CHAMTER 3 .

FACTORIAL EXFERIMENTS .

In this chapter we give the detail about '"factorial experi-
ments’. In section 2.1 we g.ve introduction of it along with
the historical account. Section 3.2 is used for notaions and
smme definit}ons. Analysis of ‘symmetrical factorial euxperimen-—
ts’ is givenzlhe section 3.3 . The necessity of confounding and
different methods of confounding are given in section 3.4 . In
section 3.8 the need of 'fractional replication’ is explained
“and different plans are given.

Z.1. s INTRODUCTION 2+

At the end of Chapter 1 , we have introduced the term ,
‘factorial experiments . In zhis chapter and in the remaining
chapters we will discuss about it , in detail.

In practical life factorial experiments are widely applied.

As an illustration let us consider the following situtation 3
We know that the yield of a.particular type of crop mainly
depends upon the irrigation levels and the different manures to
be applied on it. Suppose there are different levels of irrigat-
ion and different types of marures. And suppose, the investiga-
tor‘has to find the effects of these factors on the yield of a

Crop.

One way to ascertain the effects is to carry out two separ-
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ate simple experiments. One for testing theveffects of different
levels of irrigation aad other 0 test the effects producéd by
different manures. In the first experiment one can find the ogt~
imum level of irrigation and thereafter in thé second, one can
_determine the obtimum level of smanures.

In the above set up we have assumed that the two factors act
ind@peﬂd@dﬁly, on the yvield of srop. Obviously this‘cannmstéru@
in practice. The yield of'a crop does depend upon the combined
effects of‘these,twolfactors. For, many times high level of irr-
igation Qith strong dose of manures gives more yvields and on the.
otherhand the lowest Jevel of irrigation with strong dose of man-—
ure may give less yield. ,Henca'it is clear that above two
factors are cmrwelaﬁed. In aﬁch situations 1t is essential to
consider all pbasible combinations of different levels of differ-
ent factars and‘to‘ge;@ct which combinations affect the yield
really. 6And, precisely this can be achieved by performing, "fac-—
torial euperiments ‘. In the next paragraph, wé give in brief
the historical develooment of “~factorial experiments .

Prior to 1926 , factorial experiment was called the, ‘comp-
lex experiment ‘. Fisher designated it as, 'factorial experi-
ment . Now it is known almmﬁf exclusively as a "factorial exp-
eriment . Yaﬁe% (1925%) states that the factorial experiments
have been used on wheat trials at Broadbalk since 1843 and on ba-
rely trials at Hoosfield since 1852 .

Fisher and Yates are mainly responsible for the development
and analysis of factorial experiments. The classic work on fact-

orial experiment is, "~ the pamphelt written by Yates (1?37), enti-
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tled, 'The Design And Analysis of FactwriallExpariments‘. Besid-
es these two, Barnard (1936), Rose (1938, 1939, 1942, 1947, etc.)
Cochran and Cox (19%9), Kémpthrmne (1952), Fedrer (1935), among
the others deserve no small amount of credit. And precise liter-
ature on this topic is available in the books by Kempthirone
(19752), Fedrer (195%), Cochran and Cox (19%99), Jobn (1971), Ogawa
(1974), Das and Giri (1979). Fedrer, Hedayat and Raktoe (1981)
among others.

It must be mentioned here that in the literature, many a
time, the phrase "Fa:ztorial Design" is being used. However, this
is actually a misnom2r for, there is no such thing as a factorial
design. The adijective "factorial " refers to a special way of
Cforming treatment combinations and not to any basic type of
design. Yates (193%7), and others have recognized this situation
and they refer it to as ‘factorial experiments’ rather than " fac—
torial designs ‘. In our discussion, we will follow Yates .

In the next section we g.ve some notations and difinitions
which are helpful in further discussion.

.24 ¢ NOTATIONS AND DEFINITIONS -
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In the study of factorial experiments we will use the foll-
owing notations . X
The factors are denoted by capital letters such as by

A, A, A= ——o9r by A, B, C,, — - - = . HWe use 'X ' to de-

1 2 3

note a factor, in general. The i th factor is at s levels

. i
and these are denoted by 0, 1, 2, - - -85 Oor- X, X g =
i—-1 1i 21
- =4 % H 1 &1 é n . A factorial experiment with n
S i
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i

factors : A , A , - = ~ 4+ A with s , 8 = = — , 8 levels
1 2 n 1 2 n
respectively is denoted by 's ¥ s ¥ - - - %X g ~ factorial exper-
1 2 n
iment ‘', with v = s %X g % - - - X s treatment combinations.
1 2 n

Further, treatment combinations are denoted by corrosponding sma—

11 letters, such as (1) 4 & v &8 4y & & 4 & 4, @ & , & a 4, — — —or
1 2 12 = 13 23
by (1), A, b, ab, ¢, ac,y bc, - - - etc. or
M » pd
by a b « - = H where x
i

denotes the »x th level of corrosponding factar i 0)§ x L8 .
i i i~-1

Next, we use (%) and {x] to denote mean and total of all

+ 3

_ ohservations receiving treatment combination, 'xX ‘. A main effe-
ct of factor X is denoted by X 3 and interaction between the
factore X, Y, Z is denoted by XYZ , and so on .

Further, let r denotes the number of replications of j th
treatment combinatioi 3 1 £ i is %8s %X~ - ~-%Xg .

~ X
1 2 n

SOME DEFINITIONS -
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Below we present few definitions [ Raktoe, Hedayat and Fed-

rer (1981)] which are necessary in further discussion @
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A factorial experiment is a complete Tactorial experiment or

.

simply a complete replicate ", if r % 0 for all j 3
3 .
1gigy in each replication , i.e. every treatment combination

should appear at least once in each replication. Shortly we can

Call it as CFE-



Definition @ J3.2.0.3 MINIMAL COMPLETE FADTORTAL EXPERIMENT (MCFL)
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A complete factorial experiment (CFE) is said to be minimal

complete if r = 1 , for all j 3 1
J

eatment combination occurs once and only once in each replication

é 3 é v i.e. each tr-

Shortly it can be called as "M C F E °.

Remark 11— The MCFE is often refered to as a single complete rep-
licate of the s ¥ 5 ¥ - - — % s ——factorial experiment.
1 2 n
And if v = r , then a CFE is sald to consist of r com—
J
plete replicates of the s X & X -~ - - X s -—factorial experi-
1 2 n

ment
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A factorial experiment is defined as ssymmetrical if s = g,
' i
for all i 4, 1 ¢ 1 &n 3 otherwise it is asymmetrical.

Further, a factorial experiment is sald to be prime powered
uy

if s = p s for each i and p 1s a positive prime numb-
i i i
egr and 4 is a natural number g-eater than or equal to 1 .
i .
Remartk :~ An factorial experiment may be symmetrical prime powe-—

red or asymmetrical prime powersd.
In symmetrical factorial esperiment,

B = g W o~ - e - o@mogo=og ., G0 We get
1 2 ' n
n
v=gXs ¥ - -~ - ¥sg=g ~——treatment combinations.
1 2 n
n
And factorial experiment is called s -——-factorial expriment.



Definition : 3.2.4. : INCOMFLETE FACTORIAL EXFERIMENT .

A ftactorial expériment is sald to be an incomplete factorial
experiment, or fractioral factorial, or more simply fractional
replicate, if r'; O for some J H 1 g j,i v i.e. some of
treatment combin;tions out of tctal, are not occuring in that
replicate.

For the illustrat-on, let us consider an exmple of a 2 % &
factorial experiment with two factors A and B at levels 2
and 3 respectively. The levels of factor A are { 0,'1 T and
that of B afe {0, 4y 2 3 . The possible treatment combimat-.
ions with these levels are

( O, 0 ), ( Oy 1L ), ( O, 2 ); (1, O )y 2 1 )y (1, 2) .

A factorial experiment with treatment combinations , in each
replication ( O, ¢ ), ( O, O ), ( Oy 1 ), ( O, 2 )y ( 1, O},
(1, 0 ), ¢ 1., 1 Y. C Ls 2 is a CFE and it is minimal comp-
lete with treatment combinétions { O, O )y ( O, 1 ), ¢ O, 2,
(1, O ), (1, 1), (1, 2 ) . And a factorial experiment with

treatment combinations , ¢ Oy O )y (0, 2)y (0, 2, (1, 1),

{ 1, 2 ) 1is fractional factorial . Further, since s =/= g (it

]

1]
is asymmetrical factorial experiment and s 2, 8 =3 so0 it is
. 1 2

asymmetrical prime powered factorial experiment.

Definition 3.2.9% :— THE ORTHOGUONAL FOLYNOMIAL MODEL
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For simplicity, we develope the case for n=1 , i.e. for

single factor and at later stage we generalise it for n factors.

Denote the levels of this single factor by (X (¥ = — —4¥ )
1 2 s

s



and let Y be the observation at the x th level.
#®3 3
Definition 3.2.5% :— The full polynomial model for the single

factor factorial is givén by the equation [Raktoe,Hydat etc.]

E(Y ) =F P(x ) *+Fp (x)+--=+F p (x)-===(3.2.1)
b Q0 3 11 3 s-1 -1 3

po(x ) = 1% Jg= 1y 2y - = =y 8 3§ W= 0, 1,8, —,5—1.

and p ,p . - - *,ﬁ are the parameters. As in regression
O s-1

theory, here also ﬁ is called intercept, ﬁ is the linear reg-
' . 0 ’ 1

eSS 10N coefficient,i& is the gquadratic regression coefficient
2
and s0 on. In matrix for the model (J.2.1) can be written as,

E()y=Fp  mmmmmes (3.2.2)

Where, F is a sxs matrix with ( j,w) th entry'being equal to
w

o5 o ow =0, 1, 2y == =y 81 33 =1, 2, - - ~, 8 .
j .
Let, H be the triangular Gram—Schmidt transformation

matrix that orthonormalises tre columns of P from left to right
It follows that equation (%.2.%) can be written as

-1
E(Y) =P HHE=MP - e (302.3)

-1
Where, M = F H and é = H B . This model is called the single

factor orthogonal polynomial model.
The Gram—8chmidt process is explained as follows .

