with 
block comparisons. A factorial effect contrast which is mixed up 
with block effects is called as 'con-pounded effects '. And a fa­
ctorial experiment containing confounded factorial effect is ter— 
med as confounded experiment.

By spilitting up replication into different incomplete 
blocks and allocating treatment combinations arbitrarly, at least 
one interaction Or mail effect is confounded. E<ut, if we follow 
some systematic procedure of allocation of treatment combinations 
to the different incomplete blocks we can minimise the number of

tconfounded effects. With above description, below we present the 
precise? definition of confounding (Raktoe, Fedrer etc. (1981)).

Consider a minimal complete factorial experiment. Let
E(Y ) = X B ----- (3.4.1)P P P
O

With cor (Y ) = IN , and rank of X 
P ’ P

I'd

is less than or



equal to the number of columns of X and B is a parametric
P

vector arising in a model.

Definition (3.4.1) ; CONFOUNDING :~
Let tp( and Ip2_ two algebrically independent linear param-

A.
etric functions of fi , For a given desing D , let be

1inear unbais;ed estimator of y, under the assumption that V'2_=°
If \ = /- 0 Aand , E( (|^ ) = + c ; c = /= 0, then V, is
said to be ' c: onfounded ‘with ^2^ under design D, and it is refe

rred as a "confounded design".

Note that the confounded design is a biased design for if 

* Further, the confounding is symmetric; that is, if 
Yj is confounded with ^ 2 under design D , then by applying 

above definition of confounding, we can conclude that is con­

founded with V, unde- D .

As an i1 lustration, consider the following situation in 2 

factorial experiment.

Suppose eight treatment combinations are split up in to two 

blocks, as

Block I Block II

abc, a, b, c ab, ac, be, (1) .

The model as discussed earlier can be written, with block 

effects as
Y = jli +e( +jB + (p(jB) +V + (J3V) + (tfpV>) + </7+e ---.(3.4.2)
i j k 1 i j i j k i k j k i j k ' ‘ i j k 1

Where is the effect due to 1 th block and all other terms 

have same significances as discussed earlier.

Now the interaction ABC is estimated by



I

4 ABC = 1 ( abc + a + b + c ) - 1 ( ab + ac + be + (1) )
Then, it follows that
E (4 ABC) - i(X/.'V) + UpV) (t(/sV) .-

100 010 001 111 110 101
(/f3V) + 4 ( oj ~ <f ) . ------ (3.4.3)

011 000 1 2
Which is equivalent to

E ( t- ABC ) = +C .
1 2

Where,

and

= treatment effect,

= Block effect
C = 4 .

Which implies, interaction ABC is confounded with block 
effects.

TYPES OF -CONFOUNDING

When there are two or more replications, then question ari­
ses whether the same factorial effects are'confounded in each 
replication or different, sets o^ factorial effects are confounded 
in different replications. Depending upon this fact there are 
following two types of confounding.
1) Complete or total confounding s-

\

If the same interaction is confounded in £*11 replications, 
the confounding is called as the 'complete Confounding ' or
‘total confounding '.



2) Partial con foundinq ;-

If different interactions are confounded in different repli­
cations then confounding is•called a 'partial confounding

No information will tae available on totally confounded int­
eractions and partial information will be available on partially 
confounded interactions. If an interaction is confounded in r

i
replications and is unconfounded in r replications, the loss of

c?
r
1

information on that, interaction is ---------
r + r 
1 2

Many prob 1 ems in f ac tor ia 1 ex periment t heory turn ou t t.o 
have a geometric, an algebric, or a combinatorial property. As a 
consequence finite mathamettical structures such as 'groups', 
‘rings', 'fields', ‘Projective and Euclidean Geometries ' have 
been used successfully in clarifying, extending and resolving 
many issues related to factorial experiments.

In the second chapter we have already discussed ‘Finite Fie­
lds (Galois Fields)', ‘Projective Geometric' and ‘Euclidean Geo­
metry ' and their properities. lheir prosperities are very useful 
in the construction of factorial designs.

As we have told earlier that due to the systematic arrangem­
ent of treatment combinations to the different blocks we can min­
imise the confounded effects, so we allocate treatments scientif­
ically to blocks that is, we construct factorial designs.

In the construction of factorial experiments we take the 
helps of ‘Galois Field ',‘Projective Geometry 'and ‘Euclidean
Geometry '. We already have discussed about these in chapter two



It is clear that in symmetric factorial experiment s is a prime

or power- of prime, so "here exists BF(s), and for any integer n,

we have EB(n,s). A point in ES(n,s) denoted by (x , x ,x ,— - x )
12 3' n

is considered as identical to the treatment combination

T(x , x , - - x ) whe'e factor A is at x level, A at x12’ n 1 1 22
n

level, A at x level and so on* And the s treatment combiria-
y, y,

n n
tions in s -factorial experiment can be represented by s -poin­

ts of EB(n,s).

