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CHAPTER II

ACCEPTANCE SAMPLING BY VARIABLES FOR NORMAL DISTRIBUTIONS

2.1. Introduction :
In this chapter we assume that the measurements on 

the items in the lot are normally distributed and we study 
the sampling plans by variables in the following cases ;
Case (i): Mean is unknown ; variance is known and when.

(a) Lower specification limit L is given.
(b) Upper specification limit U is given.

Case (ii); Mean is known } variance is unknown and when,
(a) Lower specification limit L is given.
(b) Upper specification limit U is given.

Case (iii); Both mean and variance are unknown whep,
(a) Lower specification limit L is given.
(b) Upper specification limit U is given.

2.2, Variable plan when mean is unknown and variance is known: 
Let X be the measurement on a randomly chosen item

from the lot and suppose that lower specification limit 
L is given that is
Case(i)|B^;Lower specification limit L is given :

Let 0 be the probability of an item being defective
then, e « p^(x < l)

= p r )P a ~ a
= H ) (2.2.1)



where £(.) is the cumulative distribution function of the 
standard Normal variate. We see that © is a decreasing 
function of p. Let the criteria of selecting the lot be 
as follows.

Accept the lot if © < 0Q and reject otherwise. If © 
is known, the problem is quite tribal. If © is unknown 
the acceptance-rejection procedure can be developed by 
using an appropriate estimator of © and then comparing the 
estimator with the specified value Qq. Hence the first 
step is to finding the estimator of © based on the measu­
rements of n items chosen at random from the lot.

Let Xj| ,X2,... ,Xn be the measurements on the n items
chosen at random from the lot, so that X^,X2,...,Xn are

2i.i.d. normal with mean p and variance a . Now, one can
take the suitable estimator of © as the maximum likelihood
estimator (MLE) or the minimum variance unbiased estimator .
We know that X is maximum likelihood estimator of p and £

L—Xis a one-to-one function of p, so £( --- ) is the maximum
likelihood estimator of ©.

In order to obtain MVUE of © define,

h
0 otherwise.

Ti =
if X1 < L

clearly is unbiased for 0. Then by using Rao-Blackwell 
Lehmann Scheffe theorem the MVUE is given by,

E(T1|X) = P [X1 < L|X] (2.2,2)



In order to compute the R.H.S. of (2.2.2), we consider,

P^tXj^ < L | X = t]
= P^CXj-X < L-t| X=t]

Since the distribution of X^-5? is normal with mean 0 and
o

variance (n-l) a /n which does not depend on p. Hence by 

using Basu's Theorem we get

Pt ?i:! fjit < ( t=s )
= M “ /

cr

n-T

n
n-T

n
n-T

) (2.2.3)

Hence, the MVUE of 9 is given by

* < ¥ fgr )9 (2.2.4)

Using the estimator 9, the criteria for accepting or re-
ys.

jecting the lot is as follows. Accept the lot if 9 < 0Q 

otherwise reject the lot. But,

L'S < 9q iff ? fs5H=t i i_1 <eo>
which implies that,

x > L - TcW “ 
— ’ n (2.2.5)

_ -I
where .k = 2> (Qq)♦ We note that 9 = 9^ corresponds to 

p * Pjl and 6-02 corresP°ncls to (j, = p.2* Using (2.2.5) 

OC function can be,written as,

L(p) = P [Accepting the lot)
r
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= l - * (Ikslta - k: ynTi)0
= 1 - (ZeVn - k fn-l) (2.2.6)

where ZQ = . We find n and k so that the resultingy a
plan has OC function passing through the producer's risk 
point (9^, 1-oc) and consumer's risk point (92» P). Using 
(2.2.6) we get the following two equations.

» (ZQ^Vn - k fS-1) = a (2.2.7)

£ (ZQ fn - k frv-l) = 1 - p (2.2.8)y2
The equations (2.2,7) and (2.2.8) can be wiritten as

ZQ fn - k Vn-1 = Za (2.2.9)
and

Z©2lfn - k Vn=l = - Z0 (2.2.10)
Solving (2.2.9) and(2.2.10) 
value of n, that is

n
Za+ Zp

simultaneously we get the 

2
(2.2.11)

from equation (2.2.9) we get
ZQ^n “ Za 
frPl

and from equation (2.2.10) we get
V"+ ze

if = —........
V n-1

(2.2.12)

(2.2.13)
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Having determined n by (2.2.11)k can be found by 

substituting the value of n either in equation (2.2.12) 

or (2.2.13). It is found from (2.2.12) that the resulting 

OC function of the plan passes through the producer's risk 

point(9^, 1-a) and if it is found from (2.2.13) it passes 

through the consumer's risk point (92, p).

Case (fc ) : Upper specification limit U is given ;

In this case 6 is given by

9 = P [ X > U ]

= p [ > yn* ]
PL a a J

9 = 1 - i ( y=£ )
a

(2.2.14)

where 3>(.) is the cumulative distribution function of the 

standard Normal variate and 9 is a decreasing function of 

|l. Proceeding similarly as per case (<t), we can find the 

minimum variance unbiased estimate of 9. In order to ob­

tain the MVUE of 0, define,

1

0 otherwise.