Indicate the columns of P and M by P F , — — —,F and
o 1 s~1

M .M, - - -M respectively. Then, the Gram—Schmidt process

is given by - /
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Here, .V means the usual dot product > uw .v of the vectors
i i
U ard V¥, and
21/
il o= (0 F_uw ) . is the length of vector U .
i
For the illustration we corsider a factor at three levels

viz. O, 1 and 2 . Then
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Then by using Grams—-Schyidt procedure we get
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antd - Q 1 2 )
45 = (g, P, ) is the parametric vector. If
8 1 2 51
45 = (& , I, b, - - - <P ) « then in regr-
) 1
ession theory o is called the intercept ., <> is the linear

regression coefficient eliminating the intercept and ignaring all
higher degree terms,<¥ is the quadratic regression coefficient

eliminating the intercept and the linéar coefficient and ignori-
ng all higher deqgree terms and so on. This is due to the ortho-

gonality of matrix .

Definition 3.2.6 1~ A real n —tuple (i (K 4 — — —(X ) is said
e e e e 1 2 n
tobe less than a real r —tuple ((y ¥ « = — =y ) 1if and only
i 2 n
if for the first uw such that x =/= vy « We have x X vy ;1§u§n .
. L u : u u

And a set of real n —tuples is said to be lexicographically

ordered if it is ordered as above.

Definition 3.2.7 :1— The left kronecker product of two matrices
A = (a )} and B = (b ) is equal to the m.r x n.s matrix
mxn ij r<s ij ‘

VT a B a B - - a B I

HE I § 12 in :

v a B a B - = a R |

21 22 . 2n ;

i - - i

o a B a i - - oa B

1 1

1 i

ml me mn
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Definition 3.2.8 :~ The symbolic left Kronecker product of two

vectay s X and Y ts equal to m.n x 1 vectov
m:xl rixl :

X QY = (0 Yy s8 Y 2= = =y XY ; = = =g Y %Y 4 = =%y )} .

With these definition now we generalise the orthogonal polynomial

model for the case n @ 2 . Let the levels of each factor be

ordered in increasing order. Let Y be the observation vect-

p
or corrosponding to minimal complete factorial design p . The

n ~factor orthogonal polynomial model is given by

E (Y ) = X p ‘ e (5L 205
p PP
where, the subscripts of Y are lexicographically ordered .
¥]
X =M M -2 —————— (3.2.4)
[e] 1 2 n
and . -
g =& od 0o- -~ -0 e (FL 2. 5)
p 1 2 n
The matraix M and the vector'é are the design matrix and par-
1 i

ametric vector for the i th factor after left to Tright ortho-

normalisation. The Eronecker product ™M ® M ® - - =R M and
1 2 n

the symbolic Kronecker product <_’é OCE ) c‘fti! - - - & <  are
1 : “n

obtained by generalising the definitions  3.2.7 and 3.2.8 .

It follows that the superscripts of the elements of B are

p
also lexicographically ordered . The elements of R are called

p
as factorial effects . For the illustration we refer the analy-

-
Lo

sis of 3 ~—factorial experiments in the section 3.3.
In the remaning part of this chapter, we will discuss symm-—
etrical factorial experiments in detail and in cthapter 4, we will

discuss about asymmetrical factorial experiments.
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Suppbse there area n faczors each at s  levels. Then we
I
will have v = s , total treatment combinations. And these v
treatment combinations can be compared by using any one of stand-

ard designs such as  CORD, RRED  or LBD .

Now for the simplysity we study some particular cases, such

as 2,2, - = = etc. factorial experiments.

2

THE 2 ~—-FACTORIAL EXPERIMENT -
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Suppose there are two factors, A and B each at two leve-

e
ls, s0 the total treatment combinations, v = 4 ., And these are

(1) a, b and ab . -These four treatment combinations can be

tested by using RED . For this we develop a model as
Y sm+old+ B o+ (B ) toe iod, 4= 1, @ e (B LY
1. L J iJ ij

Where, Y denotes the random variable corrosponding to the obse-

i3
rvation vy is the observatior on i th level of factor A and
1j
j th level of factor B . M 1ls grand mean o . is the effect
i
+h
due to ith level of factor A, p is the effect due tqjlevel of
3
factor B . (o B ) is the interraction effect of i-th level of
ij

factor A with th level cf factor B and e is the err-
: ij

or term, which is assumed as distributed independently normally

~
e

with mean and constant variance & .



To get least square estimates, we minimise

_re = _r_ Ly —p-K-p-(Lp) 1 - (3.3.2)
FENE T B S ij il ij

with respect to , a0 (  Booand ( E ) . And to get unique

i h] 1j

solutions for normal equations we assume .

PR =0, B =0, (M) =0 4 5_ (B ) = 0
i=1 i i o3 i i3 3 ij
that is | L + & =0 .
1 2

which gives, o( = ~ o = 9. say
1

Similarly

and

(B ) =~ (KB) == (LB =({P) = (LE). say.
22 1z 21 11

with this change, eguation ( 3.3%.2 ) can be rewritten as
3 1k} s

= v r_ Ly = uw=(-1l)e( = ( =1) p = (-1} (KB ) ]
i ij

iy, J =1, 2 .
Differentiating partially and equating with zero, we get the lea—

st square estimates wu™, Q arcl F“ of 4 4 o and E}respectively.

Hence , A,
qgur =y +y +y +y
11 1z P R
. A, 4 : ]
il.e. w™ o= (ab) + (b)) + (&) + (v) I.3.4).
Also, n ,
4 & = (ab) = (b) + (a) - (1) (Fea 8.

ar, in the simplified form

A
T4 Bt = (a-1 ) ( b+l ) (5.3.6).

Similarly, we get

4 B~ = (ab) — (a) + (b) —~ (1) (Z.3.7).




o

A -
. - +1 bml (-:'-3-8)-
QP ( a ) ( )
and A
4(LAP ) = (ab) = (a) — (b) + (1) - (3.3.9).
or '
= (a~1 ) ( b-1 ) (3.3.10).

From equation number (3.3%3,3),(ab) - (b) can be interpreted
as the difference in average yimld wheh factor A 1s changed fr-
om first level’tm second level, ahen factor B is at second lev-
el. And this differénce i callzd 'simple effect ' of factor A
at the second level Df_ B . and {(a}) — (1) is simple effect of
A when factor B is at first lavel. Further, the average of
these two simple effects is call=zd as, " main effect " of factor
A . And it is dehoted by A.

Hence ,

A = 1/2 [ (ak) - (b)) + (a) - (1) 1] (3.3.11).

By comparing equation rumbers (%.3.3) and (3.3.11), we get
A .
A = 2« .
Similarly, we get " main effect " due to factor B , as
n
B = 2 F .
Further, when two simple effects of factor A at different
levels of factor B are not equal to each other it implies
that factors A and B are depending upon gach other . And the
half of difference of (a) - (1) from (ab)—(b) is defined as

interaction effect or measure of dependence between A and B.

- L AB

fi

1/72 [ (ab) - (b) - (&) - (1) 3 ______.(

4

Sa12).

which is also

A
AB 20 L*r ) .
Here,the right hand sides of equations (3.3.6),(3.3.8) and

(2.3.10) are expanded algebrically and treatment combinations are



replaced by corrosponding treatment means.
Remark :~ Here from the equations (3.5%5.8), ( 3.5.7) and (3.5.9)

it is seen that main effects and interaction.are contrast and
further we note that they are orthogonal contrasts to each other.

The s.5. due to factorial effact is obtained by dividing
the square of factorial effect by 4 r ., where r is the comm—
on number of replications. [we follow this from the definitionl]
And this s.s. carries one d.f. Adding wp these SeG,.
due to factorial effects we get s.s. due to treatments which
carries 3 d.f.

However, it is mare ea .y to obtain the factorial effects and
their s.s. from the treatment totals rather than those obtained
frdm treatment means .

Suppose factorial effect tﬁtél due to factér A is defined
as tAl=Llabl~-Cbl+[al-(11 .

Similarly, we can define [ B 1 and [ AR J. Then s.s. due to

. 2 2
main effect A = s = [AY/ {4 r]l] = and it carries 1 d.f.
. ' ' A
Similarly ,
2 2 o2 2
& = R}l /7 [4 ]} arnd it = [(AE] /7 [4 )
E AR

are the s.s. due to main effect B and interaction AR respec-—
tively each carring o d.f.

Here our main hypothesis to be tested is to test the signif-
icance of interaction effect AR . "We state the null hypothesis

H , as H 1 Interaction effect is not significant
») s) '

i
]

(K E ) 0 .
1 i)

aaln

i.e. (KB ) = (KAB) = (LF)
11 12 2

al
/

.

it



Let S.S.E. denotes the sum of squares due to error and it
carries 3JI(r-1) d.f. Using standard results [ Rao,(1983) 1,

