CHAPTER II
ACCEPTANCE SAMPLING BY VARIABLES FOR NORMAL DISTRIBUTIONS
2.1. Introduction :

In this chapter we assume that the measurements on the items in the lot are normally distributed and we study the sampling plans by variables in the following cases : Case (i): Mean is unknown ; variance is known and when.
(a) Lower specification limit L is given.
(b) Upper specification limit U is given.

Case (ii): Mean is known ; variance is unknown and when,
(a) Lower specification limit L is given.
(b) Upper specification limit U is given.

Case (iii): Both mean and variance are unknown wheq,
(a) Lower specification limit L is given.
(b) Upper specification limit U is given.
2.2. Variable plan when mean is unknown and variance is known:

Let X be the measurement on a randomly chosen item
from the lot and suppose that lower specification limit
L is given that is
Case(i)(a):Lower specification limit L is given :
Let θ be the probability of an item being defective then,

$$
\begin{align*}
\theta & =P_{\mu}(X \leq L) \\
& =P_{\mu}\left(\frac{X \mp \mu}{\sigma} \leq \frac{L-\mu}{\sigma}\right) \\
& =\sigma\left(\frac{L-\mu}{\sigma}\right) \tag{2.2.1}
\end{align*}
$$

where $\mathbf{\sigma}($.$) is the cumulative distribution function of the$ standard Normal variate. We see that θ is a decreasing function of μ. Let the criteria of selecting the lot be as follows.

Accept the lot if $\theta \leq \theta_{0}$ and reject otherwise. If θ is known, the problem is quite triwal. If θ is unknown the acceptance-rejection procedure can be developed by using an appropriate estimator of θ and then comparing the estimator with the specified value θ_{0}. Hence the first step is to finding the estimator of θ based on the measurements of n items chosen at random from the lot.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be the measurements on the n items chosen at random from the $10 t$, so that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. normal with mean μ and variance σ^{2}. Now, one can take the suitable estimater of θ as the maximum likelihood estimater (MLE) or the minimum variance unbiased estimata. We know that \bar{X} is maximum likelihood estimator of μ and Φ is a one-to-one function of μ, so $\Phi\left(\frac{\mathrm{L}-\overline{\mathrm{X}}}{\sigma}\right)$ is the maximum likelihood estimator of θ.

In order to obtain MVUE of θ define,

$$
I_{1}= \begin{cases}1 & \text { if } X_{1} \leq L \\ 0 & \text { otherwise }\end{cases}
$$

clearly T_{1} is unbiased for $\theta_{\text {. . Then by }}$ using Rao-Blackwell
Lehmann Scheffe theorem the MVUE is given by,

$$
\begin{equation*}
E\left(T_{1} \mid X\right)=P_{\mu}\left[X_{1} \leq L \mid X\right] \tag{2.2.2}
\end{equation*}
$$

In order to compute the R.H.S. of (2.2.2), we consider,

$$
\begin{aligned}
& P_{\mu}\left[X_{1} \leq L \mid X=t\right] \\
= & P_{\mu}\left[X_{1}-X \leq L-t \mid X=t\right]
\end{aligned}
$$

Since the distribution of $X_{1}-\bar{X}$ is normal with mean 0 and variance $(n-1) \sigma^{2} / n$ which does not depend on μ. Hence by using Basu's Theorem we get

$$
\begin{align*}
& P\left[\frac{X_{1}-X}{\sigma} \sqrt{\frac{n}{n-I}} \leq\left(\frac{L-t}{\sigma}\right) \sqrt{\frac{n}{n}-I}\right] \\
= & \sigma\left(\frac{L-t}{\sigma} \sqrt{\frac{n}{n-I}}\right) \tag{2.2.3}
\end{align*}
$$

Hence, the MVUE of θ is given by

$$
\begin{equation*}
\hat{\theta}=\Phi\left(\frac{L-\bar{x}}{\sigma} \sqrt{\frac{n}{n}=I}\right) \tag{2.2.4}
\end{equation*}
$$

Using the estimator $\hat{\theta}$, the criteria for accepting or rejesting the lot is as follows. Accept the lot if $\hat{\theta} \leq \theta_{0}$ otherwise reject the lot. But,

$$
\hat{\theta} \leq \theta_{0} \text { iff } \frac{L-\bar{x}}{\sigma} \sqrt{\frac{n}{n}-1} \leq \Phi^{-1}\left(\theta_{0}\right)
$$

which implies that,

$$
\begin{equation*}
\bar{x} \geq L-k \sigma \sqrt{\frac{n-1}{n}} \tag{2.2.5}
\end{equation*}
$$

where $k=\Phi^{-1}\left(\theta_{0}\right)$. We note that $\theta=\theta_{1}$ corresponds to $\mu=\mu_{1}$ and $\theta=\theta_{2}$ corresponds to $\mu=\mu_{2}$. Using (2.2.5) OC function can be. written as,

$$
\begin{aligned}
L(\mu) & =P_{\mu}[\text { Accepting the lot }) \\
& =P_{\mu}\left[\bar{x} \geq L-k \sigma \sqrt{\frac{n}{n}-1}\right] \\
= & P_{\mu}\left[\frac{\bar{x}-\mu}{\sigma T V n} \geq\left(\frac{L-\mu}{\sigma}\right) \sqrt{n}-k \sqrt{n-1}\right]
\end{aligned}
$$

$$
\begin{align*}
& \left.=1-\Phi\left(\frac{(L-\mu)}{\sigma}\right) \sqrt{n}-k \cdot \sqrt{n-1}\right) \\
& =1-\Phi\left(Z_{\theta} \sqrt{n}-k \sqrt{n-1}\right) \tag{2.2.6}
\end{align*}
$$

where $Z_{\theta}=\frac{L-\mu}{\sigma}$. We find n and k so that the resulting plan has $O C$ function passing through the producer's risk point $\left(\theta_{1}, l-\alpha\right)$ and consumer's risk point $\left(\theta_{2}, \beta\right)$. Using (2.2.6) we get the following two equations.