Clearly T2 is unbiased for 0, then MVUE is given by,

E(T2 j 5?) = P [xx > U | 3?] (2.2.15)

In order to compute the R.H.S. of (2.2.15) consider,

pli[x1 > u 1 a » t]
= p.jx.-a > u-t | a«t]

To,= 1
if Xx > U
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Since the distribution of X^-5? is normal with mean zero and
2variance (n-l)c /n, which does not depend on p. Hence by

using Basu’s Thediem we get

P Cp
A ,© = 1 - M

n-I
U-x J *n"..-~ » H-I‘

=1 ^ l-5-J < n-I J

^i/haT-
1) (2,2.16)

so, accept the lot if © X ©Q otherwise reject the lot, but

x-U>s > o m s (2^) r ~T) > so
x-U ,/ n"
“ »1*e* “ » n-I

which implies that

x U + Sii

) Xf. £*1(©0)

(2.2.17)

where k = 2>“^(© ). Using (2.2.17) the OC function can be

written as

L(p) = P [ Accepting the lot]
= plt[.xi>u + k«faS ]

- PR[ t iUgtl U + k VTPl ] 

= * - $ [ t^) fn + k Vnll ]

= * - i ( Zefn> k VrPl) (2.2.18)

where Zq = We find n and k so that the resulting

plan has OC function passing through the producer's risk 

point (©^, 1-a) and consumer's risk point (©2,P).



(2.2.19)
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Using (2.2.18) we get the following two equations.

£ (ZQ Vn +k fnZl) =i?-a 
yl

£ (ZQ fn +k'VTT-l) = y2
The equations (2.2,19) and (2.2,20)

Zgfn + k fn-1 -"Za
and

Z^U+kf^l = +Zp

(2.2.20)
can be written as

(2.2.21)
(2.2.22)

Solving (2*2.21) and (2*2.22)
value of n, that is,

Z +ZQ a p
n

simultaneously we get the

(2.2.23)

from equation (2.2.21) we get-z« - Vnk s ______-.=_____
*• _.ll. Ill*—»fn-l

and from equation (2.2.22) we get
(Zp -4- Zg fn)

k =,...... .S._—
.......*.......... ~~~lpn-l

(2.2.24)

(2.2.25)

It is found that (2.2.24) the resulting OC function of 
the plan passes through the producer’s risk point (9^,1-a) 
and if it is found from (2.2.25) it passes through the 
consumer’s risk point (G^, P)»
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Suppose that we are given a = *1, |3 = .1, ©^ = .01 

and ©2 = ,0383 using (2.2.11) we will get the value of 
n. That is n = 22. Vi/e can find the value of k from 
equation (2.2.12) and from equation (2,2.13), that is

k = -1.5319
and

k = -2.6605

Taking the average of k f We have k = 2*0962, Similar 
tables can be prepared for upper specification limit.

In the following tables I to IV for different values 
of a.p and ©2 the n and k is computed and is compared with 
the attribute plan parameters n and c.

TABLE
a = .1, p -

-I
• 1, ©^

j

r-i 
1

O
.II

Q2
Attribute plan 

parameters
Variable plan 

parameters
n c n k

.0383 174 3 27 -2.0962

.0329 243 4 28 -2.1212

.0253 465 7 47 -2.1611

.0206 863 12 8i -2.1952

.0176 1536

1»11

' 
1

O 
1

CM 
II

141 -2.2259
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TABLE-II

a = .01 p = .05 ©x = .01

S2
Attribute plan 

parameters
Variable plan 
parameters

n c n k

.0942 82 3 15 -1.7901

.0716 127 4 22 -1.8678

.0412 350 8 45 -1.9992

.0356 476 10 57 -2.0355

.0319 609 12 72 -2.0670

.0305 677 13 75 -2.0723

.0293 746 14 83 -2.0829

.0258 1034 18 112 -2.1151

.0252 1106 19 118 -2.1204

.0246 1181 20 125 -2,1258

TABLE-III
a =: .05, p = .05, = .01

«2
Attribute plan 

parameters
Variable plan 
parameters

n c n k
.1335 35 1 8 -1.8366
.077 47 2 14 -1.9437
.0465 197 4 26 -2.0427
.0275 616 10 66 -2.1393
.0263 692 11 73 -2.1478
.0253 768 12 77 -2.1520
.0237 923 14 91 -2.1649
.0215 1241 18 116 -2.1824
.0207 1403 20 133 -2.1913

A-5967
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TABLE-IV

a = .1, P = .05, 5 ’= *01

®2
Attribute plan 

parameters
Variable plan 
parameters

n c n k

.0376 243 4 29 -2.1234

.0334 314 5 35 -2.1392

.0242 700 10 68 -2,1860

.0225 864 12 81 -2r1966

.0189 1537 20 142 -2.2260

2.3 Variable plan when mean is known and variance is 
unknown :
In this section we shall consider the variable plan 

&hen mean is known and variance is unknown in the case
of lower specification limit and upper specification limit. 
Casej_g): Lower specification limit L is given :

Let 9 be the probability of an item being defective
then,

© = P* (X < L)

= i ( -^) (2.3.1)
Let X^,X2»...,Xn be the measurements on the n items
chosen at random from the lot so that are