Any (n~l) -flat of E6(n,s) has an equation of the form

a +a x +a x + - -......<-a x = 0 ; -----(3.4.4)
0 112 2 n n

a £ 6F(s). 
i

n-1
. and contains s points. By keeping a ,a , - - a constant

1' 2' n

and varying a over the elements of BF(s), we generate s para- 
0

llel (n-1) -flats that have no common point and constituting a

pencil, denoted by P(a ,a , - - - a ) of (rv-l) flats. This pen-
12 n

n
cil, divides the s treatment combinations into s sets which

give rise to s-1 independent cohtrasts. Hence the pencil

P(a ,a , - - - a ) is said to carry s-1 d.f.
1 2 n

We observe that the pencils F'(a ,a , - - ~,a ) and
12 n

P(b ,b , - - -, b ) are? identical if and only if b = p a , 12 n i . 7 i

where p E GF(s) and p =/- 0 .

By the definitions of main effects and interactions [Bose

(1937)j as discussed in previous section of this chapter, we can



say that the pencil P (a , a
1 2 !* “ 5 an

) represents the interac-

tion of i th,
1

i th, 
2

i th
r

factors if and only if a , a il' i2
— — -, a are

ir
non-zero and the other CO-ordinates in the pencil

P(a
1

, a , 2' , a ) 
n

are zero <

The pencil (3.4 .4) can be written as
a x +a
1 1

x + — —
2 2

+a X
n n

= *
j

Where? a ,a , - ... , a and p( are the elements of GF(s).
12 n j

When = 0, we have? 
j

a x +a x ■+..... — +a x — 0 ,
112 2 n n

n-1
(n-1) -flat with S points.

Let
\ (0)
/_ ( a , a , - - a ) be the sum of observations on 

12 n
n-1

s treatment combinations in this flat. Similarly, for ^ = 1 
we get,

ax +a x + - - - +a x =1 
112 2 n n

n—1
have (n-1) -flat with s points and denote sum of observ­
ations on these treatment combinations by

\ (1)
/ ( «:& p

1 2
Lastly _

\ (s-1)
/„ (a ,a , - - - , a ) denote the sum of

12 n
observations on the treatment combination in the (n-1) -flat

Q' :r
ij v.*



formed by the equation

a >: +a x •........... ' a - s 1
112 2 n n

n-1
These sets of s equations are disjoint and each will have s
treatment combirmtions» Consider the contrast

\ (0) \ (1)
L = 1 /__ (a ,a - -..a ) + 1 /_„ (a ,a , “ - -,a ) + ~ ~ -

0 1 2 n .1 12 n

\ (s-1)
— -- + 1 /_(a,a,--~,a ).

s-1 12 n
This contrast belongs to the pencil P(a ,a , -- - ~,a ) and12’ n

there are (s-1) independent contrasts representing P(a ,,a -,a )l' 2’ n
Hence each pencil has (s-1) d.f.

We shall prove the following then rein for different two 
pencils.
Theorem : (3.4.1) :—

If P(a ,a , - - — ,a ) and P(b ,b ,- - —,b ) are two diffe- 12 n 1 2’ ' n

erent pencils, then the linear contrast corresponding to them.are
orthogonal.

Proof :- Consider a pencil P(a ,a , - - -,a ) that is----- 12’ n

a 'A +a >; + --- + a x =0^ ,
112 2 n n j

J 6 OF(s) .
¥\ .J

and the corresponding contrast is
(0) \~ (1)

L -1 (a ,a , - -,a ) + 1 / (a,a,---,a ) + -1 0 12’ n 1 * 12 ’ n

U'l



\ ( B.1
+ 1 /_ (<= ,a ,

s-1 1 2
a with

s-*l

i
i * 0

0

And consider another pencil P(b ,b b ) which is
12 n

different from P(a ,a , - - -,a ) with corresponding contrast
12 n

, \ (0)
L =1 /_ (b ,b ,
2 0 12

/ (1)
b ) + 1 /__ (b ,b ,
n 1 12

b ) + 
n

, \ (s-1)
+ 1 /_ (.b ,b ,

s-1 1 2
j b

n

with
_s— 1

i=0 i

These two contrasts are orthogonal if, ' /
/_ 111 = 0 
i=0 JL i L

n-1 \ (0)
There are s terms in /_ (a ,a , - - a ) with coeff-

12 n
n—2

icient 1 and out of these only s terms are in
0

\ (0) 
/_ (b ,b , 

1 2 
points in

n—2
b that is we have (n-2) -flat with s
n

\ (0)
/_ <b ,b , 

1 2
b
n

n-2
Similarly s points are common in

(0)
a , a . 1 ’ 2 3 and

n

\ (1)
/ (b ,b . 

