
CHAPTER-I
INTRODUCTION. .

In Section 1 of this chapter, the problem of accept­
ance sampling is described. In section 2 an example of 
each of the variable sampling plans in whcih the effective 
sample size is random and non-random is given. Section 3 
deals with the concept of operating characteristic function 
of a single sampling plan and some related definitions.
In section 4 the OC function of a single sampling plan by 
attributes Is derived. These are compared with single 
sampling plans by variables through out this dissertation. 
The single sampling plan by variables is derived in case 
of uniform distribution and minimum sample size required 
for the OC function to pass through the given producer’s 
and consumer's risk points is computed. In section 5 these 
plans are compared with the attribute plan. In the last 
section a brief description of the remaining chapters is 
given.
1.1 The problem of acceptance sampling :

Suppose that a lot of N items is given. The lot is 
to be accepted or rejected, according as whether it is of 
satisfactory quality or not. Suppose that the quality of 
the lot is defined as the proportion defective in the lot 
That is, if © denotes the lot quality, © is given by

© = D/N
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where, D is the number of defectives in the lot.

Suppose that a lot is considered to be of satisfactory 
quality if its quality © is less than or equal to ©Q, a
given number. Naturally ©Q should be a number such that
0 <_ © < 0*5. If © is known for a given lot,one can 
accept the lot if 3 < ©Q and reject if G > ©Q. But, for 
a given lot, © is unknown and varies from lot to lot. 
However, it is known that © takes one of the values in the
set[°- R’!> ••• *1 • In order to know the quality of

the lot and to take a decision, one can inspect all the 
items in the lot. This procedure of inspecting all the 
items in the lot is called 100 percent inspection or 
screening of the lot.

However, 100 percent inspection of a lot may not be 
possible or may not be desirable because it is time consu­
ming, costly and may not even guarantee perfect inspection 
of each item, which implies that the quality of the lot 
is wrongly assessed. Also, in some cases inspection may 
be destructive.

So, the alternative is to inspect only a part of the 
lot which is called sampling inspection. In this proce­
dure only some items from the lot are inspected. The 
quality of the lot is estimated by the proportion defec­
tive found in the sample. Based on this proportion the 
lot is either accepted or rejected as the proportion of 
defective in the sample is ’small* or ’large*.
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The problem is to decide about the number of items 

to be inspected and about the erfcteria of acceptance or 
rejection. Naturally it may not be possible to inspect 
many items, because of the reasons mentioned above. Also 
if too less items are inspected the ftaction defective in 
the sample may not be a good estimate of the true lot 
quality ©. Thus the decision to accept or reject a lot 
depends on many quantities in general and sample size in 
particular.

Once it is decided to use the sampling inspection, 
one has to specify,
i) the number of items •'n'1 to be selected from the lot. 

This number is called the sample size.
ii) the method of selecting the n items from the lot, 

that is with replacement or without replacement, 
whether all the n items are selected at a time or 
in stages.

iii) whether to inspect all the n items in the sample and 
take a decision or to take a decision even before all 
the n items in the sample are inspected. In the 
second case the procedure is called curtailed inspection.

iv) the criteria for accepting or rejecting the lot.
Any specification of (i) to (iv) above is called a 
sampling plan.
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Sampling plans may be broadly classified as sampling 

plans by attributes and sampling plans by variables. In 
either case each item is classified as good or defective, 
in order to determine the quality of the lot. However if 
the criteria of accepting or rejecting the lot is in terms 
of fraction defective in the sample then, the plan is ca­
lled a sampling plan by attributes, otherwise the plan is 
called a sampling plan by variables.

Now, we consider an example to illustrate the differ­
ence between an attribute plan and a variable plan.
Example 1.1 : Suppose that it is possible to measure each 
item in the lot on a certain scale. The measurement on 
items vary from each other and is assumed to be a random 
variable X. An item is considered to be defective, if the 
measurement X on it is less than or equal to L ( a given 
number). The quality of the lot is defined as the prop­
ortion of defectives in the lot, that is the proportion of 
items in the lot whose measurements are less than or equal 
to L.

In order to decide whether the lot is of acceptable 
quality or not, a sample of size n items is taken from the 
lot, and each item is measured.

Suppose the measurements are X^,X2>•.,Xn. Define the
variable

Zi~
if X. < L 
if X± > L0
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for i = l,2,..,n. Note that the represents whether the 
i-th item is defective or not.