2i.i.d. normal with mean p and variance a . In order 
to obtain minimum variance unbiased estimate of 9,



define,

T 1 ~
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if xi < L 

otherwise,
o 5 n ^and c =^E (X.-p.) . Clearly T, is unbiased for ©. i =1 1 x

<*• A A

V/hen p, is known is sufficient and complete for a . 
Then by using Rao-BlackwellvLehmann~Schefte Theorem we 
get the MVUE of 9 as

E (Tils) - Pa [Xx < L t Sj (2.3.2)
In order to evaluate the right hand side of (2.3.2) we
need to know the conditional distribution of X^ given S=s.
Consider,

P0 f < L I s=s ]

X,-U r ,,
= pc [ < -i^l S=s 1
= P0 [ T < to 1 S=s ] (2.3.3)

where
T * (Xrp)/S 
tQ= (L-p)/s

(2.3.4)

Let,

T' as

iHX

(2.3.5)
1 n

[ “n=I Z (X.- 2 1
o 1/2-p)2 ]

we note that the numerator and denominator of (2,3.5) 
are independent. Now the right hand side of (2.3.5) 
can be written as,
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T i —

that is

T ' =

Ifn-l (Xx-|Jt)

r T, (Xi-^)2-(X1-^52Jl/2 
i=l

fZ-1 T 

( T2)
(2.3.6)

where T is an defined in (2.3.4). 

valent to

T ’ <
(n-1)1/2 t0

G^Xtf)175
9

Also T < t0 is equi-

*0 < ^

and T’ follows student’s t-distribution with (n-1) d.f. 

and by Basu's Theorem it is independent of S. So that 

the right hand side of (2.3.3) is equivalent to,

P0 [T* < (n-1)1/2 t0/ (n-t2)l/2 ]

= F-
un-l

t (n-1)1^2to %
(2.3.7)

where tQ < fn andF, (x) is the distribution function
xn-l

of t-variate with (n-l) d.f. Hence, the MVUE of 9 is

y\
9 = F

(n-1)1/2 (-iffi) 
tn-l ^ ( n- ( )2)1/2 (2.3.8)

If L > p then 9 > .5. But from section (1.1) 0<9<,5,
/x

then obviosuly L<p. Using the estimator 9 f the criteria

for accepting or rejecting the lot is as follows.
ys

Accept the lot if © < 0Q otherwise reject the lot, But
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© < iff F — o

r (n-l)1/2(t:U:) i

Vl C {ML;B)2 jT72 J * S<

which implies that,

(n-l)1/2(fe=ti)

[n-(tlH)2 ]V2
< - (e0)

n-1 °

That is,

(n- (l=li)2 )1/2 

-1

< - k (2.3.9)

where k» = - FT (9 ). Solving inequality (2.3,9) we get,
n-1 °

,21 ( ~“+i) (itrul")
k'2

(2.3.10) *
n

using (2.3.10) the OC function can be computed as follows. 

For this we note that 9 is a strictly defreasing function 

of a . Thus we write the OC function of a. Let Zp denote 

the lower p-th quantile of the standard Normal distribu­

tion then, 2g = So that

L(c ) = [Accepting the lot]

= P [ S2 < (--i+1) ikllil2 ] 

a ” k.*2 n

= p [ < lOril (S=i+i) (t=fc)2 ]
a nz ~ n 1.12 a

= Pq t % < k Z2 ]
n

> (2.3.11)
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where k = (---) (~«+l) and Q is distribution function of
K

chi-square random variable with n d.f. We find n and k so 
that the resulting plan has OC function passing through the 
producers risk point (0^,1-a) and consumer’s risk point 
(©2>P). Using (2.3.11) we get the following two equations.

= X (1-a) (2.3.12)
and n’

k ze,= W
Z 2
= X , P (2.3.13)

n
Dividing (2.3.13) by (2.3.12) which gives

z2 y©v = ji» p
zl “2 “0, % / , Xn, (1-a)

From equation (2.3.12) we get2
9t ,. _ n,l-aK ”“2"“

W1
and from equation (2.3.13) we get

2OCk = -V
Tr

(2.3.14)

(2*3*15)

(2.3.16)

It is found that from (2.3,15) the OC function of the plan 
passes through the producer's risk point (0^,1-a) and if 
it is found from (2.3.16) it passes through the consumer's 
risk point (©2,P).
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1 7- | • > -Case fb) : Upper specification limit U is given i 

For the upper specification limit © is,
© = (X > U)? ,

«^ )
- i- »(5bi)CT (2.3.17)

In order to obtain minimum variance unbiased estimate of
j0 define,

1

0

if Xx > U

otherwitp.
Clearly T0 is unbiased for 0. -Pro ce*e ding-.similarly as pa: 
case (a), we will get the MYUE of ©' ^as’ 'follows :

y\© = 1- F.
'n-l

(n-X)l/2 '■
( A---------- 2—f-0 (2.3.18)

Using the, estimator 0, the criteria ^fbr accepting or
:'x- i ' ; -rejecting the lot is ra6 fpljpws. Accept the lot if 

J©'3*>© otherwise reject the lot. Knowing "that .U > p.
Then,

9«e0 iff 4 - Tt (
W! ) <

n~a (ni.(&£)2 )!/2
) > ©o

which implies that
;; -07 i y ~ .o'r r- 'J V :p

7 T-,
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(n-l)1/2(^)

fn-^)2 )]/2
> i- f"1 (i-e0)

n-1

That is (n-l)1/,2(l-,=l±)