1 2
b

and so on. Thus the
n-2

s points

iih



ar ^ cJ xn tr x bu Led • in
\ (0)
/_ (a I* a ji ... .. i \ ) h

12' rv

b x +b x + - - - -t-b x = p^‘ ;
112 2 n n i
^ == O j 1 ;i 2 j <1 S 1 .
i

Hence the sum of products of caefficients corresponding to

(0)
/_ (a ,a , - - a ) with the coefficients corresponding 

12 n
(0) (1) \~ (s-1)

/„.( b ,b , - - b ) , /__(b ,b ,- - b ), - -,/_(b ,b -,b )
12 n 12 n 12n

is equal to

n-2 t / / /S (11 +11 + 11 +----- +11 )
0 0 0 1 0 2 0 s-1

which is equal to
n-2 l L t

s 1 <1 +1 + - - - + 1 ) — 0
0 0 1 s-1

Similarly the sum of products of coefficients corresponding 

to \ (1)
/_ (a ,a , - - -, a ) is

1 2 n

n_^ * *
S (11+11 + ---  “ +1 1 )

1011 1 s-1
which is equal to zerc .

And same is true for other contrasts. Which implies the sum 

of products of coefficients in two contrasts is zero. Hence the 

two different pencils are orthogonal to each other.
Using these properities we give construction of symmetric 

factorials in the next section.



n
3.4.1 CONFOUNDING IN s -FACTORIALS THROUGH PENCILS .

The ideas of confounding through pencils were first introd­
uced by Bose and Kishen (1940) and later improved by Bose (1947) 
Constructed designs are given by Cochran and Cox (1957) and
Kitagawa and Nitone (1953). Method due to Bose (1947) has been

n
discussed here’. In .the confounding of s -factorial experiment
constant block size must be necessarily a power of 's and we

n k
say such an experiment as ( s , s ). It means , the total numb-n k
er of treatment combinations, s are arranged in ' s ' blocks

n-k n k
each of size 's '. To construct ( s ,s ) -factorial , we use
following steps. [Raghavrao (1971)3.
Step 1 s- We first choose k independent pencils, such as

P , P , ....  , P ; where ,
12 k

P = P(a , a , — ~ ~ ) 5 i = l,2, — — —,k.
i ii i2 in

Let
\~ C \"
/ il /__ i2 - - - /_ ik be flats belong­

ing to the independent pencils P ,P , - - P , respectively.
1 2 k

These flats ptiss through a common (n-k) -flat \/_ il , i2, - ik
Step 2 We denote the treatment combinations on the (n-k) -
-flat by \/_ il , i2 ik

n
In this way the totality of s. treatment combinations will be 

k _
divided into s sets of the type \/_ il , i2 ,— — — , ik

7



Step 3 We form the ( 11,12, - - ik ) th block with the
treatment combinations

\~

( /_ il,i2, - - -, ik ) for

il, i2 , - - - , ik = 0, 1,2, - - s-1 .Then it

can be verified that the d.f. carried by generalised pencils also
k

are confounded with s blocks. The pencils of the type 
_k _k _k

\ \ \
P C /_ a , /_ a , - - /__ a 3

i=l i il i=l i 12 i=l i in
Where E GF(s) , are called as 'Generalised Pencils '.

i
Further it can be shown that a block containing (0,0,- -,0) 

treatment combination forms a group called the 'inlablock sub­
group' or * key block '.
Step 4 :- Let (x , x , - - x ) be a key block. From------- 12 s
this block, remaining blocks are generated. We can take

(x +y , x +y , - - - , x +y ) as a second block 
12 s

where y is a treatment combination not belonging to the key 
block. Here addition of treatment combinations will be vector 
addition where each component is in GF(s). If z is a treatment 
combination not in the first and second blocks, the third block

can be taken as (x +z, x +z,1 ' 2 , s
4- s continuing in this 

n kway we can construct the whole replication plan of ( s ,s ) 
experiments. As an illustration of this method we consider the 
fallowing example.

5 ?
Example (3.4.1.1):- onsider the construction of (2 ,2 ) by
confounding the pencils P(1,1,1,0,0) andP(1,0,0,1,1).