Now suppose the following two criteria are available 
for accepting or rejecting the lot.
Criteria 1 : Accept the lot if and nly if

2 < C and

Criteria 2 j Accept the lot if and only if
X < C*

where C and C* are given constants.
In the first case the criteria is in terms of frac­

tion defective in the sample, so It is an attribute samp* 
ling plan. The second one uses the actual measurements 
on the items in the sample. It is an example of a varia­
ble plan.

Now, we shall consider two examples where the use of 
attribute plan is appropriate or convenient.
Example 1.2 : Suppose that a lot consisting of N glass 
sheets is given. Here a glass sheet is considered to be 
defective or non-defective according as it is damaged or 
not. Since the state of the glass sheet can be described 
only by an attribute, we use an attribute plan.
Example 1.3 s Now, suppose that a lot of N items is given. 
Suppose that the quality of an item is in terms of its len­
gth and diameter. If any of the measurements deviates from 
the standard specified, then the item is ^aid to be
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defective. When there is more than one character to be 
taken into account, it is convenient to classify the 
item as defective or good according as any one or more of 
the measurements lie outside the standards specified or 
not and use an attribute plan.

Once it is decided to use either an attribute plan 
or a variable plan, the number of items inspected in the 
sample to reach a decision about the lot is called the 
effective sample size and is denote by Si

Usually, S is a random variable. If S is degenerate, 
the sampling plan i^s called a single sampling plan. The 
expected value of S denoted by E(S ) is called the average 
sample number (ASN). This is a function of lot quality 9,

S could be a random variable either because (i) Sam­
pling inspection is curtailed (ii) a multistage sampling 
plan is used or (iii) a sequential sampling plan is used. 
In the following section we describe two variable sampling 
plans to illustrate the cases where S is degenerate and 
non-degenerate.
1.2 Two examples of sampling plans bv variables :

Consider a lot of items such as, Suppose that a 
measurement of interest on an item in the lot is a random 
variable X, having distribution F(x; t)), where t} is un­
known but it is known that r\& (3), (H) is called the
parameter space-* Suppose that an item is considered



to be defective if its measurement X < L (a given number) 
otherwise good. Then the quality 6 of the lot is measu­
red by the probability of an item being defective, that
is © = P^EX < L]

° t (L; g).
Here © has two interpretations firstly it is the proba­
bility that an item chosen at random ftom the lot is defe< 
ctive. Secondly, if all the items in the lot are classi­
fied as defective or not according as the measurements 
are < or > L ; then © is interpreted as proportion defec- 
tice. In the second case, if lot is considerably ‘large' 
© gives a good estimate of F(L; g).

If t) were known, 0 is known and hence one can decide 
whether to accept or reject the lot. However, t) is unkn­
own, so one has to estimate © based on measurements made 
on a sample of items chosen from the lot.

The following specifications (i) to (iv) described 
in (1.1) give different variable plans#
1.2.1 Single sampling plan by variables :

Suppose that a sample of n items are chosen at ran­
dom without replacement from the lot. All the n items 
are measured. Let X^,X2#«»»Xn be the measurements.

AUsing X^,X2»..,Xn an estimate © of ©*F(L;t)) is obtained. 
If © < ©0 (a given number) then the lot is accepted;



otherwise the lot is rejected. Here'© is a function of 
Xl»X2»*,*Xn which is not necessarily the fraction defective 
in the sample. Also +he effective sample size is a cons­
tant n* Hence this is a single sampling plan by variables, 
1,2,2 Double sampling plan or two-stage sampling plan :

Suppose that a lot of size N items is given. Firstly 
choose n^ items at random without replacement from the 
lot9 Let Xi#X2,.. • >*ni be the measurements* -Using Xx ,x2?- 
on estimate ^cf ©= F(L:t]) is obtained.

If < ©^ ( a given number ) . Then the lot is
a »iaccepted. If ©^ >, ©q then the lot is rejected, where

©'f > ©I otherwise, that is, if ©' < “O', < ©M, then choose oo * ,olof
an additional n2 items from the lot. Let Xn +n

1 1 * i-

be the measurements on the n2 items. Using all the

nl+n2 obse^vations xi*X2»..,Xni» *'Xj^+ng
an estimate of ^ of © = F(L;t)5 is obtained.