(T-c^)2 >i/2 > k (2.3.19)

where fc' = f FT"*- (1-9 ). Solving (2.3.19) we get
xn~l 0

,2 £. (B=± +D Iy=U:l: (2.3.20)
k * 2 n

Using (2.3.20) the OC function can be computed as follows:

L( a) = P (Accepting the lot)0
= P ( s2 (2~+l) )

0 “ k’2 n

( % < kz£ )
n *

(2.3.21)

3- Q„ ( )n
where ZQ = , k = ----- (--A +1) and Q_ is distribution

w 0 n k * ^ n
function of chi-square random variable with n d.f. We

find n andk so that the resulting plan has OC function 

passing through the producer's risk point (9^, 1-a) and 

consumer's risk point (©2, p). Using (2.3.21) we get 

the following two equations.

kz§ = q;1 w
n

=yi
n ,\-a (2.3.22)
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*42

2= x
n,

From equation (2.3.22) and (2.3.23) we get

“©i

%ill—]££-
-v^ ^ n^a

from equation (2.3,24) we have
3c2

k - -BJ3-
^©x

and from equation (2.3.23) we get

(2.3.23)

(2.3.24)

(2.3.25)

2
*X . _

k = -EjJfcE (2.3.26)

It is found that (2.3.25) the resulting OC function of 
the plan passes through the producer’s risk point (©x,l-a) 
and if it is found from (2.3.26) it passes through the 
consumers risk point (©2, p)„
Example 2.2 :

Suppose that we are given the following quantities.
a = .1, 0 = .1, ©x = .01, and ©2 = .0383.
Then by using equation (2.3.14) we will get the value of n.
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By using chi-square distribution table we have n = 44, 
From equation (2,3.15)' we will get the value of kthat is

k * 10.4190
and from equation (2.3.16) we get

k = 10,3696
Taking the average of k we have k= 10.3942.

In the following tables V to VIII the different 
values of a, p and ©£ the n ancl kis computed. These 
values are compared with the attribute plan parameter 
with the same quantities.

TABLE -V
a = .1, p — .1, 0^ = .01

®2
Attribute plan 
parameters

Variable plan 
parameters

n c n k

.03883 174 3 44 10.3942

.0329 243 4 60 13.7368
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TABLE-VI
a « .01, P == .05, -©^ = .01

02
Attribute plan 
parameters

Variable plan 
parameters

n c n k
.0942 82 3 26 8.7741
.0716 127 4 40 12.0199

TABLE-VII
a = .05 , P = .05, ©1 = .01

©Q
Attribute plan 
parameters

Variable plan 
parameters

z
n c n k

.1335 35 1 10 3.2907

.0770 47 2 23 6.4966

.0465 197 4 52 12.9086

TABLE-VIII
a = .1, P =* .05, ©1 = .01

©2
Attribute plan 
parameters

Variable plan 
parameters

n c n k

.0376 243 4 60 13.6910

.0334 314 5 70 15.6289
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2»4 Variable plan when both mean and variance are unknown : 
Case(a): Lower specification limit L is given :

Let © be the probability of an item being defective,
then

© = P (X < L)
ta

= Pp,cr
(£& < klE) 
' a - a '

= * (^) (2.4.1)
Let X^,X2»»..»Xn be the measurements on the n items
chosen at random from the lot so that X1,X2»«..JXn are

ol.i.d. normal with mean p and variance a . In order
to obtain minimum variance unbiased estimate of © define,

f1 if X, < L
T! = < 0 otherwise.
2 2 When p and a are both unknown then (5£, S ) is sufficient

1 nand complete statistic, where X = - EX. and

s2 = -iy E (X.-502. Then by Rao-Blackwell-Lehrnann n“x 1
Scheffe Theorem we get the MVUE of © as,

n x i

EfTjX.S2) = P^><r [X^Ll^x, S2=s2] (2,4.2)

We need to evaluate the right hand side of (2.4.2) we
need to know the conditional density of X^ given that 

25? = x, S = s. Consider,
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[xx < L | X = x, S2 = s2]

„ r X1 ” . L-X I n - c2 2-}
Pn L —- <--- X = x, S = s JS s

V, r ** (V» , L-x , X=.x> s2=$2 j
[ E (X.-X)2]1'*2 
i=l 1

= P.
V-t 0 < L-x(Xj-X)

[ E (X.-X)2]1/2 s^n"1^
i=l x

1/2 |X=x, S2=s2 ]

P„ [ T < t | X = x, S2 = s2 ] (2.4.3)
where

T =

Now consider,

T =

(Xr3?)

[ z (x -X)v ]1/2 
1 1tQ = L-x /sfn~l

t z (x.-^r ii/2i 1

and

Define \J± = (X.-X)(^)l/21 i = 1,2,... n.