Step 1 Here we have 2 - 32 total treatment combinations.
And penc: i 1 s P (1,11,0,0) and p (1, 0,0, .1., 1) are independen t 
pencils.
Step 2 : - We divide? the 32 treatment, combinations into 4 bloc-'
ks each of size 8 . A generailsed pencil P(0,1,1,1,1) is 
also confounded. The key block is constituted by the solutions 
of following two simultaneous equations .

x +
1

14 5
Step 3:- Hence the cor tents of key block is 00000, 01100, 00011,
10110, 10101, 11010, 31001, 01111.

The remaining three blocks are obtained from the key block 
as we have discussed earlier. Hence the complete plan of entire 
replication is given as

Table No. 3.4.1.1
key Block Block iL Block 3 Block 4
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0
0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1
1 0 1 1 0 1 0 0 1 o 1 0 1 1 1 0 0 1 1 0
1 o 1 o 1 1 o 0 o 1 1 0 1 0 0 0 o 1 0 1
1 1 0 1 0 1 1 1 1 o 1 1 0 1 1 0 1 0 1 o
1 1 0 o 1 1 1 1 0 1 1 i 0 0 0 o 1 0 o 1
0 1 1 1 1 0 1 0 1 1 0 l 1 1 0 1 1 1 1 1 .

Remark • For GF( *«^ ) 5 it is clear that addition and multiplication----------- . n k
operations are identical. So (2,2 ) type of experiment can
be constructed in son*? diffrent style. Here 'key block ' is con­
stituted by the treatment combinations having an 'even ' number
of symbols in common with each interaction P , P , - - P

12 k



The? black form a group under the binary operation, that square of
subject to the restriction any symbol will be replaced by 1 .

Let ( x , x , - - x ) be a key block, which is taken 
12 2

as block 1. If y is a treatment combination not belonging to
block i,then the block 2 will be obtained as (x y,x y~,x y ).1 ' 2 '2
Where the square of any symbcle is replaced by 1. IF z is a tre­
atment combination not occuring in first two blocks, then the
third black will be (x z, x z, - - x z ), wher*e the square

1 2
of any symbol is replaced by 1. Efy the similar way we can gene- 

k
rate 2 blacks of replication. Here not only P , P , - P

12 k
pencils are confounded but also the interactions obtained by
multiplying P , P , - - P in all possible ways and replac- 1" 2 ’ k
ing the square of any symbol by one, are also confounded.

5 2
Example 3.4.1.2:- Let us construct (2 ,2 ) experiments with
factors A, B, C, D and E by confounding the pencils ABC and 
ADE . When we confound above two interactions automatically

ABC . ADE = ABCDE = BCDE is also confounded. 
Here key block is

((1), acd, ace, de, abd, abe, bcde, be )
From this key block , the remaining 3 blocks are obtained by
multiplying a, b and ab



Table No. 3.4.1.2.
B1 oc:k Const.i tuent.s of t.he Block

Key block ( 1, acd, ace, de, abd, abe, bcde, be )
2 ( a, cd, ce, ade, tad, be, abode, abc )
;.Tt ( t) <j a be d , a be: e, bd e, ad, ae, ede, c )
4 ( ab , bed’, bee, abde, d j e, aede, ac )

or, the key blok is obtained by the solutions of following two 
simu1ations equation

4- 4. = Q

1 2 3
and

w -I- w -j- v ™ (")A 1 A * V «

1 4 5
Hence the const!tutents of the key block are given as below, 

Key Block :~
( 00000, 01100, 00011, 10110, 10101, 11010, 11001j 01111 )

The remaining three blocks are obtained from the key block 
as discussed earlier.

Table No 3.4.1.3.

Key Block Block 2 Block 3 Block 4

0 0 0 0 0
0 110 0
0 0 0 1 1
10 11 0
10 1 0 1 
1 1 o 1 o
1 .1. o o 1
0 1111

0 0 1 0 0
0 1 0 o 0
0 0 111
1 0 o o 1
1 0 0 o 1
1 1 1 1 0
.1. 1 1 o 1
0 10 11

0 0 0 0 1
0 110 1
0 o o 1 0
1 o 1 0 1
1 0 1 o o
110 11
1 1 o o o
0 1 1 1 0

1 0 0 0 0
1110 0 
1 0 011 
0011 o 
0 0 1 0 1
o 10 1 o
o 1 o o 1
11111

This above discussed method is due to Bose (1947). Das 
(1964) developed a some what alternative .method to the above 
method of confounding. Das's method incorporates all the prin-



triples in procedure. In the methodof Bose' m e t h o :1 b u t d a. t t e r e s

of Bose the the interactions for confounding are chosen first and

the block contents follow. In the method of Das the block conte- 

ents are choosen first and the interactions confounded fallow 

therefrom. The rnetho'd of Das has been described in detail in the 

book due to Das and G1 '■ .1 (1979).