-A litIf ©2 < ©o , then lot is accepted ; otherwise it is 
rejected, where ©I’1 is a given number such that ©’<©1**<©’’« 
The effective sample size is a random variable taking the 
values either n^ or n^+n2 according as a decision is taken on 
the first sample or on the first and second samples.

Thus in order, to determine the lot quality based on 
a sampling inspection of the lot, alternative sampling
plans are available.

Even if, one restricts to single sampling plans,
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either a single sampling plans by attributes or a single 
sampling plans by variables can be used. In this disser­
tation only single sampling plans by variables are consi­
dered and their performance is compared with appropriate 
single sampling plans by attributes.

It is to be observed that even when one restricts to 
single sampling plans by variables, different plans arise 
depending on the values of the sample size n and critical 
lot quality ©0» These two quantities are called the par­
ameters of the single sampling plan by Variables. Hence 
in order to find an appropriate plan, it is necessary to 
compare the performance of various plans and choose n and
eo-

In the following section some criteria of comparing 
different plans is described.
1.3 Operating characteristic function of a sampling plan :

In this section the concepts of operating character­
istic (OC) function, Acceptable Quality Level (AQL), 
Producer's risk, Lot Tolerance Proportion Defective(LTPD) 
and Consumer's risk are introduced.

Suppose that SP be a fixed sampling plan. The sampl­
ing plan SP gives a criteria to accept or to reject the 
lot. The probability of accepting the lot when the sam­
pling plan SP is useql, will be a function of the unknown
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lot quality 9. This function is useful in comparing 
different plans.
Definition 1.3,1 : The probability of accepting the lot, 
which is a function of 9, based on the sampling plan SP, 
is called the operating characteristic (OC) function of the 
sampling plan SP."The OC function of the plan is denoted LSp(9).

In the ideal case, all lots with proportion defectives 
9 < 9q should have a probability of acceptance Lgp(9)=l; 
that is all lots 9 < 9Q are accepted, and those lots with 
proportion defectives 9 > 9Q should have the probability 
of acceptance Lgp‘9) = 0, The Ideal OC function can be
shown graphically as follows

a

Fig 1 : The Ideal OC-Curve
Ideal OC function can be achieved only by 100 percent perfect 
inspection. But the 100 percent inspection may not be 
possible because of the reasons mentioned in section (1.1). 
Thus an alternative desirable form of the OC curve, one 
has to make the specifications such as, all lots with
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proportion defective © < ©^ should have a probability of 
acceptance Lgp(9) = 1, and those lots with proportion 
defectives © > ©2 should have the probability of accept­
ance Lgp(©) = 0.

Fig 2 : Modified form of OC curve.
Note that ©^ < ©2» the region £©^ ©g) is indifference reg­
ion for consumer and producer. Usually ©^ is specified 
by the consumer and is called the acceptable quality level 
and ©2 &Y the producer and is called the Lot tolerance 
proportion defective. Even this alternative form of Ideal 
OC curve is not possible to achieve without 100 percent 
perfect inspection* Thus, one may try to find a sampling 
plan whose OC function is as close to the modified form 
of the OC function as possible.

The general shape of the OC function corresponding
to a sampling plan which is different from 100 percent 
perfect inspection is as given below :
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as close to the one given in fig 2, we should know the 
values of 9^ and ©2^®1 < ©2) specified by the consumer 
and producer respectively.
Definition 1.3.2 : The value of the lot quality ©^ which 
the consumer considers to be satisfactory is called the 
Acceptable Quality Level (AQL).
Definition 1.3.3 : The probability of rejecting the lot 
of AQL quality is called the producers risk (PR), which 
is denoted by oc. The point (9^, 1-a) is called the prod­
ucer's risk point.
Definition 1.3.4 : The lot quality ©2 which is considered

—co
ns

um
er

's
 r

is
k
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to be unsatisfactory by the producer and so any lot of 
quality 9 _> ©2 should be rejected is called the lot Tol­
erance Proportion Defective (LTPD).
Definition 1.3,5 : The probability of accepting a lot of 
LTPD quality is called the Consumer's risk (CR) and it is 
denoted by p, The point (92»P) is called the consumer’s 
risk point, we note that ©^ < ©2 <.5. The consumer's and 
producer's risk points are shown in Fig.3.
1.4 Designing the single sampling plan by attributes :

In this dissertation, only single sampling plans by 
variables are considered and are compared with the appro­
priate attribute plan, in the sense that both the plans 
have OC functions passing through the same producer's risk 
point (©^, 1-a), and consumers' risk point (©2,p). Thus 
the comparison between variables plans and attribute plans 
is in terms of the minimum sample size required, for the 
resulting OC function of the plans passes through the 
given points.