we can give

58S E MSE
~~~~~~~~~ , = e e e o e is distributed as
2 2
3(r—1)6 &
2
=3
2 AR .
® with Z%(r-1) d.f. and o s is distributed, under H
2 . Q
2 &

as X with 1 d.f.
And , since these two are distributed independently to each

other [ Rao,( 1985 ) 1 , so0o to test H , we use the following
0

statistics

FFom e . which follows Snedecor’'s

F —distribution with [ 1, 3% (r—-1)] d.f. under H- only. We
reject H at o Z level of significance [Hempthrong (1966)p.12
(1.0.,8), Uif
F calculated value \ ﬁc[l,E (r-1)31 & .
Otherwise, H is accepted. ’ |
(4]
In the similar way the otler hypothese¢about the significan-

ce of factorial effects A and B are tested.

=
PR



We below give the “analyosis of varsance © table (ANOVA) .

TAKLE NUMBER 3.3.1 .

2 ~~~~~~~~~~~~~~~~~~~~~~~~

ANOVA For 2 -~Factorial Experiment In RBD With 'r’ replications.

Sources of Variation | d.f. | Sum of Squares | M.S5. | F

Replication 5.5.due to repl-
- cates .

Treatment

J
M

Main effect A

-
H
i
|
|
!

n " B

e o s e

g

Interaction AR

-~

Error S8E

~ Total

e e e M Ml me mm MR mm e M W mm e MmO me M R mm m M M ma =W
e mw e e e e o i m MW e e M e mm e wa m e W R e e e wm e
e WM mm MW M mEm e MW e S WA S m W e i MW A e e ke e

For the construction purpose, we may have an alternative mo-

del. We associate co—-oridanates »  and % with factors A and E
: 1 2
respectively. ’

Where, .
ow o= 1, when factor A is at second level.
g \
o= =1, when factor A is at first level.
1 .

In the same way, ® has significance about factor B. So
]
the four treatment combinations are
(—-1-3), (+1,-1), (—L+1), (+1+1)..

With these values, we can nave the model



P2 S SER L Y T @ e (2.5.12
ij 0O 11 22 1212 ij

and, we shall have, & = u , F‘::*’ F=F . and g = ({E).
O 1 2

Suppose there are three factors AR and C each at two lev-
-els, sosthe total number of treatment combinations are eight, and
they are —— (1), a, [ ab,' Cy &C, bc, abc. These eight

treatment combinations can be -tested with the help of RED, with

¢

r’° replications. For this, we develop a model as

ijk  ijk

y =+t +B o+ (KB)  +Y + (W)
L 1j  k ik

+(BY)  +((FV) +e == (X.3.14)
iik i 3 13 : j k-

ik
§ L.d.k = 1,2 .
All the terms in the model have same corrosponding meaning
as earlier.
To get unique solutions for normal equations, we impose the
conditions H

> ® =0 B_B =0, 5% =05 _((B) = 0,5 (f) =0 .
i i 7o Eok i ij R T

and so on , which implies

 +d=0, i.e. d =~ &= o say.
2

1 2 1 1

Similarly, PR =pg V=V
21
WR) = () = ~wf) = ~(KF) = ({F), say, and so on.
11 22 2 21

Further, the eight second order interaction terms (xpy)
. ijk
have the same absolute value. If they are not all zero, four

of them are positive and the other four are negative [(John(1971)]



Hence

s we have,

s_ > _({BY) = 0, >_ i_((E¥) = 0, ¥_ »_(«f¥) = 0, lead to

i ijk ik

ijk i k ijk

(MﬁV) = = (dfy) = - (LW ) = = (V) = ({EV) = @ BY)

222 22 212 22 211 121
= (dpY) = —@pY) = (£fv) e A

112 111

Hence, the least sguare estimates are given as,

8 ﬁ = (abc)+(bc)+(ab +(ac)+(a)+(b)+(c)+ (1) e (3.3,.18)
8 2 = (abc)w(bc)+(acl"(c)f(ab)w(b)+(a)~(l) - (303016)
8 g = (abe)+(be)—-(acr—(cYr{abYytr{bhy-(a)—(1) ————ELELLT)
8 Q = (abc)+(b)+(ac)+(c)~(ab)~(b)~(a)=(1) ————(3Z.%5.18)
B(Qb)m (abc)t(bo)—~(act+(ab)—(al—~(b)+(cl)+ (1) - (3.3.19)
8(%§»):(abc)~(bc)*(ac)w(ab)+(ai+(b)+(c)”(1) == (E.3.20)

~—~—

In equation (S.ﬁ.l&)g (abo.-(bhc) gives difference in averaqe

response by changing the levels of factor A from first to second,

when

factors B and C are at second level. And it is called as

the simple effect of factor A, when factors B and C are at second

level

or A,

5. Similarly we have the other three simple effects of fact-—

at the various levels of factors B .and C. And an average

of these four simple effects is defined as, ‘main effect’ of fac—

tor A, which is denoted by A,

Hence,

(abc)-(bc)+{ab)~(b)+(ac)~(c)+(a)—~(1)

which can be written i1 more simplified form as,

(=1 g

(a—-1) (b+1) (c+l)

[ B e o e (FBLEL21)
4

A
A= 2«



In the similar way., we will have four simple effects of
factor B, at various levels of factors A and €. And these simple
effects are |

(abc)-(ac), (ab)-(a), (be)=(c, (B)=(1).

And an average of these four simple effects is defined as the

"main effect of factor BH". .

Hence, .
(abc)~(ac)+t(an)—(a)+(bc)—-(c)+(b)~(1)
JE BE v e s o e e 1t e st it s e s o P s e S 2 1 2 I o e 0
4
(atl) (b-1) (=+1)
TS o vttt e o e e ——— (3.3.22)
4
OF . A
B =2 p -

Also, in equation (Z.3.19)
(abc)~(ac)—(2ac)+(c)
gives an interaction A 3 when C .s at first level. Then average
of these above two interactions -s called, interaction AE.
Hence,

i

1
AR = =~ [ (abc)~(bc)-(ac)+(c¥+iab)~(b)~(a)+{(1l) ] ~——— (3,352,272
4 N
In the similar way, we define BC and AC. And, one half differe—
nce of second from first is defined as the interaction ABRC.
Hence,
ABC = e [ (abc)—(bc)-(ac)+{c)—{(ab)+{(b)+(a)-(1) ]
4 .

which can be written in the more simplified form, as

ABC = «=~-  (a-1) (b-1) (c-1) e (R R L 24 )



The right hand side of equations
(F.3.21), I3.E.22), (3.3.23 ) and (3.3.24 )
have same meaning as earlier.
Further, we note that all main effects and interactions are
contrasts and they are orthogonal to each other. Hence S.S.due

to any Factorial effect, X is given by

2 L X 1]
g B e e (3.2.25 )
X 8.r
which carries 1 d.*f.

Here we are mainly interested to test the significance of

interaction effects we put H 3 Interaction effect is absent
0
i.e. (XRVY) = (V) = (Jﬁ#) = - - - = (0,
' 111 121 122

Then from the well known results from Rao (1985 ) , we

have test statistic as, under H .

Q0

SSE/7(r—1)
Which follows Snedecor’'s F —distribution with ([1.,7(r—-13}3 d.f.
Where S5E is a sum of squéres due to error. We reject H L if,
F calculated }jF,(: [1e7(r—-1)1 °
Otherwise we accept it.

In the similar way we can have tests for the significance

of other effects.
-

s

Below we give structure of "ANOVA® for 2 —-factorial exper-—

iment in RED with v  replications.

&0



Table No.

Structure of TANOVA

Sources of Variation : (u J
Replicates ‘ r -1
Treatments : 7
Main effects 1
A : 1
2] : 1
C : 1
H
1 st order interactions '
+15 : 1
AC : . 1
BC : 1
Il nd order interactions '
ARC ! 1
Error ‘ 7 - 1}
Total ! 8r -~ 1
n

2 -FACTORIAL EXFERIMENT -

s Soe bieh st S4is S aide A Seret Setit babin Snirk VHEAL HUrin SASE Bist TS TROAE GRS 1SR SAOIN TR SN SNEIR WU

Suppose there are n factors A, B, C ~ - — each at level$S
L
n
two, 50 we will have 2 ~—treatment combinations. Let X 1is some

effect (main effect or interaction). Then X is given by

R (axl) (bxl) (c#l)e-----  —==—(3.3.26 )

Where the sign of + is negative for all those letters appe-

aring in X and positive elsewhere. And the right hand side has



same interaction as earlier, and r is the number of replications.

We have following model,

Y - - —- = pa+ ,(+p Y e +(v(’3) (V) o+ - - +g(;§n/) e
ijk i 3J k ij ik ijk

T . S T S 3 ...........,...(

i
A
b
~

Where the terms in the model have same meaning as earlier.
n
The total 2 treatment corbinations are compared by using

any of the standard designs with 'r’ replications. The treatment
" n
S5.8. carrying 2 - 1. d.f. is split up inte 2 - 1 orthogonal

components each carry-ng 1 d.f.

. n
The effects in 2 ~factorial experiments may be enumerated
as i
Factorial Effects : Numbers
Main effects ' n
n{n-1)
2 —factor interactions = = ————e—ee ~
. . n(n—-1)(n-2}
2 —factor interactions e
. g
' n
' Total 2 -1 .
Further, the $.5. due to any factorial effect X is given
by
2
2 [ X1
N s R s e e o .
X n
2 .

and it carries 1 d.f. Here we wish to test the siagnificance of



various factorial effecis. In general,
H @ Effect due to factor X is insignificant,®
4]
against,
H : Factor X shows significant effect.

This is H is tested, with the test statistic

213

which follows F(l,v}), under H . Where v represents d.f.
)

corrosponding to error 5.85. We follow the usual criteria to make

the decision.

The précedure of getting the factorial effect totals and sum
aof squares due to main effects and interaction is laborious. For
‘this,Yates (1937) developed a technique of getting factorial eff-
ect totals and 8.S5. due to factorial effects. It is known as,
‘Yates Algorithm’ or "Yates prcceduré' .

n
We discuss below Yates alcorithmfor 2 ~factorial experi-

ment (John —- 1971).

Yates Algorithm

.

Following are the different steps involved in it.

Step - 1 3 Write all the treatment combinations»in the standard
ordetr viz. (1), a, b, ab, ¢, ac, bc, abc - - - etc.,
in the first column.

Step -2 3+ Every column out of the remaining is partitioned into

two parts. Entries in the first part of the subsequ-

ent columns are obtained by “addition’. The entry in



Step -3 :

Step -4

Column 1
(1)
a
b

ab

ac
be

abec

the & th row of t-e (k+13 th column is the sum of
the (2i-1) th and (i) the entries in the K th column,
rye- 1 , -
for & 1 & 2
The entries in the second half are obtained by substr-—
n-1 )
action. The entry in (2 + i)th row in the (k+1)th

column is obtained by substracting (2i-1)th entry from
i
(21)th entry of K th column.

The first entry in (n+l)th column is the grand total G
and remaining entries are corrosponding contrast total
with treatment combinations in first column arranged

in standard order.

We consider 2 ~factorial experiment,

2 A 4