(2.4.4)

(2.4.5)

Then * * **^n have a symmetric (n-1) variate normal
distribution with E(y^) = 0 for all i, i = l,2,...,n and 
their dispersion matrix is of the form
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E 2
a

where ^ = - 1
n-I

1 's .... ^ 
1 •«• • ^

(n-l)x(n-l)

then T becomes

where

and

[ DU?] 1/2 
i=l 1

[ EU? + uf ]1/2
r\ JL Jrn

[ E (U,-0)+(n-l)02+U2 j1/2 
i=2 1 x

JL E n
i=2 *

____ 1__
(n-1)

n 0E (U, - 0)2 
i=2_________
(l-S)U-2)

(2.4.6)

(2.4.7)

so, right hand side of (2.4.5) becomes,
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[(1-^)(n-2).V+U2 .+ (U2/(n-l))]1/2

[(l-<0(n-2)V + C~t) U2 J1/2

+ (-2t) u2 ]1/2

[b . a V + b U2 J1/2 
L n n n 1 J

(ux / fv
On an + bn U2 / v]l/2

(2.4.8)

where bn = n/n-1 and a = (n-2). In the following lemma 
we prove the independence of and V and obtain their 
distribution.
Lemma 2.1 :

Let U2»U0,...,Un have a symmetric (n-1) variate 
normal distribution with mean E(lL) = 0, for i = ,2,...,n
and the dispersion matrix as
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1 ^ ....

^ 1 4 ... (3

...»1 I (n-l)x(n-l)
-.1 nWhere ^ , then 0 = £ th/ (n-l) and the variance

, n ’ „ 2
Sy = £ (U^-U) / n-2.are independently distributed,

i—2 2
is normal variate with mean zero and variance a and
2 2S{j/ cr (l-^ ) haS chi-square distribution with (n-2) d.f. 

Proof:.

Let tL, i = 2,3,..,n have a symmetric (n-l) variate 

normal distribution. Now, consider the orthogonal trans- 

f ormation
W = CU (2.4.9)

where C is the orthogonal matrix with first row of C as

trAr ,
f • • • • * $ -i-. ).

iTfr-Tl Yn=l ' ' 1fn=i
In particular let C be the orthogonal matrix obtained by

Helmert's transformation as,
11 1———— , ———, .... , ——

Yn=l Vn=l Yn=l

V* 2
V6

V2

Y6

u

0

VTn-lf(n-2) zLg+l/(n-l)(n-2) (n-l)jt.*B-l)
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so that,

w2 i

w3

1
fn-T

1
fn-T

__1_ __
f 2 n 0 u3

w,n

Now,

That is,

—i-
■/(n-1 jTn-2)

.zL*zll
/(n-l)(n-2) IL J

.. (2.4.10)

E(w) = E(CU)

= C E(U)

= 0

E(w.) =0, i = 2,...., n

And the dispersion matrix transforms to

D = C'ZC

1 S .... ^
^ 1 ...........  ^

D = C'
• « e *

^ ^ -

. c

On simplification we get the, dispersion matrix D as,
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D =a^

from the right hand side of (2.4.11) it follows that 
V(w2) = [ 1 + (n-2)^ ] o2 
V(w^) = (l-^) a2 i = 2, ... n

and
Cov (, Wj) =0, i ^ j (2.4.12)

That is the transformed variables are uncorrelated.
Now, the distribution of w2 is normal with mean zero 

and variance (l+(n-2)^ ) a2. But from (2.4.10) we have,

w, = -i- z u. = i2=iis . -=yi_2 ifKTl i=2 1 Yn=l fS=I
So, the distribution of is normal with mean zero and
variance [l+(n-2)^ ] (n-1) a2 = a2, that is is normal

owith mean zero and variance a , and wi has normal dist-
2ribution with mean zero and variance [(1-^ ) a ] for 

i = 3, ,...n and all are independent. Now, since the 
transformation (2.4.9) is orthogonal we have

W*W = U'U
That is,

l+(n-2)^ 0 ..... 0
0 (i-^) 0

• • • •
0 0 (i-<0

(2.4.11)
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n r\ n r\ n a aE wr = E U. = E (U.-O)^ + (n-l) tr
2 1 2 1 2 1

= (n-2) S2 + (fc-l)O2

= (n-2) S2 + w|

from (2,4.12) it follows that 0 and S2 that is and S2

are independently distributed. And
n 2(n-2) S2 = -E (U.-O)2 a (1-^ ). \ 9 has a chi- 

u 2 2
square distribution with (n-2) d.f. Where OC 2 is
square variate with (n-2) d.f. Let

V* = E (U. - 0)2 / l-\ (2,4.13)
2 1

Now, it follows that V' has chi-square distribution with 
(n-2) d.f. This proves the lemma. An outline of the 
proof of this lemma is given on page 136 of Rao (1965).

Let, p
t, = —i- (2.4.14)
1 ifv

Now from (2.4.7) and (2.4.13) it follows that

v= -v~-(n-2)
where V' has chi-square distribution with (n-2) d.f. and 
is independent of U-^. Hence we get the t^ has a student's 
t distribution with (n-2) d.f. Hence the right hand side 
of (2.4.8) is equivalent to
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T = ti / (bnan + bnt2 J1/2

or 2 2 2 2T Vn = *1 " VI T
That is,

That is,

0 ba_ Tt? = ------ 2 , Vbn T < 1
1 d-bn j2y

(bna )1/2T
t. = — Q-2----- , Y"b T < 11 (1-b T2)1/2 nn

Now, T < t is equivalent to 

(b a )1/2 t
t < —Ty , Vbn T < 1 1 " (l-bn t2 )^2

also, the distribution of t^ is independent of p, and o 
hence by Basu's Theorem, the right hand side of (2.4.3) 
is equivalent to

p [t , (bnan)1/2 ,
PH,«T Ltl - ~- - - -  T7- J > ■fbn T < 1

n o
<b ay/2 t_ p r ___n^n ___0 “I

V2 (l-bn t2 )l72 (2.4.15)

Hence, MVUE of 9 is given by,
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( )l/2 L-x_
(n-1) sf^l

© =Ft [ ------------- — ------------------ ] (2.4.16)
n“2 / lmm ji / L-x__v2 xl/2

~ nil 1

Miss Surekha N. Kulkarni proved the results (2.2.3),

(2.3,7) and (2.4.15) in her M.Phil dissertation (1986).
y\

Now, using the estimator 9, the criteria for accepting

or rejecting the lot is as follows.
.A

Accept the lot if 0 < 9q otherwise reject the lot.