In this section, a single sampling plan by attribu­
tes is described and an approximate method of obtaining 
the parameters of the plan is given.
1.4.1 The OC function of a single sampling plan by attributes 
Definition 1.4.1 : Suppose that a lot of size N items is 
given. Take a sample of size n items at random without 
replacement from the lot. Inspect all items in the
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sample, if the number of defectives in the sample is less 
than or equal to c,accept the lotj otherwise reject the 
lot. Here C is called the rejection number. The quanti­
ties n and c are called the parameters of the single sam­
pling attribute plan.

Nov/, we obtain an approximate expression for the OC 
function of the above plan with parameters (n,ft).

Let N be the lot size and © be the lot quality, so 
thatNp is the number of defectives in the lot.

LetD^ be the number of defective found in the sample 
of size n.

The probability of accepting a lot of qulaity 9 is,
L(©) = Prob [ accepting the lot when the number of def­

ectives in the lot are N© ]
= Prob [ Dn <c | when the lot quality is © ]

ft
= £ 

d=o
ft

= £ 
d=o

Probj^Dn = d| when the lot quality is

<Nd> CT) / O (1.4.1)

If, N is large the hypergeometric distribution can be 
approximated by binomial distribution., Duncan (1970).
So, (1.4.1) can be written as,

L(©) ~ £ (£) ©k (l-©)n"k (1.4*2)
k=o K

Replacing the binomial probabilities by Poisson probabi­
lities having the same mean, then (1.4.2) can be written as,
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c -n©/~,\kL(9) ^2 2 ----^2®L

k=o k J
(1.4.3)

Now, in view of the following iemma the expression (1.4.3) 
can be written as ,

00L(Q) = -i— / e 1 tc dt
fc+1 n©

Lemma 1.4,2 ;
, 00 +. „ k -m n-T- / e”t tn dt = E 2-
* m n=o n 1

Proof ; Let

I = -i- / o_t tn dtn n! m

By integrating the right hand side by parts, we get
—t, n 00 00r -e t 1 . n r -t ,n-l .." [ —St— + htV 0 * dt

m

(1.4.4)

0-m
1- = ——r—— + In n; «-l

Ther -ofre,
e"m mn

In”In-l = -HT- for a11 n>
Hence

k k -m n
E (I -I ,) = E ---2L
n=i n=l n;

k -m n
Xk = I„ + s ——- , since I = e_m (by 1.4.4)
K 0 n=l n! °

and hence that

L(0) = P[GC+1 > n©] (1.4.5)
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where G*. is a random variable having gamma distribution 
with parameter 1 and scale parameter 1.

It is known that 2 has a chi-square distribution 
with 21 degrees of freedom (d.f.). Hence (1,4.5) can be 
written as,

L(©) = P[ *|(c+1) > 2nO] (1.4.6)

2where x is a chi-square variate with n d.f, n
1.4.2 Determination of the Parameters n and c :

We use equation (1.4.6) to find the parameters n and 
c of the single sampling plan by attributes, so that the 
resulting plan has OC function passing through the produ­
cers' risk point (9^, 1-oc) and consumer’s risk point 
(©2»P). Since in equation (1.4.2) n and c are integers, 
we determine n and c such that

Z (£) 0^(1 - 0.)n“k > 1-a (1.4.7)
k=o K 1 i -

and
Z (P) ek(l - 02)n~k < £ (1.4.8)
k=0 K Z

The n and c which satisfy the constraints (1.4,7) and (1.4.8) 
assume the producer ’s risk of at least 1-a and consumer's 
risk of at most From equation (1.4.6) the inequalities 
(1.4.7) and (1.4.8) can be written as

P[ 0^(c+l) ^ 2 nel] ^ 1_“ (1-4.9)
and
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pE *!(c+i i 2 ne2] < P (1.4.10)