at(1l) (a+t (1)) (b+(1)) (a+(1))(b+1)(c+1)
b(a+(1)) c(a+ (1)) (b+(1)) (a=1) (b+1l) (c+l)
cla+(1)) {a-(1))(b+(1)) (atb) (b—1) (c+1)
be(at+t(l)) cla=(1))(b+(1)) (a—1) (b-1})} (ctl)
(a-(1)) (a+t(1)){(b-(1)) (a+1) (b+1) (c—1)
b(a-(1)) clat+t(1))(b-(1)) (a=1) (b+1) (c—1)
cla—-(1)) {a=(1))Y(b~(1)) (a+l) (b-1) (c—-1)
bec(a—-(1)) c{a-(1))(b-(1)) (a-1) (b—-1) (c-1)

Here symbols are used to represent the corrosponding totals.

We note that the entries in column “4th’, irrespective of divi-

sors are effects due to different factors. First entry is total

effect, denoted by 0§ and next subsequent are A, B, AR, T, AC, BC

and ARL effects respesztively.

In the similar way the Ya:tes procedure can be justified for

[y



"
2 —~factorial experiment.

Step % 1 The entries in (n+d)th column are obtained by sgquaring
the corrosponding entries in the (n+l)th column and
dividing by 2” and these entries are the sum of square
of coarrosponding cmntra%f. The sum of the entries in
this column is equal to the sum of squares of the
original observations.

The calculations may be error prone at step 5. To verify
whether the calculations are correct or incarrect we have fol;nw~
ing check procedure. Using the fact that® thelsum of the squares
of the entries in the (n+l)th column is En times the sum of squ-—
ares of the data ', (GQuenouille (1933%F) 5ug§e%ted a check.

2

Consider a EM ~—factorial axperiment; According to Quenou-
ille (1953%) réplace the first and third entries in th second
column by any numbers x and v . It is seen that entries in the
third column are ab+b+x, ab-h+y, ab+b-x and ab-b-y . And sum of
the entries in third column is 4ab, irrespective of the values
of the values of % and y. It is obvious that this check is
villnerable to errors of sign in the (n+l)th column. However,
Rayner (1967) has shown that this ‘check’ is true inspite of mis-—
takes in sign at any stage of the algorithm.

Below we give justification of Yates algorithm.

n

THE 3 -FAGIORIAL EXPERIMENTS
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n

In 3 -—-euperiment there are n factors each at 3 levels.
Instead of taking two levels if we take 3 levels the scope of the

experiment increases and it becomes more informative. Further,



for gquantitative levels we can’mtudy the pattern of change of
responce in better way with the increase of the levels of factors
When factorslare at three levels, then i1t is possible to invest-
igate whether the change is linear or gquadratic. From this point
of view it is better to have rore numhgr of levels. However,

the number of levels of factors cannot be increased too much as
the size of the experiment increases too rapidly with them.

”~y
S

3 ~FACTCRIAL EXFERIMENT

ot et She SAASD ot bese® Bemen e Sere e Peae et g e it i s Thoes et i et S W

Suppose there are two factors A and B each at three levels

We may use 0O, 1 and 2 as the level codes and treat them as the

el
<

three elements of moc 3. Faor 3 -experiment we have the follo-
wing treatment combirations.
o0, 01, 02, 16, 11, 12, 20, 21, 22.
or these may be denoted by
(LY, b y b, a ,abab.,a ,ab .ab .
1 2 N A I S 2 1. 22

or also by

abyab,ab,ab,ab,ab,ab,ab,atb .
00 o1 o2 10 11 12 20 21 22

The mathematical model for two factors each at three levels

may be given as

2 i - J 2 2 ij

E(Y) =FB+ > B X+ _ b x + >  » R xx -=-——(3.3.28)

0 i=0 10 1 j=0 oj 2 i=0 ji=0 ij 1 2

Where' x and x  are co-ordinates for the levels of factors

1 2 i
A and B respectively. Replacing # by the ith degree orthogonal
1
J
polynomial for 3 levels, u end % by the corrosponding orthog-
. i 2
orial polynomial v « we obtain

J




oo \ ion \ o j VN ol ]
ECy)=b ¢+ /_ ¢ duw +/_d v+ o/ dduV L= (F.3.29)
2 i 12 ] 1243

i

O,1,2.
i o= 0,1,2.

Consider a two factor factorial with

G = {0,1,27 and 6 = {0,1,2). The two Vander Monde matrics are
1 2

then —-—

,
:
i
1
i

] "'t : 1 1
H e ' i [
: 1 b ® : : 1 0 O !
: 11 11 : H H
t t &, i
{ t 4 ]
3 "~y ¥ t ]
¥ 8 ¥ t &
F = S § ® CoH pooo= ‘ 1 1 1 :
1 : L2 N : :
¥ + ¥ L]
L [} $ 4
] ‘o ¢ 3 H
v ] o i [ i
A R b : : 1 2 4 ;
: A iz H H
] $ 1] )
| I e ¥ L . ——
- and
¥ - "_} - 1] £ - - i
] el i t 1
A | b ® ; H 1 O O !
; 21 e : ; ;
i 1 ) t
% i i i
i “_'_i i 1 4
i hand i L 3
F = : 1 ® X ; = 1 1 1 H
“* ] e bl 1 3 i
£ i b e A i 1 H
i ) H i
] 3 i t
: 2 H : ;
| P b : : 1 2 4 i
1 i % t
b i . -1
on orthonormalising the columns of P and B as described

in definition 3.2.9 we obtain



The two parametric vectors for this case are —-

1

1

(¢),¢7,(?);
1

=}
1

are

X

Hence the design matrix

and parametric vector P

Ft

FI!

obtained as ——-

!

' i
1W_& Mobe Ho
.IIH /pwuld.. ¢
1 i
- [ o - 1l
L nrv
t | i
il - ier i
P A S

= MM
£z

X
e
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CAppling the least squares procedure to the model

Y = X B + £ ., Where X is in orthogonal form. We
F I F P »
aobtain the following 2est linear unbaised estimator (BLUE) for

B fram equation (3.3.29).
F-



Then we get

0 o
poy =
1 2
0_1
po =
12
ol
b =
12
1 o
pp =
12
11
b =
12

- 1 -1 1 1
B = [X X 1XY =XY . mme——— (2.3.30)
F PP F P FoF
]
y +y +y +y +y <ty . +y +y Fy
o0 01 02 10 11 12 20 21 22
A +A +A
0o 1 2
G
1
————— [ -y +vy =y *y =y *y 1
b 0o 02 10 12 20 22
1
————— [y +y *y =y =y =y 1
b 02 222 00 10 20
1
————— L g -58]
b 2 1
1
~~~~~ [ v -2y +y +y =2y +y +y -“2y +y ]
18 oo 01 02 10 11 12 20 21 Z2
i -
~~~~~ [ v +y +y =2y +y +y )+ty *y +y ]
18 0o 10 20 01 11 21 0z 12 2R
1
—————— [ s -2r + B 1
18 0 1 @
-1
————— [y +y =y -~y *y ty ]
& 0o 01 o2 20 21 22
1
————— [a —A 1
b 2 0
N -
————— Ly *v -y -y
2 oo 22 02 20



12 1
¢ $ = - L —y 2y -y +y ~2y +y ]
12 2 0o 01 2 20 2t 22
1 .
= e [y =Ry ty ) = (y -2y +y )1
2 20 21 22 0o ot 02
20 1 _
b = e Ly +y +y =2y =2y =Ry +y +y +y ]
12 18 0o 0L 0F 10 11 12 20 21 22
1
= LA 24 + ¢ i}
18 0 1 2 -
21 1
by = [ =y +y +2y =2y =~y +y ]
1 =2 12 oo o2 10 12 20 22
1
i Ly =y =2y =y )ty -y 1
12 02 oo 12 10 22 20
22 1 .
b ¢ = e Ly -2y +y -2y +4y -2y +y 2y +y ]
12 b6 on 01r Q2 10 11 12 2 21 22
1
T meme—— Ly =2y +y -Z(y -2y +y Yty =2y +y ]
6 00 01 02 10 11 12 20 =21 22
i .
The estimates of @ ¢ are orthogonal contrasts. The con-
12 ‘

i o
trasts corrosponding to @ @
12

quadratric contrast for A and

-
2 2

s and 8 into single degrees
A R
i
And @ (i >0 4 j
12

the interaction sum of sguares
The contrast corrosponding to

usually called the 1lin A& % lin

o J
and @ @ are the linear and
12

B oand give the subdivision of

of freedom as befaore -

¥ 0 ) give uWs subdivision of

into single degrees of freedom.

i 1. 12 21 22

by bp 40O and ¢'¢ are
12 T2 12 12

B, 1in A x guad R, qaad A x 1lin B

71



and quad A ¥ quad B contrasts regpegtivelyu A1l 4 d.f. for inter-
action can be accounted for in this way by associating single
d.f. tor each interaction eftfect.

A randomised block desion can be adopted for the experiment.
It there are r replications the analysis of variance for testi-
i) &hw hypothesas tha févtwriul effocts are not significant i

given as follows ——

.
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Table

-Factorial experiment in RED with r -«-replications

-
)
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ANOVA
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~ . -
2 2

Where S » 1s E.5. due tp replication, 8 is a S.9.
R AL
due to the linear contrast due to factor A and the other terms

have the similar meanirgs.
n

3 FACTORIAL EXFERIMENT

lLet the levels of factor be ordered in increasing order and
let Y be the observazion vector corrosponding to minimal comp-
F . .
lete factorial design. The n —factor arthogonal polynomial:

model is given by

E(y y=XxXpgp e (3.3.31)
F PR
Where the subscripts of Y are lexico graphically ordered.
F'
X =mMm@@M® - - - M e (3.3.32
F 1 2 n
-and
B = 00006 - - = B0 I il (3.3.33)
2 1 2 n
The matrix M and the vector O are the design matrix
i i

and parametric vector for the i th factor after left to right
orthonormalisation (or o%thogcnalisation). It follows that the
superscripts of the elements of B are also fexﬁ—cographically

ordered. The elements of B also called factorial effects, have
F;

oo o
traditionally named in the following manner @ ¢ - - ﬁ is ca-—
12 n
oo = o
lled the general mean or intercept. @ ¢ - - - p - - ¢ is
1 2 Q n

s 1= Q [w]
called the p th main effect of the q th factor, ¢ ¢ ¢ - ﬁ
_ 1 2 3=

n

is called the s th degree of factor F by s th degree of fac-
1 1 2 i i

tor F  interaction effect, and so on. Also, an effect ¢ ¢ -
2 i 2



- - & is said to be an k th order interaction if k expo-
n

nents out of i , i , = = i are non zero.
1 2 n

Yate's Algorithm "o Find Main Effects
' n

>

And Inte-actions For I ~Factorial .
n .
lLlike 2 -—factorial, Yates developed the same technique for
n .
A ~factorial experiment. Fmr it following are the different

steps --
Step 1 - Arrange the data in standard order 3 such as

(1})y & » & y b, ab,ab,b,ab,ab,c,
1 2 1 11 21, 2 1 2 22 1

AL o, a4 and sao on
11 2%

Step IT :~ Denote the entries in the k th column by k .
. » i
The entries in the (k+1l) th column fall into three groups. In

the first group the 1 th entry is Kk +k +k s 11 . In
. Ei Ei~-d Ti-2
the second group the 1 th entry is k -k $:  in the last qro-
; i EL-2
up the i th entry is Lk -2k +k .
3i 3i-1  Fi-2

Sor - S S0t 42 SO St LIS OB o AR 4ot Sty SO Semre S bt b Saren et

Let s =k +k +k o+ - - -
1t 1 4 7