Then

f0i2“iKl/2 L-x
^ 1 n-I ' sj n-T
0 < 0O iff F [----------------------------------- ] < 0

n"2 (1. 2 ( _L;x ,2 ,1/2
n_I sVTT-i

which implies that

( 0i0”2l )1/2 L-x

---------------------------  < f-1 (eo)
a- )2 )1/2 n"2

n-1 s^nO.
That is

( )l/2 L-x_
sfn-1

___________________________ ______________ ^ i

(1- _D. ( _tzE_ )2 )l/2
n-1 sfn-1

Where k* = Fl1 (9 ). Solving (2.4.17) 
n-2 0

(2.4.17)

we get
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n(n-2) (L-x)2 9
< k-

s2(n~l)2- n(L-x)2

n(n-2) (L^-x)2 9 9
------------- < s (n-1; - n(L-x)k »'2

(n-1)2 k*2 (L-x)2

_________1_______ > l-x_

(n-l)^ k«2 
which gives

t=i < *
s

(2.4.18)

where k =

/

using (2.4.18) the OC function can be computed.

Approximated method for finding n and k ;
Using (2,4.18) the OC function can be written as,

fJZ n-2
(n-1; k'2

+1)

L(p,0 ) = (Accepting the lot)M- j a

- V«( ik)
= «V,<(X + ks > i)

In order to obtain the distribution of % + ks we shall
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consider the following Theorem.
Theorem 2,4.1 ; (Walker [l]) :

If the density functions f(x;9), 9 9 (H)CE^, 

satisfy the Cramer-Rao regularity conditions ; if Tn is 
a sequence of asymptotically normal estimators, with an 
asymptotic covariance matrix n”'*" % (9); and if, for each 
9 G 0, (a) the sequence ^Eg|fn (Ti 12+a3

i = l,...,k are all bounded, and (b) (d /d0j)Eg j~T^ n-07y*O 
for all i, j = l,2,...,k, then % (9) - I-1(9) is non- 

negative definite, for each 9 9- (Hj ( The matrix 1(9) is 
the fisher information matrix).

It is known that (X, S )' is the maximum likelihood
t 2\lestimate for (p, a )• Also the Cramer-Rao regularity

conditions will be satisfied in this case. Then by above
Theorem it follows that

2 2Yn(X - n, S* - a*) converges in distribution
to bivariate normal with mean vector (0, 0)* and variance
covariance matrix I-1 where

( ~sX-. 2 0
0 2 a4
^ >

Define h(p, a ) = p +ka which is a continuous function
2— and ---9 does not vanish.
dM- d aof p and 6 and also
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Hence by Theorem (5.5.3) of Zack (1971), it follows that 
h (X, S^) = X + ks is such that Y”n[ (3J+, k^-(p+.ka ) ] 

converges in distribution to normal with mean 0 and vari­
ance ( “2 ) I""^( rrr » r*“2) ' which is equal to mean

dH da d|i da^ Mp 9ji. + ka and variance ( a /n)(l+k /2), So that

!R+ ks - (jj,+i ka ) 
--------------- >
( a/ynHl+K2^)1/2”

L-({i,+ ka)

( cr/Y"n) (l+teP/2)1^2

Vn (Zq + K) 
p r z > -____z_____“ (1+k2/2)1/2

= 1 - P [
fn(ZQ+k)

Z < ---------- , ]
(1+ k2/2)l/2 (2.4.19)

where Z~ = , We find n and kso that the resulting9 a
plan has OC function passing through the producer’s risk 
pcint (©j_> 1-a) and consumer's risk point (©2» P)* Using 

(2.4.19) we get the following two equations.

and

iMZg+k)pT Z < ___Zl____L “ (l+k2/2)l/2 ] = a

P[ Z <
l ]

(1 + k2/2)1^2
1-p

(2.4.20)

(2.4.21)

equations (2.4.20) and (2.4,21) can be wiritten as
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Vn (ZQ +k )
----- i---- = Z (2.4.22)
(1 + Jf2/2)1>/2

and
ifn (Z@ + k )
----- 2--- a-z (2.4.23)
(w k2^)1/2 P

Substracting (2.4.22) from (2.4.23) wo get

fn (Zg - Zq )
_____ *2____1_ _ _ 7 _ 7
(T^w/2 p’ 8

that is

n = (1+ k2/2) ( -----2--- )2 (2.4.24)
Z0 " Z©W1 y2

Substituting the value of n in (2.4.22),we get the value 
of k, that is

Z "t Zn Z~ a ©0 p ©,
k = - --- ------- i (2.4.25)z + za

Case-11 : Upper specification limit U is given :
For the upper specification limit © is given by 

0 = P„ „ (X > u)
* p ( > ysfe)p, or a *“ cf
= £ ( )

cr
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Let X^,X2,...»Xn be the measurements on the n items chosen
at random from the lot so that X^,X2>•••»Xn are i.i.d

2normal with mean p, and variance a . In order to obtain 
minimum variance unbiased estimate of © define.