Let X>(c+1) p ^eno^e lower p-th quantile of chi* 
square distribution with 2(c+l) d.f.
That is

2 2^2(c+l) - ^2(c+l),p^ = p (1.4.11)

In view of (1.4*11) inequalities (1.4.9) and (1.4.10) 
imply that

and
p[ 2 nOx] > P[ ^2(c+1)> 3£2(c+1) ,«] (1-4.12)

P^4(c+n* 2 "»23 ipf x2(c+i)>'^(c+i),p3 f1-4-13’

so that
2n©1 < ^2(c+l),a

2n0o > 'V2 ~ 2(c+l), 1-p

(1.4.14)

Taking the ratio of (1.4.14) and (1.4*15) we get that

2n©,
2nQ.

22l£±iLi=l
2-X2(c+1) ,a

That is
Q,
Q- r

2( c+l),1-0
2----------
2(c+l) ,a

Let
X,

r(c)
2(c+l), 1-p
2-------- ---
2(c+l), a

(1.4.16)
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From equation (1.4.16) it is observed that for various 
values of a and £ such that l~j3>a,r(c) is a decreasing 
function of c. This result is clear from Tables I to IV.
We also tried to prove this result analytically. But we 
could not prove the result. Since ©2^®! 9iven» we 
choose c such that

r(c-l) > ©2/©i > r(c) (1.4.17)
The ratio (1.4.17) is tabulated in Cameron (1952) for some 
chosen values of c, a and p. These tables may be used in 
reverse to find c for the desired values of a and p.

Having determined c, n can be found from (1.4.14) and 
(1.4.15) which give the condition that

y2 oc2
< n < ______(1.4*18)

2®2 " 291
If there is no n satisfying the constraint (1.4.18), then 
increase the value of c untill such a n can be found.

Wetherill (1977) has given tables of c and r(c) for 
various a equal to 0.1, 0.05, 0.25, 0.01 and 1-p equal to 
0.9, 0.95, 0.975 and 0.99. The same table is reproduced 
here as table I-IV together with the values of c and r(c) 
for the above values of a and l-j3 = .995. The method of 
computation is illustrated below.

Suppose that * = .01 and l~p = .995. Then for fixed 
c, r(c) is computed using the cumulative probability
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points for the chi-square distribution with 2(c+l) degrees 
of freedom given by Burr (1976). The procedure is as 
follows :

Take c = 0. Then using the chi-square distribution 
with 2 d.f. and table II of Burr ( 197.’'' ), we get

r(0) = i2--2Z—
.211

= 50.2227.
Similarly we compute r(c) for different values of c.
These values for c = 1,2,.... 20, are given in table I
to IV for various a and 1-p.



20

TABLE I
Values of r(c) = ^i-p/ y2 with d.f. = 2(c+l)

a = .1 _[____________ 1 - p

c 0.900 0.950 0.975 0.990 0.995

0 21.85 28.43 35.01 43.71 50.22
1 7.31 8.92 10.48 12.48 13.96
2 4.83 5.71 5.02 7.63 8.41
3 3.83 4.44 5.02 5.76 6.29
4 3.29 3.76 4.21 4.77 5.17
5 2.94 3.34 3.70 4.16 4.48
6 2.70 3.04 3.35 3.74 4.02
7. 2. *3 2.82 3.10 3.44 3.67
8 2.39 2.66 2.90 3.20 3.41
9 2.28 2.52 2.75 3.02 3.21

10 2.19 2.42 2.62 2.87 3.04
11 2.12 2.33 2.51 2.74 2.90
12 2.06 2.25 2.42 2.64 2.79
13 2.00 2.18 2.35 2.55 2.69
14 1.95 2.12 2.28 2.47 2.60
15 1.91 2.07 2.22 2.40 2.52
16 1.87 2.03 2.17 2.34 2.46
17 1.84 1.99 2.12 2.29 2.40
18 1.81 1.95 2.08 2.24 2.34
19 1.78 1.92 2.04 2.19 2.29
20 1.76 1.89 2.01 2.15 2.25