S =k +k otk 4 - -~
2 2 5 8

Lt
£
o
s
~
-~

e L1

fi

further let X = 8§ +8 +§ and Y § -8 +3g .

12 3 i 2 3

The check is that X in any column should equal Y th prec-—



eding column.

n
For n factors each at 3 levels we get 3 number of trea-

tment combinations . As the number of factors increase there
will be more number of treatments. To handle the situations hav-
ing large number of treatments we will discuss in next section.

n

T™HE s ~FACTORIAL EXPERIMENT

B Ty

Suppose there are n factors A L A, - - - A , each at
1 2 n
n
5 levels. Clearly there are s treatment combinations carrying

% — 1 d.f. between them. In factorial experiment we partition
n
the treatment sum of sguares into s — 1 -—orthogonal contrasts

each possessing one d.f. corrosponding to the main effects and
n
interactions of n —factors. Fo- s ~factorial experiment the

main effects and interactions are defined as follows .

Definition (Z.3.1) MAINEFFEZT 1~
A con;ras;—ma;—;;~;;;;”;;M;;;;esent the main effect of the
1 th' factor if the coefficients in the linear function consti-
tuting the contrast are independant of the levels of factors
other than the factor ﬁ‘ H = 1, 2y = = 4+ N . It is clear
that therehare s — 1 co;trazts for each main effect of sn—fact~

orial experiment,

Definition (3.3.2 CINTERASTION -

A contrast may be said to represent a two-factor (or first
ordaer) interaction [Bose(l937)] ot ioth' oand 3 tht factors if

(a) The coefficients in the lingsar function constituting the co—



(b)

¢

ntrast are independent of the levels of factors other than

the levels of factors A and A and
i J
®

The contrast is orthogonal to any contrqst representing the

main effect of factors A and A .
: i J
And there are (s — 1) contrasts representing the two fac-
tor interaction of A and A .
i J

of

By inductién, after defining the (EFl) th order interaction

k factors, for k= 2, %, - - -~ r—1, we define the ‘r’ factors

interaction.

Definition :(3.3.3) : A conntrast is said to belongs to (r-1)th
order inteaction of r factors, i ,i - - - 1 if,

' 1 2 r
(a) The coefficients in the linear function constituting the

(b)

contrast are independent of the levels of factors other than

A s A 4 - = = £ s and
il i2 iy _
The contrast is orthogonal to all contrasts belonging to all

pas%ibie main effects and interaction of the A A ~ - AN
r il i ir
factors. And there are (s5-1) contrasts representing the

r ~factor interaction of factors A A - - - A .
il 42 iv
n
Here we have in all s -treatment combinations. For small
n

values of n and s we can test these s treatment combinations

either. in CRD, or in RRD or in L.S.D.

.

But if either n or s or both large, we will discuss anal-

yeis for such experiments in next section.



S 4 CONFOUNDING

When the number o factors n and/or the numbar of levels
of the factor increase. the total number of treatment combinatio-
ns becomes large. Obiviously, such an experiment reguires large
number of experimental wnits in each replication. Due to large
size, it may not be possible to ocbtain sufficient homogeneous
field for the complete replication, which results in increase in
unmanagable cost and error. To overcome this difficulty, Yates

I3

(1933) suggested a technique of ‘confounding °.

¢

By ‘confounding we mean the spalitting of a replicate into

desired number of incomplete blocks in such a way that certain
affect contrasts (main effect or interaction) are identical with
block compariﬁmﬁs. é factorial effect contrast which is mixed up
lwith block effects is called as ‘confounded effects . And a fa-
ctorial experiment containing confounded factorial effect is ter-
med as confounded expe-iment.

By sprlitting up -~eplication into different incomplete
blocks and allocating treatment combinations arbitrarly, at least
one interaction Or main effect is confounded. But, if we follow
some systematic proéedAFQ of allocation of treatment combinations
to the different incomplete blocks we can minimise the number of
confounded effects. With above description, below we p;;sent the

precise definition of confounding (Raktoe, Fedrer etc.(1981)).

fonsider a minimal complete factorial experiment. Let

E(Y ) = X R m————(E. 8. 1)
F S
With cor (Y ) =4 IN. , and rank of X  is less than or

{..J . F;«



equal to the number of colwns of X and B is & parametric
Fo
vector arising in a model.

Definition (3.4.1) : CONFOUNDING -
“M“WC;E“i;;;;;“;;;”;;“;;;H;Ig;;;;ca1ly independent lingar paramn-—
etric functions of B . For a given desing D , let ;>) be
1iﬂear unbaised estimator of Vl under the assumption that‘ ya’mo.
If 41‘:/: O and | E( é;) = %v+- c “HL} c=/= Q, then w,’ is
sa1d to be ‘confounded ‘with lkl.under design D, and it is refe-
rred as a “"confounded design®.
Note that the confounded design is a biased design forqn if
wa’“ 0. Further, the conounding is symmetrici; that is, if
Yﬁis confounded with \Fthdemr design D , then by applying
above definition of confounding, we can conclude that qﬁ.is con-
founded with ¢, unde- D .
As an illustration, consider the following situation in 2
factorial experiment.
Suppose eight tr=atment combinations are split up in to two
blocks, as ‘
Block I : Elock II
abc, a, b, c© ab, ac, bc, (1) .
The model as dis-ussed earlier can be written, with block

effects as-

Y = kel HE O H(KE) Y+ W) +H(EY) +(dRY)  +dte ———(3.4.2)
ijkl i j ij k ik ik ijk o ijkl

Where él is the effect due to 1 th block and all other terms
have same significances as discussed earlier.

Now the interaction ARBC is estimated by



~

4 ARC = 1 (abc + & + b +c¢c ) — 1 ( ab + ac + bc + (1) )
Then, it follows that

E (AABC) = (YY) + (oY) TREY) (ALY ~ (K RY) (A V) -
100 QLo OOl 111 110 1ol

(ARY) ~(pY) + 4(d) ~ & ) . = mmeeee (3.4.3)

011 OO0 1 2
Which is equivalent to

E ( £ ABC ) = Y +C 4§ .
1 2

Where, .
' Y, = treatment effect,
LS
= Rlock effect
and

C = L
Which implies, inzeraction ABC is confounded with block
effects.

TYPES OF CONFOUNDING  :—

et S s oo W B PSS 4o Sy St v AL AR oot ot HESS Ths HerE Sests S000r ete

When there are two or more replications, then question ari-
ses whether the same factorial effects are confounded in each
replication or different sets 0+ factorial effects are confounded
in different replications. Depending upon this %act there are
following two types of confounding.

1) Complete or total confounding :-—

- - — - "~ o " 212 40000 ot e S, Dot $o084 Son00 I WO AR YaTHS e Mok RS NEE R I S B AR WA ST i) Stk i Hire areie

N

If the same interaction is confounded in all replications,

\

the confounding is called as the ‘complete Confounding ° or

‘total confounding .



2) PFartial confounding -

If different interactions are confounded in different repli-
cations then confounding is-called a “partial confounding .

No intTormation will he available on totally cmn%ounded int—-
practions and pmrt;ml information will be available on partial ly

contounded interactions. It an mnteraction is confounded in v

1
replications and is unconfounded in r replications, the loss of
3
-
: 1
information on that interaction 1is e e e e .
ot
1 2

Many problems in factorial experiment theory turn out to
Hava a geometric, an algebric, or a combinatorial property. As a
consequence finite mathamaticalxatructures such as ‘groups’,
‘ringﬁ‘,~‘fieids', Frojective and Euclidean Geometrics ° have
5een used successfully in clarifying, extending and resolving
many issues related to factorial experiments.

In the second chapter we have already discussed ‘Finite Fie*4
lds (BGalois Fields)’', 'Frojectivs Geometric’ and 'Euclidean Geo-
metry ' and their properities. Their properities are very useful
in the construction of factorial designs.

As we have told earlier that due to the systematic arrangem-—
ent of treatment combinations to the diffefent blocks we can min-
'imise the confounded effects, so we allocate treatments scientif-
ically to blocks that is, we construct factorial designs.

In the constructicn of factorial experiments we take the
helps of ‘Galois Field ', Frojective Geometry ‘and "Euclidean

s

Geometry . We already have discussed about these in chapter two



It 1s clear that in symmetric factorial experiment s 1s a prime
or power of prime, so there exists G6GF(s), and for any integer n,
we have EG(n,s). A point in EGtn,s) denoted by (X  x ¥ ¢~ = ® )

1 2 3 n
is considered as identical to the treatment combination

Tt 458 4 — — % )} whe-e factor A is at x level, A at

1 2 n , 1 1 2 2
n
level, A at x level and so on. And the s treatment combina-
n n

tions in s ~factorial experiment can be represented by s —poin-
ts of EG(n,s).

Any (n—-1) ~flat of EG(n,s3) has an equation of the form

a +a ® +a u + - - - da oy = Q3 mmmee (3.4.4)

cand contains s points. By keeping & & 4 — - & constant
1 2 n

and varying a over the elements of GF(s), we generate s para-
0
llel (n—-1) ~-flats that have no common point and constituting a
pencil, denoted by P(a ,a , - — — a ) of (n-1) flats. This pen-—
: 1 2 n :
: n
cil, divides the s treatment combinations into s sets which

give rise to -1 independent cohtrasts. Hence the pencil

Fla ya o ~ -~ —- a ) is sald tc carry s—-1 d.f.
1 2z n '

We observe that the pencils P(a ,a 4, — — —,a 1} and
1 2 n

F(b 4b 4, =~ - -, b ) are identical‘if and only if b = P a .
1 2 n ) i Y

where p E GF(s) and P mfm O,