3.4.2 CONFOUNDING WITH THE HELP OF PSEUDOFACTORS .

n m
For s factorial experiment , where s = p , p is a prime

mn
and m > .1 can be considered as p -factorial experiment in m.n

psedofactors. Hence, confounding in such experiment can be made
k mn-k

to accommodate the experiment in p blocks of p plots.

After construction, the levels of pseudofactors are replaced by 

appropriate levels of original factors.

Example 3.4.2.1s- We consider a 4 experiment with two factors 

P and K each at four levels, 0, 1, 2 and 3. We can construct 

such types of designs with the help of psedofactors. Identify 

the four levels 0, 1, 2, and 3 of factor with treatment combinat- 

ions 00, 01, 10 and 11 of 2 -factorial experiment in two pseudo­

factors A and B. And levels 0, 1, 2, and 3 with factor K are 

identified with the treatment combinations 00, 01, 10 and 11 of
*"> O
jL» ji.

2 -experiment in two pseudofactors C z*nd D. Hence 4 experiment
4

can be taken as identical with 2 -experiment with four psedofac­

tors each at levels two viz. 0 & 1 .

Suppose interaction ABCD is confounded, then the contents 

of a key block is obtained by solving equation

+ x -i x + x = 0 
12 3 4



Hence we get key block as -
(0000, 0011, 0101, 0110, 101O, 1100, 1001, 1111)
The second block is obtained in the usual way.

The required plan is given as,
Table No.3.4.2.1 .

Black Constituents of the Block

1 ( 0000, 0011, 0101, 0110, 1010, 1100, 1001, 1111 )
2 ■ ( 0001, 0010, 0100, 0111, ion, 1101, 1000, 1110 )

Replacing these treatment combinations by the treatment 
combinations in the original factors, P and k, we? get the follo­
wing :

Table No. 3.4.2.2 *
Block Constituents of the Block

1 ( 00, 03, 11, 12, 22, 30, 21
9 ( 0i, 02, 10, 13, 23, 31, 20

We have discussed the method of confounding to reduce the 
size of block. There is also another method in which only a fra­
ction of the treatment combinations are experimented. Such a 
method is called as 'Fractional Replication In the next sec­
tion we will discuss in detail about ' fractional replication'. 
3.5 •— FRACTIONAL FACTORIALS

When there are? large number of factors, even each at two
levels, there will be large number of treatment combinations.
For example, with 8 factors each at 2 levels, we will have in 

8
all 2 * 256 treatmer t combinations. ' In such cases it is irnpo-



ssible to carry out experiment with entire replication because 

the expenditure may go beyound the budget or in some cases non- 

experimental error, e.g. the labelling of treatments may be 

changed, the plots may be wrongly numbered etc. may enter. For 

such cases Finney (1945) proposed a method in which only a tract" 

ion of total number of treatment combinations are experimented. 

Such a type of factorial experiment with a fraction of total num­

ber of treatments is called as, 'Fractional Factorials ' or 'Fra­

ctional Replication'. Plankett and Burman (1946) studied the 

problem in more detail and gave different fractional factorials. 

Then pointed out their utility in physical and industrial resea­

rch, since then, fractional factorials have found many applicat­

ions, particularly in industrial and research development. In 

fractional factorial the size of the experiment is reduced, how­

ever information on certain higher order interaction is lost. The 

main problem of fractional factorial is the suitable choice of 

non-estimable .interaction used to select a fraction. Such non­

es timable interactions used for the selection of treatment combi­

nations are called as , 'defining contrasts * or 'identity rela­

tion '. They are equated with 1 .

After selecting a fraction of treatment combinations one can 

easily show that any contrast of selected treatment combinations, 

in the fraction represents more than one? effects or interactions. 

Such effects or interactions which are represented by same cont­

rast of treatment combinations are called as, 'alias *. By assu­

ming, other interactions in the alias are negligible when coinpar— 

ed with one, of them in same alias, the interaction under interest

/ 4t



is estimated by the contrast with the selected treatment combina­
tions. The salient features of fractional factorial are given as
be1ow.

n ,1
1. The fraction of s --experiment is of the order —r- . It i;

n n~k
written a* (s )

2. The fraction consists of the key block 'of the confounded 
n 1 n-k

factorial s in blocks of size s , obtained by confounding 
k

s - 1
------- interactions ,
s - 1

k
s 1.

3. These -...... interactions are called as ‘defining contra­
s'- 1

sts' . They are written in a r<so> beginihg with I -and separeted 
by equality sign.