Values of r(c)
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TABLE II
2
l„p/qc2 with d.f.= 2(c+l)

a=0.05 1 - 0

c 0.900 0.950 0.975 0.990 0.995

0 44.89 58.40 71.97 89.78 102.88
1 10.95 13.35 15.68 18.68 20.90
2 6.51 7.70 8.84 10,28 11.34
3 4.89 5.C7 6.42 7.35 8.03
4 4.06 4.65 5.20 5.89 6.39
5 3.55 4.02 4.47 5.02 5.41
6 3.21 3.60 3.98 A«AA 4.76
7 2.96 3.30 3.62 4.02 4.30
8 2.77 3.07 3.36 3.71 3.95
9 2.62 2.89 3.15 3.46 3.68

10 2.50 2.75 2.98 3.27 3.46
11 2.40 2.63 2.84 3.10 3.28
12 2.31 2.53 2.73 2.97 3.13
13 2.24 2.44 2.63 2.85 3.01
14 2.18 2.37 2.54 2.75 2.90
15 2.12 2.30 2.47 2.66 2.80
16 2.07 2.24 2.40 2.59 2.72
17 2.03 2.19 2.34 2.52 2.64
18 1.99 2.15 2.29 2.46 2.57
19 1.95 2.10 2.24 2.40 2.51
20 1.92 2.07 2.20 2.35 2.46
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Values of r(c) =

TABLE
0C2 2

1-P/ 3c 
a

III

with d,.f. = 2(c+l)

a=0.025 1 - P

c 0.900 0.950 0.975 0.990 0.995

0 90.95 118.33 145.70 181*89 207.78
1 16.06 19.59 23.00 27*41 30.70
2 8.60 10.18 11.68 13.59 14.99
3 6.13 7 *11 8.04 9.22 10 .07
4 4.92 5.64 6.31 7.15 7.57
5 4.21 4.77 5.30 5.95 6.42
6 3.74 4.21 4*64 5.18 5.56
7 3.41 3.81 4.18 4.63 4.96
8 8.16 3.51 3.83 4.23 4.51
9 2.96 3.28 3.56 3.92 4.17

10 2.81 3.09 3.35 3.67 3.89
11 2.68 2.69 3.17 3.47 3.67
12a 2.57 2.81 3.03 3.30 3.48
13 2.48 2.70 2.90 3.15 3.33
14 2.40 2.61 2.80 3.03 3.19
15 2.33 2.53 2.71 2.92 3.07
16 2.27 2.46 2.62 2.83 2.97
17 2.21 2.39 2.55 2.74 2*88
18 2.16 2.33 2.49 2.67 2.80
19 2.12 2.28 2.43 2.61 2.73
20 2.08 2.24 2.38 2.55 2.66
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TABLE IV
ry2

Values of r(c) = 2 with d.f, = 2(c+l).
a

a=0.015 1 - p

c 0.900 0.950

0 229.10 298.07
1 26.18 31.93
2 12.21 14.44
3 8.12 9.42
4 6.25 7.16
5 5.20 5.89
6 4.52 5.08
7 4.05 4.52
8 3.70 4.12
9 3.44 3.80

10 3.23 3.56
11 3.06 3.35
12 2.92 3.19
13 2.80 3.05
14 2.69 2.93
15 2.60 2.82
16 2.52 2.73
17 2.45 2.65
18 2.39 2.58
19 2.34 2.52
20 2.29 2.46

0.975 0.990 0.995

367.04 458.24 529.85
37.51 44,69 50.03
16.57 19.28 21.27
10.65 12.20 13.33
8.01 9.07 9.84
6.54 7.34 7.92
5.60 6.25 6.72
4.96 5.51 5.89
4.49 4.96 5.29
4.14 4.55 4.84
3.85 4.22 4.48
3.63 3.96 4.19
8.44 3.74 3.95
3.28 3.56 3.75

. 3.14 3.40 3.58
3.02 3.27 3.44
2.29 3.15 3.31
2.83 3.05 3.20
2.75 2.96 3.10
2.68 2.87 3.01
2.61 2.8C 2.93
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The use of the Table I to IV in determining (n,c) 

for given a, p, ©1, ©2 is illustrated below,
Example 4.2,1 :

Suppose the parameter values are (©^ = 0.01, a = 0.05), 
(©2 = 0.04, p = 0.05). Then ©2/®l == ^ ^roir* table II, we 
find that c = 6. Using (1.4.17), we get 

4.02 > 4 > 3.60 
so that c = 6.