By the definitions of main effects and interactions [Bose

(1937)1 as discussed in previous section of this chapter, we can



say that the pencil F{a ,a 4 — — —,a )} represents the interac-

1 2 n
tion of 1 th, i th, - - - , i th factors if and only if a ,a
1 2 F i1 i2
-y a are non-zero and the other co-ordinates in the pencil

ir

P(a y@a 4 — = -y a )} are zero.
1 2 , n

The pencil (3.4.4) can be written as

a x +a x + - -~ - +a n = o .
11 22 n n 3
Where a ,a 4 - - - , a and of are the elements of GF(s).
1 2 _ n 3
When = O, we have
J
a x +ta u + - - ".+a o= 0,
11 22 nn
n—1
(n-1) —flat with S points.
Let
N (Q)
/. a ya, -, a ) be the sum of observations on
1 2 i
n-1 ‘
S treatment combinations in this flat. Similarly, for 9( = 1
. 3
we get,
P a n +ta x + ~ - - 4+a x = 1
11 22 non
n-1
have (n-1) ~flat with s points and denote sum of observ-
ations on these treatment combinations by
\ (1)
/..».. ((:\ Al 4™ R T = | ) .
1 2 n
Lastly —
\ (s—1)
VN - D - Y- S | denote the sum of
1 2 n

aobservations on the treatment combination in the (n—1) -flat



formed by the equation

11 22 ‘ n N
These sets of s equations are disjoint and each will have s

treatment combinations. Consider the contrast

R (0) \ (1)
L=1 /_(a sa = =4a )+ 1 /_(a,a,-==4a )+ == =
0 1 2 n | 1 2 n
\ (s—1)
- - o+ 1 /_(a 48 4 = = —5a ) .
s~ 1 102 n

This contrast belongs to the pencil F(a ;&8 4 -~ - ~,a )} and
‘ 1 2 n

there are (s—1) independent contrasts representing P(a ,a ,~ =—;a )
12 n

Hence each pencil has {s—1) d.f.

We shall prove the following theorem for different two

pencils,

Theorem 4.1 -~

If Fla-,a - = =,a ) and F(b ,b ,~ ~ —yb ) are two diffe-
1 2 n 1 2 n

erent pencils then the linear contrast corrosponding to them are

orthogonal.

Froof :-— Consider a pencil Fla ,a » - = —,a ) that is

- 1oz n

and the corrosponding contrast is

\ (0) A\ (1)
L =1 /_ (a ,&a 4 = — =& ) + 1 / (& 8 4 — ~s8 )
1 0 1 2 n 1 1 2 n

p=td



\ (s-1) \
- =+ 1 /(6 4a 4 — — ¢ & ) with /1 =0
51 r 2 n i
i = 0Q
And consider another pencil PF(b b . - - -, b ) which is
) n
different from F(a ,a , — — —,a ) with corrosponding contrast
1 2 n
;N , N ()
L =1 /_(b b y—-—==y b y+1 /_(b,b,~-==gb )+ -~
2 0 1 2 n 1 1 2 n
; \ (s-1)
- 1 / (b 1b g o= b )
s—1 1 2 n
with
_5-1
\ ’
/1 = Q .
i=0 i
_n
These two contrasts are orthogonal if, \ Y,
/. 1.1 =0 .
=040 i i
n—-1 N {(0)
There are s terms in /_ (a & 4, — — —, & ) with coeff-
1 2 n
n—2
icient 1 and out of these only 5 terms are in
Q
N n-2
/_ (b b 4 - - -4 b ) . that is we have (n-2) —-flat with s
1 2 n ‘
points in
(o
/_ (b ,b 4 - = =4, b ) I
1 =2 n
n—-2
Similarly s | points are common in
(o) | (1)
/.o (@ qa 4 = - -y a ) and /_ (b 4 b, ===, b )
102 n 12 n
n*_‘"\

and so on. Thus the 5 points



L O B S T N B are disteribuled: in
1 2 n ‘
b x +b x + — - — +b % = o 3
11 = =2 nn i
A =01, 20— - -y sl
i

Hence the sum of products of coefficients corrosponding to

\ (Q)
/_(a 4a 4 — = =, a ) with the coefficients corrosponding
i 2 3]
My e - ’ : —
\ (o) . % (1) : \ (s—1)
/. (b 4b 4, = — —, b Y J.(b 4b 4~ —y b Yo = —x/ (Db b —s+b )
1 2 n 1 2 r 1 2 r

is egual to

n-2 ’ / Y 7
-3 (11 + 1 1+ 11 + = -~ 11 )
00 01 Q02 0 -1
which is equal to
n-2 ' i F i
5 1 (1 +1 4+ - = - + 1 y = 0
O O 1 s5-1

Similarly the sum of products of coefficients corrosponding

to \ (1)
/_(a ;a 4 -~ —y a ) is
'y 2 n

which is equal to zerc .

And same is true faor other contrasts. Which implies the sum
of products of coefficients in two contrasts is zero. Hence the
two different pencils are orthogonal to each othér.

Using these properities we give construction of symmetric

factorials in the next section.



Z.4.1 CONFOUNDING IN s ~FACTORIALS THROUGH PENCILS .

The ideas of canfounding through pencils were first introd-
uwced by Bose and Kishen (1940) and later improved by Bose (1947)
Constructed designs are given by Cochran and Cox (19%7) and

Kitagawa and Nitone (1953). Pethod due to Rose (1947) has been
n
discussed here. In the confounding of s -—factorial experiment

constant block size must be necessarily a power of s ° and we
' n b ’
say such an experiment as (5 » 8 ). It means , the total numb-
n . k
er of treatment combinations, % are arranged in ' s ° blocks
n—k n k

s 3

each of size 3 . To construct ( s ,5 } —factorial , we use
following steps. [Raghavrao (1971)1.

Step 1 &~ We first choose k independent pencils, such as

e Py P i where ,
1 2 ' k:
Fo= F(a A - Y 3 1= 1, 2, - - -,k .
i il iz in

Let

N v \

/__ il /_ iZ2 — - - /_ ik he flats belong-
ing to the independent pencils F F , - - -, F  respectively.

1 =2 k

These flats pass through & common (n-k) —flat \
/___ ll ’.125 - .”'qlk
Step 22 i~ We denote the treatment combinations on the (n—-k) -

o o P $0s kg oo o e o S

~flat hy \

/il 4, i2 4 - o -, Ak .
n .
In this way the totality of s treatment combinations will be
k. -
divided into s sets of the type
/_ il 4 12 - =~ 4 ik .



Step 35 - We form the ( il,iZ, — — =, ik ) th block with the

treatment combinations
( /_ il,i2, -~ ~ =, ik ) for
il, i2 4 = = = 4, ik = 04 1, 2, - = =, s-1 .Then it

can be verified that the d.f. carried by generalised pencils also

k
are confounded with s blocks. The pencils of the type
_k _k K
AY \ \
i=1 i i1 i=1 i i2 i=1 i in
Where E GF(s) , are called as ‘'Beneralised Fencils .

i
Further it can be shown that a block containing (0,0,— —,O)

treatment combination forms a group called the ‘inlablock sub-

.

group’ or ' key block °.

Step 4 :— Let (x % 4 — — —y ¥ } be a key block, From
******** 1 2 =3

this block, remaining blocks are generated. We can take

(x +y 5, % +y . — — — , ¥ +y ) as a second block
1 2 =1
where vy is a treatment combination not belonging to the key

block. Here addition of treatment combinations will be vector
addition where each component is in GF(s). If 2z is a treatment

combination not in the first and second blocks, the third block

can be taken as (¥ +z, ¥ +2, — — —, ¥ +z ) continuing in this
1 2 S -
: n b
way we can construct the whole replication plan of (8 ,s58 )

experiments. As an illustration of this method we consider the

faliowiﬂg example.
8 2
Example (3.4.1.1):— onsider the construction of (2 , 2 ) by

confounding the pencils F(1,1,1,0,0) andP(l,0,0,l,l).



S .
Step 1 - Here we have & = X2 total treatment combinations.

And pencils F(1l,1,1,0,0) (mwip(l,0,0,13l) are independent

pencils.

SGtep 2 - We divide Lhe 332 treatment combinations into 4 bloc—
ks sach of size 8 . 6 generalised pencil Flo,1,1,1,1) is
also  confounded. The key block is constituted by the solutions

of following two simultaneous equations .

R = O

FO Kok on = Q.
1 4 o)
Step J:~ Hence the cortents of key block is 00000, 01100, Q0011

[

10110,‘10101, 11010, 31001, O1111,

The remaining three blocks are Qbﬁained from the key block
as we have discussed earlier. Hence the complete plan of entire
replication is given as

Table No. Z.4.1.1

ktey Rlock Block 2 Rlock 3 Hlock 4
00000 00 100 00001 1 000 Q
01100 01 000 011 01 11100
o001 1 O o0 1 1 1 Q0010 1 0011
10110 1 0010 101 14 a0 110
i 01 0 1 1 O G O 1 1 O 1 O Q OO0 1 0 1
1 1010 11110 11011 01 010
11001 11101 11000 a1 001
1 111 01011 01 110 11111,
Remark For GF(2), it is clear that addition and multiplication
“““““““““““ . N k.

operations are identical. So ( 2 , 2 ) type of experiment can
be constructed in some diffrent style. Here ‘key block ' is con-
stituted by the treatment combinations having an ‘even ' number

aof symbols in common with each interaction F , P, - - ~y P .



The block foarm a group wunder the binary operation, that square of

subject to the restriction any symbol will be replaced by 1 .

e

et ( = ,'r s T T } be a key block, which is taken
1 e -

as block 1. If y is a treatment combination not belonging to

black 1,then the block 2 will be obtained as (8 yx
1 2

Y =a¥ ¥ )
Where the square of any symbole is replaced by 1. IF z is a tre-

el
o

atment combination not occuring in first two blocks, then the

third block will be (% =z, « z,' S £ =z ). where the square
- ~ ‘ :

of any symbol is replaied b; 1. By thehsimilar way we can gene-

rate Ek blocks of replication. Here not only F PV, - —~4 P

pencils are confounded but also the interactions oétaiied by “

multiplying P , FP 4 ~ — =, F in all possible ways and replac-
1 2 k
ing the square of any symbol by one, are also confounded.

"Example 3.4.1.2:~ Let us construct (2 . 2 ) experimentﬁ with

factors A, B, C, D and E by confounding the pencils ABRC and

ADE . When we confound above two interactions automatically
2
"ABRC . ADE = ABRCDE=ECDE is also confounded.

Here key block is
({1}, acd, ace, de, abd, abe, bcde, bc )
From this key block , the remaining 3 blocks are obtained by

multiplying a, b and ab .



Table No. J.4.1.2.

Block ‘ Constituents of the Black

FKey block ( 1, acd, ace, de, abd, abe, bcde, bc )
2 , { a, cd, ce, ade, hd, be, abcde, abc )
A . ( b, abad, abce, bde, ad, ae, cde, ¢ )
4 { ab, bcd, bre, abde, d, e, acde, ac )

or, the key blok is obtained by the solutions aof following two

resimulations egquation

LA A = 0
1 & s
and
WOk ook o) = 0 .
1 4 3

Hence the constitutents of the key block are given as below,
ey Blochk -
{ 00000, 01100, 00011, 10110, 10161, 11010, 11001, 01111 )

The remaining three blocks are obtained from the key block
as discussed earlier.

Table No 32.4.1.73%.