T2 =
0

if Xx > U

otherwise.
When p, and cr are both unknown. Proceeding similarly 
exactly as per case {%). Then MVUE is given by

( D1Dz21_ )l/2 _U-x_
y\ (n-l) sfn-1e = Ft [------------- ]

n~2 (i _ _D_ ( Jh* )2 >1/2
n-l sfn^l

Using the estimator ©, the criteria for accepting orV\
rejecting the lot is as follows. Accept the lot if 9 > 9( 
otherwise reject the lot. Then 
that is

s' X.9 iff F*
" 0 V.2

which implies that

( £iio~2)) l/2 U-x_ 
n-l sfn-1

[ ------------------- ] 4, on
(1- )2)1/2 

n 1 sYrwl

( ) ji/2 u-x
n-l sfn-1

(1 - JL. ( HzL)2 j1/2
n-l sV^l

■& Ft1
xn-2 0
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that is

#n(n-2)xl/2 U-x 
' ” n-Y” s^n-1------ --------  x k«

u- ~i )2>1/2
n_I sfn^l

where k1 = FT1 (Q ). Solving we get 
tn-2 0

n(n-2)(U-x)2 9
-------------  X k,z
s2(n-l)2 - n(U - x)2

n(n-2) (U-*x)2 9 9
--------- 4. sz( n-1)z - n(U-x)'k’2

^ 2 n ( n-2 ,, >. * s--  ( —_ +i) -- 9(n-1)2 k’2 (U-x)2

____i____  > ly=xi
I -E. ( 2z2 +1)(n-1)2 k*2

that is
H-- k
s ~

where k = ---- ---------f-a- ( —| +d
(n-1) k'2

(2

From(2.4.26) we can compute the OC function of the 
sampling plan.

.4.26)

7
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Approximate method for finding n and k :

Using (2.4.26)»0C funetioncan be written as

L(p,o) = P ( Accepting the lot) \x 9o

= p (> k)

= P^a ( 3? +ks < u)

X+.ksis approximately normally distributed with mean |i+ko 
and variance (a2/n)(l+k2/2), so that

p r , < U=iH±S2i- , ]
(a/Vn)(l+k”/2)1/2 " (a/fn)(l+k2/2)1'2

= P p*o
p fn(Z0+ k)

[ z 1 TwHvF7- ]
fn(Z+k)

P [ Z <------ 2“ 1 /2(l+k2/2)1/2
(2.4.27)

We find n and k so that the resulting plan has OC function 

passing through the producer's risk point (6^, 1-a) and 

consumer's risk point (©2*P) using (2.4,27) we get the 

folliwing two equations.

fn(ZD +k)
P [ Z 4 — - ni—~y-f.3 = 1—tt (2.4.28)

(l+k2/2)1/2
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Yn(Z +k)P[ Z <----s2__
(l+k2^)1^2

] = P (2.4.29)

equations (2.4.28) and (2.4.29) can be written as

fn(Ze + k)

(1+ k2/2)l/2
and

fn(Zg^ + k)

(1+ k2/2)1^2 ^

substracting (2.4.30) from (2.4.31) we get

(2.4.30)

(2.4.31)

fn(ZQ - Z )
VA “ *1_____£____±_ =7+72^ 1/2 VZ«

(1+ k /2)
that is

n = (1+ k2/2) ( -Slit. )2
z - z®2 ei

(2.4.32)

substituting the value of n in (2.4.30) we get the 
value of k, that is
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k = +
Za ze2 + zp

Za+ Zp
(2.4.33)

Exact methodjf or finding n and k i

Case I ; Lower specification limit L is given t

Let X1? X2,...,X be the measurements on the n items 

chosen at random from the lot so that X^,X2»...jXn are
2i.i.d. normal with unknown mean p and unknown variance a . 

The problem is to find a value of k such that
P(X + ks > L) = 1-a (2.4.34)

that is
/L-tu . kaP[ (-i^)fn - (t=tt) > - “g-fn] = 1-a (2.4.35)

divide both sides of the inequality (2.4.35) by s/a and the 

quantity on the left is of the form of the non-centeral 

t. Hence we have,

P[ Tf > - k fn\\ = - (-J±)Vn ] = 1-a (2.4.36)

where is a non-central t variable with f degrees of

freedom, where f = n-1 the number of degrees of freedom 
2of S and the non-centrality parameter d. Then we have

P[ Tf > k Vn| d = ZQ Vn ] = a (2.4.37)
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where Zq = -Z^and has a non-central t-distribution.

Hence the quantity k which is desired may be computed 

from the percentage points of the non-central t-distri­

bution.