1.5 Single sampling plan by variables in case of uniform
Distribution :
In this section a single sampling plan by variables 

is obtained when the measurements of the items in the lot 
follow a uniform distribution. The OC function of the 
plan is computed and the parameters of the plan are deter­
mined. The sample size required is compared with the 
attribute plan. (This example is given here, because of 
it’s simplicity). The assumptions are as follows ;

i) A large lot is presented for acceptance or 
rejection.

ii) Lower specification limit L>0 is specified,
iii) An item is considered to be defective if the

measurement X on the item is < L; otherwise the 
item is considered to be good* Thus L is a lower 
specification limit.

iv) X is a random variable having uniform distribu-
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-tion on (0, 0) , where a > Q.

Under the above assumptions, the lot quality 9, 
which is the probability an item being defective is 
given by,

6 = P [ X < L ]
”0, if L < 0

= L/a if 0 < L < a
1 if L > o

That is
© = min [ L/a , 1 J (1.5.1)

From the above, it is clear that there is a one-to-one 
correspondence between © and a and © is a decreasing fun­
ction of o . So we treat a itself as lot quality instead 
of © and write the OC function as a function of 0 . 
Consider the following.

Take a sample of n items at random from the lot. 
Measure all the n items. Suppose that X^,X2»...»Xn be the 
measurements.

We obtain any apprpriate estimator of 0 in order to 
determine the lot quality. We can take the estimator 
0^ to be either the maximum likelihood estimater (MLE)

X(n) = max (X^ f%2* * * * >Xn) or the minimum variance un­
biased estimater (MVUE) n”1(n+l) In the following

../Nwe take 0 = X/ \.In;
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'e" smin [ L/X(n) > 1 ] (1.5.2)

The criteria of accepting or rejecting the lot is as 
follows.

yvIf © <, ©0 accept the lot ; otherwise reject the lot. 
Since ©Q < 1, we express this criteria equivalently in 
terms of 'a itself as: Accept the lot iff,

x(n)e0>L, (1.5.3)
from (1.5,3) the OC function of the plan is

/
L(cr ) = [Accepting the lot]

" P* C X(n) l L/®o^
=P1 C X(n)/0 > L/6oa ]

because, if ,X2,... »^n) are i.i.d. uniform (0, cr). 
Then X^/cr , Xg/cr ,.,. ,Xn/cr is i.i.d uniform on (0,1).
Then

L( cr) =1- ( ^ )n, if 0<L < ©X (1.5.4)

0 otherwise
Using equation (1.5,4) we find n and ©Q, so that the
resulting plan has OC function passing through the produ-and consumers’ risk point (©2»P)» 
cer’s risk point(©^,l-a)./We have the two equations.

and

l( ®i) = i- < 'r-n-J0 1
= 1-a

L( CU) = 1- (g-~g-)n 
^ wo 2

- p

n

(1.5.5)

(1.5.6)
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Equations (1.5.5) and (1.5.6) can be written as

(1.5.7)

(1.5.8)

From (1.5.7) and (1.5.8) we get,

- = ( a/l-p)1/n

Here © = ©^ correspond to 3= ^ and © = ©2 correspond 

to 0 ~ 02 so that ©^ < ©2 implies that <J^ > 0^,

Hence,
log(a/l~p) 

log( a»2/ c^)
(1.5.9)+ 1n

where [x] is the largest integer < x.
Having determined n by(l.5.9), ©Q can be found by 

substituting the values of n either in equation (1.5.7) 

or (1.5.8). It is found from (1.5.7) that the resulting 

OC function of the plan passes through the producer’s 
risk point (©^, 1-a) and if it is found from (1.5.8) it 

passes through the consumer’s risk point (©2* £)•

Th minimum sample size n required for the variable 
plan given in (1.5.9) is compared with the minimal sample 

size required for the attribute plan. For this purpose, 

the same producer’s risk and consumer's risk points are 

used.
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Example 1.5,1 :

Suppose that, the following quantities are given, 
a = .05, (3 = .05, ©^ = ,01 and ©2 =
Sample size for attribute plan : .

Using (1.4.17) anei table II, we find, 
r(0) > Q2/&1 > r(l)

where r(0) = 58.40 
r(l) = 13.35 

so that c = 1
Then from (1.4.18) we get n such that

9.49 .711
— < n < —  

.30 ~ ~ .02

31.67 < n < 35.55

The four integers 32, 33, 34 and 35 satisfy the above 
inequality. We can take n to be any of them. But we 
choose the minimum value 32 as n. Hence the desired 
sampling plan is n = 32,c = 1.