key Block Block 2 BElock 3 Elock 4
O OO Q0 OO 1 00 . OO OO0 1 10000
01100 01000 01101 11100
o001 1 OO0 1 1 1 Q0010 1 001 1
1 0110 ' 1 00 O 1 1 01 0 1 00110
190 101" 1 00 0 1 - 1 01 ¢ @ O 0 1 01
11 1 0 1 1 1 10 11 01 1 031 010
11001 ﬁ 1110 1 11000 01001
0O 1 1 11 . O 1 a1 1 L 110 111113

This above discussed method is due to Bose (1947). Das
(19&64) developed a some what alternative method to the above

method of confounding. DRas’ s method incorporates all the prin-



ciples of Bose s method but ditferes in procedure. In the method

of Bose the the interaztions for confounding are chosen first and
' ’
the black contents follow. In the method of Das the block conte-

ents are choosen first and the interactions confounded follow
therefrom. The method 5f Das has been described in detail in the

book due to Das and Gi-i (1979).

IR CONFOUNDING WITH THE HELP OF PSEUDOFACTORS .
n m .
For s factorial experiment , where s =p , p is a prime
mr
and m * 1 can be considered as p ~factorizl experiment in m.n

psedofactors. Hence, sonfounding in such experiment can be made
k. mn—k
to accommodate the exp2riment in p blocks of p plots.

CAfter construction, the levels of pseudofactors are replaced by

appropriate levels of original factors.

e
il

Example 3.4.2.1:- Ae consider a 4 experiment with two factors

F and K each at four levels, 0, 1, 2 and Z. "We can construct
such types of designs with the help of psedofactors. Identify

the four levels O, 1, 2, and 3 of factor with treatment combinat-
-

ions OC, 01, 10 and 11 aof & -—factorial experiment in two pseudo-
factors A and B. Angd levels O, 1, 2, and 3 with factor kK are

identified with the treatment combinations 00, 01, 10 and 11 of
“x . -y

2 ~euperiment in two pseudofactors € and D. Hence 4 experiment
4
can be taken as ldentical with 2 —experiment with four psedofac—
tors each at levels teho viz., O & 1 .
Suppose interaction ARCD is confounded, then the contents

of a key block is obteined by solving equation

wokowo ok i s ()
1 2 3 4



Hence we get key block as -
(0000, 0011, 0101, 0110, 1010, 1100, 1001, 1111)
The second block is obtained in the usual way.
The required plan is given as,

Table No.3.4.2.1 .

Block Conatituents of the Block

Akt Suote Bhemt 1iAes b Phins SeArp g o At Ffas e ShrsS YRS S (he et s v fomet G T ety St oo S S g Tk bhess o Sores St

1 ( 0000, 0OLl, 0101, 0110, 1010, 1100, 1001, 1111 )
& - 0001, GOLO, 0100, Olll, 101L, 1101, 1000, 1110 )
Replacing these t-eatment combinations by the treatment

combinations in the original factors, F and k, we get the follo-

wing :
Table N01 2.4.2.2
Elock Constituents of the Rlock
1 ( 20, O3, 11, 12, 22, 20, 21, %)
2 ( 21, 02, 10, 13, 23, 31, 20, 32 ).

We have discussed the method of confounding to reduce the
size of block. There is also another method in which only a fra-—
ction of the treatment combinations are experimented. BSuch a
method is called as ‘Fractional Replication ‘. In the next sec-
tion we will discuss in detail about & fractional replication’,

3.9 1~  FRACTIONAL FACTORIALS

wﬁgn there are large number of factors, even each at two
S levels, lthere will be large number of treatment combinations.
For example, with 8 factors each at 2 levels, we will have in
8
all 2 = 28&46 treatmer bt combinations.  In such cases 1t is impo-

%



ssible to carry out exseriment with entire replication because
the expenditure may go beywﬁnd the budget or in some cases non-
wxpwwimwhtal @rror, @¢.g. the labelling of treatments may be
changed, the plots may be wrongly numbered etc. may enter. For
such cases Finney (194%9) proposed a method in which only a fract-—
ron of total number of treatment combinations are experimented.
Such a type of factorial experiment with a fraction of total num-
ber of treatments is called as, 'Fractional ?actorials Coor TFra-
ctional Replication’. Flackett and Burman (1946) studied the
prablem in more detail and gave different Tractional factorials.
Then pointed out their wbtility in physical and industrial resea-
reh, since then, fractional factorials have Tfound many applicat-
ions, particularly in industrial and research development. In
fractional factorial the sire of the experiment is reduced, how-
-ever information on certain higher order interaction is lost. The
main problem of fractional factorial is the suitable choice of
non—-astimable interaction used to select a fraction. Such non-
estimable interactions uWsed for the selection of treatment combi-
nations are called as , ‘defining contrasts ~ or ‘“lidentity rela-
tion . They are equated with I .

After selecting a fraction of treatment combinations one can
easily show that any contrast of selected treatment combinations,
in the fraction represents more than one effects or interactions.
Such effects ér interactions which are represented by same cont-
rast of treatment combinations are called as, ‘alias ‘. By assu-
ming, other interactions in the alias are negligible when compar-

ed with one, of them in same alias, the interaction under interest

4; "'A‘l‘



is estimated by the contrast with the selected treatment combina-
tions. The salient features of fractional factorial are given as

below.
n ' , 1
1. 7The fraction of s -experiment is of the order ——r . It is

k

s
1 n n—k
written as -—-—-~(8 ]} = g .
s
2. The fraction consists of the key block 'of the confounded
N ' n-—k
factorial s in blocks of size s « Gbtained by confounding
N .
s - 1
——————— interactions .
s — 1
k.
=N |
3. These e irteractions are called as 'defining contra-—
s - 1

sts’. They are written in a rew begining with I -and separeted

by equality sign.

4. From the defining contrast only one block is obtained so they
are not estimable.

We 1llustrate these ideas wilh following erxample:

Consider a 2 Factorial experiment in which only the 4

treatment combination viz. a, b, ¢ and abc are tested. This is

o
)

half of the complete replicate of 2 facturial experiment with

these treatment combiration the main effect of A , is giveh by

A = -—— [ ¢t abc ) + (a)~-(b)~-(c) ] ——=(3.3.1)

-y
L

Similarly the main ef-ects of R and C are given. Note that f,
R and C contrasts are mutually orthogonal. Thus we can estimate
there three main effects independeritly.

Mleo for the above sot of treatment combinations, the intor-

action BC, is given by



1
BC = ——— [ (abc) + (&) —~ (b)Y —- (c) 1  —=———- T.8.2

o
e

It is seen that in the equatién (3.53.1) and (3.3.2) the right
hand sides are same. Hence the main effect A and interaction
BC  are confounded with the Bémm quantity. %o A and BC are
aliases.. Also for tre saﬁe aset of treatﬁents we have R and C
are alias with AC and AR respecltively, and further B is cmnfouna—
ed with AC aAd C is cenfounded with AR .
If 8 treatment combinations are available, then interac-
tion ARBRC would be computed from
1 .
ARC = ——— [(abc)+(a)+(b)+(c)—(ab)—-(ac)—(bc)~(1)] ————(Z.5.3)
g .
The tréatment combinations which we have used earlier are from
CARC contrast which have positive signs. That is, ARC is used to
split up the factorial into two half replications. 8o ARC is a
detining contrast or rdentity relation. Hence we can write ——
I = nRrRC ‘
S0 by using a half replicate we loose one factorial effect,
ABC entirely and ea;h main’effectsbare get mixed up with one of

the two —-factor interactions. With the ARC as defining contrast

we have following three sets of alias

\
6 o= RC
B = AC
and » .
Co= AR .

. These are obtain=ad from the defining contrast by multiplying
both sides with main zffect and replacing the square of a symbol

by 1 .




Remark :— The experiment could have been conducted with treatment
combination (1), ab, ac, and bc from the remaining half. In
that case also ABRC is confounded with replicates and main

effects are get mixed up with any of the 2 factor interactions.

And alias sets are given on next page -—-—

i

A = - BC B o= - AaC C = — AF

B RC i AT = AR .
:‘:“
Erample i S.9.2 1~ Consider a halt replicate of a 2 —factorial

Suppose a five factor interaction "ABCDE’ is chosen as defining
contrast., Hence ,
I = AR LCDE

Now we can write down the alias of any other factorial effe-

o
e

ct. For instance, the alias of A is A BCDE i.e. RCDE .
The complete set of alias is given as below -
Defining contrast,

I=ARCDE

Main effect Alias Twofactor Interaction Alias

2] B ZDE A B CDE

‘B A ZDE , A C BEDE

< A B D ke | A D B E

D AR CE - -

E A®BCD D E AR C
From this it is seen that, every main effect has four-factor

interaction as alias, and every two-factor interaction has three
factor interaction as alias. No main effect is mixed up with
2 —factar interaction.. So , to get information on main effects

and two-factor interactions, their alias should contain interact-—



1ons of at least three factors. In such a case the variation due
to alias group can be cmngidered'tm be due to the main effect or
two facltor anteraction. MAnd variation due to higher order inter-—
actions is pulled with error. To get such a type of alias group
our defining contrasts do not include any interaction with less
than five‘factors. This serves as griterimn far selecting an

appropriate defining contrasts. Helow we discuss in general

1 n
--—  regplicate of 2 -—factorial experiments.
k
2
1 oo ;
—-~~-  REFLICATE OF = 2 -FOCTORIAL EXFPERIMENTS