Case- II : Upper specification limit U is given :

In this case we have to find k such that

P(X + k* < U) - 1-a (2.4.38)

that is

p[ (-=tt)Vn - (fcajlfn < - £5- Vn] = 1-a (2.4.39)

divide both sides of the inequality (2.4.39) by S/a and 

the quantity on the left is of the form of the non-central 

t. Hence we have,

P[Tf < - kVn|d » - Vn] = 1-a (2.4.40)

where is a non-central t variable with f degrees of 

freedom and d is a non-centrality parameter. Then we have

P[Tf < kfnU ■ Z0Vn] = a (2.4.41)

where Z~ = and T- has a non-central t-distribution.& a f
By using the tables 1 and 2 of Odeh and Owen (1980), we 

find the value of k, when all of the parameters are*'given.
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In table 1 values of 9 = 0.75, 0.90, 0.95, 0.975, 0.99, 
0.999, 0.9999 and N = 2(1) 100(2) 180(5) 300(10) 400(25) 
650(50), 1000, 1500, 2000, 3000, 5000, 10000 for given 
a = 0,995, 0.990, 0.975, 0.950, 0.900, 0.750, 0.250,
0.100, 0.050, 0.025, 0.010, 0,0005 and in table 2 sample 
sample size required when one specification limit is given, 
when = 0,005(0.005)0.05, 0.075, 0.10,

©2 = 29^(0.005)0.10, 0.15, 0.20, 0.30 for given 
a = 0.01, 0,025, 0.05 and p = 0.05, 0.10, 0.2C.
Example 2.3;

Suppose that we are given the following quantities 
a = .05, p = ,05, and ©^ = .01 and ©2 = .300

Using equation (2.4.24) we will get the value of n, 
that is n = 7,

and from equation (2.4.25) we will get the value of 
k, that is k = 1.423.

In the following table IX and X the different values 
of a, p and ©2, the n and k is computed and is compared 
with the exact distribution parameters.
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TABLE-IX

a = .05, (3 = .05, = .01

S2

Approximate distribution

n k

Exact distribution

n k

.300 7 1.423 8 1.443

.200 12 1.583 12 1.604

.150 16 1.678 17 1.695

.100 26 1.803 27 1.814

.095 28 1.818 29 1.828

.090 30 1.833 31 1.843

.085 33 1.848 33 1.858

.C90 35 1.863 36 1.874

.075 39 1.883 39 1.891

.070 42 1.898 43 1.908

.065 47 1.918 48 1.926

.060 52 1.938 54 1.946

.055 59 1.958 61 1.967

.050 69 1.983 70 1.990

.045 81 2.008 83 2.015

.040 97 2.033 102 2.041

.035 128 2.068 130 2.072

.030 175 2,103 176 2.105

.025 252 2.138 267 2.144

.020 483 2.188 496 2.191
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TABLE-X

a = . 01, P = .05,

<—
!

oII1—
I

C
D

«2
Approximate

n

distribution

k

Exact

n

distribution

k

.300 9 1.2681 10 1.285

.200 15 1.4555 16 1.467

.150 21 1.5668 23 1.578

.100 36 1.7133 37 1.719

.095 39 1.7308 40 1.736

.090 42 1.7484 43 1.753

.085 45 1.7660 46 1.772

.080 48 1.7835 50 1.791

.075 53 1.8070 54 1.810

.070 58 1.8246 60 1 • 831

.065 65 1.8480 67 1.853

.060 73 1.8714 75 1.877

.055 82 1.8948 85 1.902

.050 96 1.9241 99 1.929

.045 114 1.9534 117 1.958

.040 137 1.9827 144 1.990

.035 181 2.0237 184 2.026

.030 249 2.0647 251 2.666

.025 359 2.1057 382 2.112

.020 692 2.1643 714 2.167
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TABLE-XI

a = .025, 0 = .1, ©! = .01

Qo
Approximate
distribution

Exact
distribution

n k n k

.300 6 1.233 7 1.270

.200 10 1.427 11 1.453
;i5o 14 1 ;542 15 1.566
.ICC 24 1.693 25 1.707
.095 26 1.711 27 1.724
.090 27 1.729 29 1.741
.085 30 1.747 31 1.760
.080 32 1.765 33 1.779
.075 35 1.790 36 1.799
.070 38 1.808 40 1.820
.065 43 1.832 44 1.843
.060 48 1.856 50 1.866
.055 54 1.880 57 1.892
.050 64 1.911 66 1.919
.045 75 1.941 78 1.949
.040 90 1.971 96 1.982
.035 120 2.013 123 2.018
.030 165 2.056 167 2.059
.025 238 2.098 254 2.106
.020 459 2.159 475 2.162
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TASLE-XII
a = .025, (3 = .05, Q1 = .01

®2

Approximate
distribution
n k

Exact
distribution
n k

.300 8 1.342 9 1.361

.200 13 1.517 14 1.533

.150 18 1.620 19 1.637

.100 31 1.756 32 1.765

.095 33 1.772 34 1.781

.090 35 1.789 36 1.797

.085 38 1.805 39 1.814

.080 41 1.821 42 1.831

.075 45 1.843 46 1,849

.070 49 1.860 51 1.869

.065 54 1.881 56 1.889

.060 61 1.903 63 1.911

.055 69 1.923 72 1.934

.050 81 1.952 83 1.959

.045 95 1.979 98 1.986

.040 114 2.007 120 2.015

.035 151 2.045 154 2.048

.030 207 2.083 209 2.085

.025 298 2.121 318 2.128

.020 573 2.175 592 2.179