Now, we consider the case, that the inequality 
(1.4.18) can not be satisfied.

Suppose that a = .05, p = .05,6^= .01 and ©2 = .0567. 
Using the inequality (1.4.17) and table II, we get, 

r(2) > ©2/©1 > r(3)
where r(2) = 7.70 

r(3) = 5.67.
so that c = 3
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Then from (1.4.18) we get,

15.51 2.73
—----  < n < —

.1134 “ "" .02

That is,
136.772 < n < 136.5

The inequality (1.4.18) can not be satisfied for n. Then 

choose c such that the inequality (1.4.18) can be satisfied. 

Sample size for variable plan :

For the variable plan n can be computed as follows. 

Suppose that a = .05, |3 = .05 , = 100, and , -

a2 ~ 7*4906. Then using (1.5.9) we get, 

n = 1.129701 + 1

that is
n = 2

©| and 9^ can be computed by using (1.5.7) and (1.5.8) 

respectively.

That is
9* = .044721

and
OJ = ,1390189.

Taking the average of ©| and 9^ we will get ©Q.
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T/.3LE VII

Q
y2

a = .1,

Attribute
parameters

0 = a

plan

9^ — .

2

01

Variable pain 
psrdniG'tGrs

n c n eo

.0383 174 3 26.10 2 .03595

.0329 243 4 30.39 2 .0331

.0253 465 7 39.52 3 .02155

.0206 863 12 48.54 4 .0191

.0176 1536 20
. i

56.81
f

4 .01785

TABLE VIII
a = .01, p = .05, Q1 = .01

o2 Attribute
parameters

plan
2

Variable plan 
parameters

mm mmmm—mm

n c _______ n 6_______
.0942 82 3 10.61 3 .0707
.0716 127 4 13.96 3 .059605
.0412 350 8 24.27 4 .0358
.0356 476 10 28.08 4 .03315
.0319 609 12 31.34 4 .03155
.0305 677 13 32.78 5 .0276
.02?? 746 14 34.12 5 .027005
.0258 1034 18 38.75 5 .02532
.0252 1106 19 39.68 5 .025005
.0246 1181 20 40.65 6 .02485



©2 Attribute plan Variable pi - nparameters 2 parameters
n c n &b

.1335 35 1 7.49 2 ,0915

.077 47 2 12.98 2 ,061

.0465 197 4 21.50 2 ,042

.0275 616 10 36.36 3 .0275

.0263 692 11 38.02 4 .02387

.0253 768 12 39.52 4 .02372

.0237 923 14 42.19 4 .022570

.0215 1241 18 46.51 4 ,02120

.0207 1403 20 48.30 5 .01805

TABLE VI
a = • 1 > P “ .05, = .01

®2 Attribute plan Variable planparameters 2 parameters.
n c n eo

.0376 243 4 26.59 2 .03475

.0334 314 5 29.94 2 .0327

.0242 700 10 41.32 3 .02307

.0225 864 12 44.44 4 .02221

.0189 1537 20 52.91 4 .0188
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1»6 SUMMARY OF THE DISSERTATION:

The summary of the first chapter is given in the 
introduction. In chapter two the acceptance sampling by 
variables for normal distribution is considered. In sec­
tion 2.2, variable plan when mean is unknown and variance 
is known with lower and upper specification limit is done 
for finding the parameters n and k. These parameters are 
compared with attribute plan parameters in tables I to IV. 
In section 2.3 the case of mean is known and variance is 
unknown with lower and upper specification limit for find­
ing the parameters n and k is considered. In tables V to 
VIII the variable plan parameters are compared with attri­
bute plan parameters. In section 2.4 both mean and vari­
ance are unknown is considered for lower and upper speci­
fication limit to find n and k. Here two methods are 
given for finding n and k, one ia approximate method and 
second is exact method. In tables IX to XII the parameters 
of approximate distribution is compared with the parameters 
of exact distribution.

Chapter 3 is devoted for exponential distribution with 
one parameter case. In section 3.2 lower and upper speci­
fication limit is considered for finding the parameters 
n and k. In tables I to IV the variable plan parameters 
are compared with attribute plan parameters.