k '
2
N - k .
Consider a problen of construction of 2 fraction of a
n n
2 factorial experiment. Out of 2 - 1 total main effects' and
k. .
interactions, 2 -~ 1 will be confounded with means and remaining
n’ k k.
2 - 2 will be mutually mixed up in sets of 2 .

To construct such a design, first we select k  independent

interactions X X 4 ~— ~ —, X such that none of them is obtai-
1 2 k

nable from the others by multiplication and none of them should
belong in the same alias set. Then we select treatment combina-
tions of the same sign as Lthe control, in the above interactions.

Then the generalised nteractions of X ,X 4 = = =4 X willvalso
12 k

be confounded with mean. We have identity relation as,

f om X, owm X s X X oz X om XX o= X

1 2 12 A 1 X 2% 12

X = X X X etc.

-

2

From these defining contrasts and alias sets we select a
i 3 n n—k

2

2 fraction of 2 . Such an experiment is denoted by 2 .

1l
S



To get the clear ildea about above discussion we consider an

example.

Example 23 3Z.85.3 :— Consider an experiment with 8 factors A, E,
g:g:“;:“;:“g:“;“‘;aCh at two levels. And suppose we wish to have
1 a3 &
——= th replication of 2 . It is denoted by 2 . Here we use
Dily &4 treatment combinations out of 256 . To save main—effe-
cte and 2-factor interactions we choose defining contrast conta-
ining at least five letters. Let ABCDE and ARFGH are two indepe-
ndent defining contrasts and generalised one is CDEFGH . Hence,
I =ABCDE =ARRFGH=CDEFGH .,
Suppose we wish to arrange these &4 treatment combinations
in 4 blocks each of size 16 . For this we have to confound

other three interactions of order at least two, with blocks.

Hence,
) I =ABCDE=nBFGH=0DEFIGH

ACF=BDEF =BECGH=ADESGH
BDG=ACEG=ADEHMS=EREUCEFH

ARCDRDFG=EFG=0CDH=AEREH.

The intrablock sub-group is given as  ~—-—

(1) ach \ aef cefh
bdh ebcd abdefh bocdefth
beg abcegh abfg hofgh
degh acdeq adfgh " cdfg .

From this,intrablock subgroup taking as block I the remain-

ingblocks can be obtained in the usual way on the next page -.



Table No. 3.8.1

1 . 1]
= Replicate 0f 2 Experiment In 4 Rlocks
4 b

Block I Block II Block III. Block IV
(1) ab ce de
ach ‘beh Caeh acdeh
aef bef _ act adf
cefh abcefh fh acdfh
bdh adh bodhe bch
abed cd abde abce
abdefh defh ‘abcdfh abfh
bcdefth acdef bdf ' bef
bcgh aeg bcg bdg
abcegh - cegh abgh abcdgh
abfg fg g abocefg abdefg
bofgh acfgh hetgh bedefgh
dagh “abdegh cdh ah
acdeq bodeg adg acqg
adfgh bdfgh acdefgh ' aefgh
cdfg s abecdfg ety : cefg .

The &3 contrasts are obtained by Yates procedure and these are
tested usiﬁg the analysis of variance. Tha analysis may be perfor-—
med by dropping letters ‘&’ and “f° from the treatment combina-
tions. Then we have to rename some of of the treatment combinat-
ions involving B, C, D, E, G, H factors by using identity
rélatimn I = — ARCHDE = -~ ARFEH = CDEFGH .

The structure of analysis of variance is given as below -

Table No. 2.5.2 .

Sources of Variation

L]

1

: d.*f.

)

)

]

1
Blocks : 5
Main effects : a8
2 ~Factor intaractions ' 28
Error ' 24
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Total : b7



To perform an experiment with such large sized blocks leads
to increase in experimental error. So we try to reduce the size
of blocks.

Suppose wish to have 8 blocks, each of size 8 . Constru-
ction of such an edperiment is not simple and some of the 2 —~fa-—
ctor interactions are confounded, with blocks. Let, we confound
the following interactions with bloocks.

ACK = BDEF = BCOGH = ADEGH

BDG = ACEG = ADFG = BCEFH .
ABCDFG = EFE = CDH =

ABREHM

 CDF = AREF

ARCDH

i

EGH
AD = BCE = EDFGH = ACEFGH
BCFG = ADEFE m\ﬁCH = BDEH
ARG = CDEG = FH = ABCDEFH .

The plan is given as below -

Table Nao. 2.5.3% .

1 8
-—— Replicate 2f 2 Design In 8 Rlocks Of Size 8
4

1 11 111 Iy v VI VII VIII
(1) ab ce de fg gh act bdh
abed cd abde aboe abcdfg abcdgh bdf ach
cefh abcefh fh cdfh ceqgh cefg aeh bodef
abdefh defh abcdfh abfh abdegh abdefg acdeh aef
beqg aeqg bcg bdqg bef beh ‘ abcefg degh
acdeq bedeg adg acq acdef acdeh defg abcegh
bafgh acfgh befch bedefgh boh bef abgh cdfg
adfgh bdfgh acdefgh aefgh adh adf cdgh abfg .

The analysis of variance may be performed with 8 blocks each
of size 16&6, by dropp:ing letters, namely, a and f . Using the
Yates procedure we find effects. In the anglysié some of the

interactions are renamed according to the identity

301



I = — ABCDE = - ABFGH = CDEFGH .
The structure of analysis of variance will be

Table No. 2.35.4 .

Sources of Variation . d.f.
Interaction AL, FH H s
Block error H pu
Main effects : 8
2 —-Factor interactions i 2

Error {(with in blocks) : 22
H
Total H &3

The two confounded interactions will be estimated with a
variance equal to (block error mean square/léd ) and all the main
effects and the other interactions with variance equal to (within

block error mean square / 1& ) .

. 3 n
5 REFLICATION OF s FACTORIAL EXFERIMENTS:
~k n n—k
A s replicate of an s experiment is denoted by s .
—¥.
To select s replicata, we first select k independent pencils
P (a 4 a s ™ T = 5 A& ) (1= 1, 2 - - —~y k) such that none
il i2 in

is obtained from the others and will not result in two pencils

in the same alias set. Then we select the treatment combinations
occuring on the same flat as the clear that they occur on the
same flat in each of the generalised interactions of pencil

Fta & s < =y & )y {1 =1, 2, - - =, k ) the defining
11 i2 in-

contrast is , then

I=F(>_ la > [-a s o= =yr_la )



Where , 1( € GF(s) .

g - 1
and there will be ( == ) pencils in the defining contrast.
5 —~ 1 \
P n-—-F
5 - 1 , g - 1
The remaining { ————— ) pencils will be divided into ( ———=—-— )
5 — 1 s — 1

alias saets of & pencile. The alias set of the pencil

F(b sb , — — =y b ) contrasts of pencils representing generali-

1 2 n k
( s — 1)
sed interactions of it with each of the ---—---- pencils of the
{ s —- 1)

defining contrast.
1 ]
Example 3.5.% . 1= We construct a -—-— replicate of 3 experiment

.- -

ot

based on the defining contrast
I =ABCDE

Here out of 243 possible treatment combinations we use only

g1,
We have the following alias sets, with respect to defining
contrast
I =A4RBCDE
A=AkKCDE=RERCDE
222
A% = A BRCDE=CDE
AE = ACDE=RCDE .
If we confound ARC with blocks, we will also confound
2 2 2
ARC (ARCDE) = ABCD E and ARC (ARCDE) = DE , Here two factor

-y
abe

interaction is confounded. It we cunfbuﬁd ARC with blocks we



~ oy ey -
e ™ - .

will also confound AR (MHCDE) =0 (AR E. and GD“E and these
then constitute a suitahle‘%yﬁtam of confounding for blocks of

27 plotsr And to use blocks of 9 plots it is necessary to confOﬁ
und at least one 2 ~factor interaction. The following may he

confounded with blocks to give this result

& 22 2 2
ARC = ARD E = CD E
2 22 a2
AR D = AC DE = RC E
2 2 2 2
ACD = Al CE = BD E
e I

A -~

BCD = ARB.C D E = AE .

The intrablock subgroup consists of the treatment combina-

.tions which satisfy -

H
i
LA O R T S O = O
1 2 £ 4 5 :
L]
$

w o+ o® o+ 2 = O | mod 3.
1 - - :
¥
i
® o+ 2+ n = O
1 2 4 H
3
PP |

These treatment combinations form a group.
The intra block subgroup is as follows 3

b ] hed
22 2 2

{(1),acd e ,a ¢ de ,bcd, abc @ , a bd e, b c d , ab de ,a b ce }1]

e
-

B3

-, - e . -
w = : 2 2 2

The other blocks a%e abtained bymultiplying this block by

- ) L I T -
2 : 2

- o
an <L ' L [ S A &

ce, ce ,de,de ,cde ,cd,cd , cde .

The multiplication is ordinary multiplication with conditions

L
L
d
l'_:q

that d =& = 1 .

bY
i
o
it
n
]



The plan is given as the

Table No.o S.5.9

1 : o)
-=— Replicate of 5% Design In 9 Dblocks of sire 9 .

-
—t
L ] L ] - “3 3 3 -3 - 2 a0
- . ; >

.
Block 1 ~(1),acd e

3 ]
A A A L "I A P A

& € de,bcd,abc e ya bd ey,b ¢ d ,ab de ,a b ce

25 ) -~y ~y s oy ‘o oy L T
LN C N o W Wil W 3 - -

Elock 2 -~ ¢ e,ad ,a cde .bde,abc,a bc d e ,b cd eyab ¢ d,a b c

e o > e e "y ~> DR B T DD
Y wa  an. . e e e o R . RN 4

Block 3 ~-~ ce ,ac d e, & d ,bc de ,abe,a bcd ,b d e ,ab de,a b c

]
ton

-3 e o e - - e - A L)
e P . e foos e e o . a e . £ E- -

Block 4 - d eyacd,a ¢ e ,bce,abc d ;a bde b ¢ de,ab ,a b cd e
2

-y oy - -y o oy M R
e - o E o - e a— . <o A

Block & -~ de ,ace,a ¢ d ,bocd @ ,abc e,a byb ¢ ¢ ,ab d e,a b cd

-J

s,
2 2

o
A

Yoy e ~ e - sy s ~y 5o L e
PO aS i . .l e i - Epa o al WS

Block 6 — c d e ,ade, a c,be ,abce,a bc dyb cde ,ab ¢ e,a b d

£
. - e 3 3 o e > b I L B o
2 2 £ =% atl ' -l S e A L an

Block 7 — ¢ dy,ae ,a cd e,bd ,abcde ,a bc e,b c,ab ¢ d e ,a b de

” -y L) 2 o e - i
e i s “ o . . . TN

+3
3

Mo
W e

r3

2
-

Block 8 — cd ,ac de ,a e.bc ,abd e a bcde,b dy,ab e ,a b c d =&

p
3
3

. T ol -~ - ol e T ] ’".\
L Ly e < - e B L L

Block 9 - cde,ac ,a d =2 ,bc d a,abd,ahbce‘,b&e,ab d .a b ¢ de

The technique of fractional factorials has been made by
Addelman (1963), Chakarbarti (17361}, Mukérjee (1980), Nishii
(1981), Bose (1982). Adhikari and Das (1986), a@ang the others.
For plans of standard fractional replicate designs we refer
Brownlee, kKelly and lLovarine (1948): Connor and Zelen (1959) 3
Cochran and Cox (195%7) ; Kitaggawa and Mitome (1983) and publi-
cation by the National Bdreu‘mf standars.

Upto here we have considered the symmebric factorial exper-
iments.  In the next chapter we will discuss about the , "asymm-

eltric experiments * . XXX XX

[