4. From the defining contrast only one block is obtained so they 
are not estimable.

We illustrate these ideas with following example:
Consider a 2 Factorial experiment in which only the 4 

treatment combination viz. a, b, c and abc are tested. This is 
half of the complete replicate of 2 factorial experiment with 
these treatment combination the main effect of A , is given by

1
A = --- [ t abc ) + ( a 1 - ( b ) - ( c ) ] ---(3.5.1)

O
41.

Similarly the main effects of B and C are given. Note that A,
B and C contrasts are mutually orthogonal. Thus we can estimate 
there three main effects independently.

Also for the above set of treatment combinations, the inter­
action BC, is given by



1
(c) ]BC =--- [ (abc) + (a) -- (b)

O i 
X*

5.2)

It is seen that in the equation (3.5.1) and (3.5.2) the right 
hand sides are same. Hence the main effect A and interaction 
BC are confounded with the same quantity. So A and BC are 
aliases.. Also for the same set of treatments we have B and C 
are alias with AC and AB respective1y, and further B is confound­
ed with AC and C is confounded with AB .

If 8 treatment combinations are available, then interac­
tion ABC would be computed from 

1
ABC = --- C(abc)+Ca)+(b)+(c)-(ab)-(ac)-(bc)-(l)] ----(3.5.3)

8
The treatment combinations which we have used earlier are from 
ABC contrast which have positive signs. That is, ABC is used to 
sp' 1 i 1. up the factorial into two half replications. So ABC is a 
defining contrast or identity relation. Hence we can write —

I = ABC
So by using a ha_f replicate we loose one factorial effect, 

ABC entirely and each main effects are get mixed up with one of 
the two -factor interactions. With the ABC as defining contrast 
we have following three sets of alias

A = BC 
B = AC

and * *
C = AB

, These are obtained from the defining 
both sides with main effect and replacing 
by 1 .

contrast by multiplying 
the square of a symbol



Remark The? experiment could have been conducted with treatment
combination (1), ab. ac, and be from the remaining half. In 
that case also ABC is confounded with replicates and main 
effects are get mixed up with any of the 2 factor interactions. 
And alias sets are given on next page —

A = - BC . B = - AC , C = - AB
~ BC '= AC = AB

example : 3.5.2 Consider a halt replicate of a 2 -factorial
Suppose a five factor interaction 'ABCDE' is chosen as defining 
contrast. Hence ,

I = A B C D E
Now we can write down the alias of any other factorial effe-

BCDE .

Alias 
C D E 
B D E 
D C E

ABC
From this it is seen that, every main effect has four factor-

interaction as alias, and every two--factor interaction has three 
factor interaction as alias. No main effect is mixed up with 
2 --factor interaction.. So , to get information on main effects 
and two-factor .interactions, their alias should contain interact-

ct. For instance, the alias of A is A BCDE i.e.
The complete set of alias is given as below — 

Defining contrast,
I = A B C D E

Main effect Alias Twofactor Interaction
A B C D E A B
B A C D E A C
C A 3 D b ‘ A l)
D A BCE _

E A BCD D E



ions of at least, three factors. In such a case the variation due 
to alias group can be considered to be due? to the main effect or 
two factor interaction. And variation due? to higher order inter— 
actions is pulled with error. To ge?t such a type of alias group 
our destining contrasts do not include any interaction with less 
than five? factors. This servers as criterion for selecting an 
appropriate defining contrasts. Bc?low we? discuss in general
1 n
-- replicate of 2 -factorial experiments.

k
2

1 n
---  REPLICATE OF 2 -FACTORIAL EXPERIMENTS

k
o

-k
Consider a problem of construction of 2 fraction of a 

n n
2 factorial experiment. Out of 2-1 total main effects’ and

k
interactions, 2 ~ 1 will be confounded with means and remaining 
n k k
2-2 will be mutually mixed up in sets of 2

To construct such a design, first we select k independent
interactions X ,X , - - -, X such that none of them is obtai- 

12 k
nable from the others by multiplication and none of them should 
belong .in the same alias set. Then we? select treatment combina­
tions of the same sign as the control, in the above interactions.
Then the generalised interactions of X ,X , - - ~, X will also1' ■ 2' k
be confounded with mean. We have identity relation as,

-k
From

I = X. — X - X X « X - X X = X X = X X X etc.
1 2 I. 2 3 13 23 123

these defining contrasts and alias sets we select a 
n n—k

Such an experiment is denoted byfraction of



To get the clear idea about above discussion we consider an 
example.
Example 2: 3.5.3 Consider an experiment with S factors A, B,
C,D, E, F, 6, H each at two levels. And suppose we wish to have
18 6

--- th replication of 2 . It is denoted by 2 . Here we use
4

only 64 treatment combinations out of 256 . To save main-effe­
cts and 2-factor interactions we choose defining contrast conta­
ining at least five? letters. Let ABCDE and ABF6H are two indepe­
ndent defining contrasts and generalise-?d one is CDEF6H . Hence,

I = A B C D E = A B F G H = C D E F G H .
Suppose we wish to arrange these 64 treatment combinations

in 4 blocks each of size .1.6 . For this iwe have to confound
other three interactions of order at least two, with blocks.
Hence,

I = A B C 1) E - A B F 03 H — iC D E F G H
A C F = B D E F = B C G H — A D E G H
B l) G = A C E G - A D E H = B C E F H
A B C D F (3 = E F e = C D H = A B E H .

The intrablock sub-group is given as —
(1) ach aef cefh
bdh abed abdefh bedefh
beg abeegh abf g bef gh
degh aedeg adf gh cdf g

From this,intrablock subgroup taking as block I the remain- 
ingblocks can be obtained in the usual way on the next page ~.



Table No 5.1
1
4

Replicate Of
8

2 Experiment In 4 Blocks

Block I Block II Block III, Block. IV

(1) ab ce de
ach bch aeh aedeh
aef bef acf adf
cef h abeef h f h aedf h
bdh adh bed he bch.
abed cd abde abce
abdefh def h abedfh abf h
bedefh aedef bdf bef
be g h aeg beg bdg
abcc-?gh cegh abgh abedgh
abf g fg abcefg abdefg
bef gh ac f gh bef gh bedefgh
dagh abdegh c d h gh
aedeg bedeg adg aeg
adf gh bdf gh aedefgh aef gh
cdfg abedfg d e f g cef g

The 63 contrasts are obtained by Yates procedure and these are 
tested using the analysis of variance?. The analysis may be pc-?rfar­
med by dropping letters 'a' and '-f' from the treatment combina­
tions. Then we have to rename? some? of of the treatment combinat­
ions involving B, C, D, E, G, H factors by using identity 
relation I = - ABODE = - ABFGH * CDEFGH .

The structure of analysis of variance? is given as below -
Table No. 3.5.2 .

Sources of Variation d. f .

Ei locks —.«•• >
Main effects 8
2 -Factor interactions 28
Error 24

Total 63



To perform an experiment with such large sized blocks leads 
to increase in experimental error. So we try to reduce the size 
of blocks.

Suppose wish to have 8 blacks, each of size 8 . Constru­
ction of such an experiment is not simple and some of the 2 -fa­
ctor interactions are confounded, with blocks. Let, we confound

.erac tions with bio c: k s.
ACF " BDEf ~ BCGH = ADEGH
BDG ■= f'lCH ■j = ADFG - BCEFH
ABCDFG = f-FG - CDI-I == ABEH
CDF = ABETr = ABCDH = EGH
AD = BCE == BDFGH = ACEFGH
BCFG - ADt::!FG = ACH == BDEH
ABO “ CDE(3 = FH = ABCDEFH

The plan is given as below -
Table No. 3.5.3 .

1 8
--- Replicate of 2 Design In 8 Blocks Of Size 8
4

I II III IV V VI VII VIII
(1) ab ce de f g Qh acf bdh
abed cd abde a bee abedfg abedgh bdf aeh
cef h abcefh f h c: d f h cegh cef g aeh bedef
abdefh def h abedfh abf h abdegh abdefg aedeh aef
beg aeg beg bdg bef beh abcefg degh
aedeg be deg adg aeg aedef aedeh def g abcegh
bef gh acf gh bef ch bedefghi bch bef abgh cdf g
adf gh bdf gh aedefgh aef gh adh adf edgh abf g .

The ana 1ysi s of vari ance may be performed with 8 blocks each
of size 16, by dropping 1 etters, namely, a and f . Using the
Yates procedure we find effects. In the analysis some of the
interactions are renamed according to the identity



I = - ABODE = - ABFOH = CDEFGH . 

The structure of analysis of variance will be

"fable No. 3.5.4 .

Sources of Variation d.f.

Interaction AD, FH xL

Block error 5
Main effects 8
2 -Factor interactions 26

Error (with in blocks)

Total 63

The two confounded interactions will be estimated with a 

variance equal to (block error mean square/3.6 ) and all the main 

effects and the other interactions with variance equal to (within 

block error mean square / 16 )

-k n
s REPLICATION OF s FACTORIAL EXPERIMENTS:

~k n n-k
A s replicate of an s experiment is denoted by s 

-k
To select s replicate, we first select k independent pencils

P (a , a a ) ( i = 1, 2, - - k ) such that none
i1 i2 in

is obtained from the others and will not result, in two pencils

in the same alias set. Then we select the treatment combinations

occuring on the same flat as the clear that they occur on the

same flat in each of the generalised interactions of pencil

P(a , a , “ - a )( i ~ .1, 2 k ) the defining
il i2 in -

contrast is , then
I = P( >1 la , >1 ir a , -----,>I 1 a ) ;

i i it i i i2 i i in



Where, 1• C fc>F( s)k 1 
s ~ 1

and there will be ( ----  ) pencils in the defining contrast.
s - 1

k , n-k
s - 1 s - 1

The remaining ( --- - ) pencils will be divided into ( ----  )
s - 1 s - 1

k
alias sets of s pencils. The alias set of the pencil
P(b ,b , - - b ) contrasts of pencils representing generali- 
12 n k

( s - 1 )
sed interactions of it with each of the -------  pencils of the

( s " 1 )
defining contrast.

1 5
Example 3.5.5 . We construct a --  replicate of 3 experiment

based on the defining contrast
I = A B C D E

Here out of 243 possible treatment combinations we use only
81.

We have the following alias sets, with respect to defining 
contrast

I = A B C D E
O ^

A-ABCDE-BCDE

A3 = A B. C D E = C D E
*‘i '■> '•’i O O r

J.. ji.

AB = ACDE = BCDE

If we confound ABC with blocks, we will also confound 
2 2 2

ABC (ABCDE) = ABCD E and ABC (ABCDE) * DE , Here two factor 
interaction is confounded. If we confound ABC with blocks we



*p 2 2 2 2
will also confound ABC (ABCDE) - ABD E and CD E and these 
then constitute a suitable system of confounding for blocks of 
27 plots. And to use blocks of 9 plots it. is necessary to confo­
und at least one 2 -factor .interaction. The following may be 
confounded with blocks to give this result :

2 2 2 2 2
ABC = ABD E = CD E
2 o.t~ s~, 2 :

AB D =- AC DE = BC E
J... 2 rl 2

ACD == AB CE = BD E
2 2 2

BCD *= ABC D E = AE

The intrablock subgroup consists of the treatment combina­
tions which satisfy - __

x + x + x + x + x = 0 
1 2 3 4 5

x + x + 2x 
12 3

0 mod 3

x + 2x + x - 0
12 4

These treatment combinations form a group.
The intra block subgroup is as follows :
2222 2 2 22 222 2222 

C (1) , ac:d e ,a c de ,bcd, abc e , a bd e, bed , ab de ,a b ce )]
The other blocks are obtained bymultiplying this block by

2 2 2 -2 222 2 2 
c e, ce , d e, de , c d e , c d, cd , ede .

The multiplication is ordinary multiplication with conditions
3 3 ,3 3 3

that a = b = c = d - e -- .1 .



The plan is given as the yw.x l psoge

Table No. 3.5.5 .

Block

"7

1 -

Replicate of 3 Design In
2 2 2 2 2 

(l),acd e ,a c de,bcd,abc (

B1 oc k o _
2 2 2 ' o

c e,ad ,a cde ,bde,abc,a 1

Block
*9 r~y ry, ry, c_i ry,

ce ,ac d e, a d , be de , al

Block 4 -
*9 o o o o
Xm. XL. Xm X~ i. X.

d e,acd,a c e ,bc:e,abc d

B1 oc k 5 -
2 2 2 2 2 2 

d e ,ace,a c: d , be cj e H a be

Block 6 —
2 9

c d e ,ade, a c, be? , abce,

Block 7 -
9 O 9 *9 9 odkaw Xm Xm wm .•>. A..

c d,ae ,a cd e,bd ,abcde

Block 8 -
2 9 *9 9 ') 9 o

cd ,ac de? ,a e,bc ,abd e?

Block 9 -
o 9 O 9 O 9dCZa .Im. X* *1.4

cde,ac ,a d a ,be d e,abd

r\ * y *y * y o o

'9 O *9 *9 *2 o

o O O o o o o o o

o *9 O *9 o 9>

The technique of "fractional factorials has been made by- 
Addelman (1963), Chakarbarti (1956), Mukerjee (1980), Nishii 
(19B1), Bose (1982). Adhikari. and Dtes (1986), among the others. 
For plans of standard fractional replicate designs we refer 
Brownlee, Kelly and Lcvarirte? (.1948); Connor and Zelen (1959) ; 
Cochran and Cox (1957) ; Kitaggawa and Mitome (1953) and publi­
cation by the National Bureu.of sbandars.

Upto here we have considered the symmetric factorial exper­
iments. In the next chapter we will discuss about the 9 'asymm