$$
\begin{align*}
& \Phi\left(z_{\theta_{1}} \sqrt{n-k \sqrt{n-1})=\alpha}\right. \tag{2.2.7}\\
& \Phi\left(z_{\theta_{2}} \sqrt{n-k \sqrt{n-1})=1-\beta}\right. \tag{2.2.8}
\end{align*}
$$

The equations $(2.2 .7)$ and $(2.2 .8)$ can be wiritten as

$$
\begin{equation*}
z_{\theta_{1}} \sqrt{n-k \sqrt{n-1}=z_{\alpha}} \tag{2.2.9}
\end{equation*}
$$

and

$$
z_{\theta_{2}} \sqrt{n}-k \sqrt{n-1}=-z_{\beta}
$$

Solving (2.2.9) and(2.2.10) simultaneously we get the value of n, that is

$$
\begin{equation*}
n=\left[\frac{z_{\alpha}+z_{\beta}}{z_{\theta_{1}}-z_{\theta_{2}}}\right]^{2} \tag{2.2.11}
\end{equation*}
$$

from equation (2.2.9) we get

$$
\begin{equation*}
k=\frac{z_{\theta_{1}}^{\sqrt{n}-z_{\alpha}}}{\sqrt{n-1}} \tag{2.2.12}
\end{equation*}
$$

and from equation (2.2.10) we get

$$
\begin{equation*}
k=\frac{z_{\theta_{2}} \sqrt{n}+z_{\beta}}{\sqrt{n-1}} \tag{2.2.13}
\end{equation*}
$$

Having determined n by (2.2.11)k can be found by substituting the value of n either in equation (2.2.12) or (2.2.13). It is found from (2.2.12) that the resulting OC function of the plan passes through the producer's risk point $\left(\theta_{1}, 1-\alpha\right)$ and if it is found from (2.2.13) it passes through the consumer's risk point $\left(\theta_{2}, \beta\right)$. Case (b) : Upper specification limit U is given:

In this case θ is given by

$$
\begin{align*}
\theta & =P_{\mu}-[X>U] \\
& =P_{\mu}\left[\frac{X-\mu}{\sigma}>\frac{U-\mu}{\sigma}\right] \\
\theta & =1-\Phi\left(\frac{U-\mu}{\sigma}\right) \tag{2.2.14}
\end{align*}
$$

where $\mathbf{\Phi}($.$) is the cumulative distribution function of the$ standard Normal variate and θ is a decreasing function of M. Proceeding similarly as per case (Q), wo can find the minimum variance unbiased estimate of θ. In order to obtain the MVUE of θ, define,

$$
I_{1}= \begin{cases}1 & \text { if } x_{1} \geq U \\ 0 & \text { otherwise }\end{cases}
$$

Clearly I_{2} is unbiased for θ, then MVUE is given by,

$$
\begin{equation*}
E\left(T_{2} \mid \bar{X}\right)=P_{\mu}\left[X_{1} \geq U \mid \bar{X}\right] \tag{2.2.15}
\end{equation*}
$$

In order to compute the R.H.S. of (2.2.15) consider,

$$
\begin{aligned}
& P_{\mu}\left[X_{1} \geq U \mid X=t\right] \\
= & P_{\mu}\left[X_{1}-X \geq U-t \mid X=t\right]
\end{aligned}
$$

Since the distribution of $X_{1}-\bar{X}$ is normal with mean zero and variance $(n-1) \sigma^{2} / n$, which does not depend on μ. Hence by using Basu's Theorem we get

$$
\begin{align*}
& =P_{\mu}\left[\frac{x_{1}-\bar{X}}{\sigma} \sqrt{\bar{n}-I} \geq\left(\frac{U-t}{\sigma}\right) \sqrt{\frac{n}{n-I}}\right] \\
\hat{\theta} & =1-\Phi\left(\frac{U-\bar{x}}{\sigma} \sqrt{\frac{n}{n}-I}\right) \\
& =\left(\frac{\left.\bar{x}-\frac{U}{\sigma}-\sqrt{n / n-1}\right)}{}\right. \tag{2.2.16}
\end{align*}
$$

so, accept the lot if $\hat{\theta} \geq \theta_{0}$ otherwise reject the lot, but

$$
\hat{\theta} \geq \theta_{0} \text { iff } \Phi\left(\frac{\bar{x}-U}{\sigma}-\sqrt{\frac{n}{n}-I}\right) \geq \theta_{0}
$$

ie.

$$
\left.\frac{\bar{x}-U}{\sigma} \sqrt{\frac{n}{n-1}}\right) \underline{x}, \Phi^{-1}\left(\theta_{0}\right)
$$

which implies that

$$
\begin{equation*}
\bar{x} \underline{x} U+k \sigma \sqrt{\frac{n-1}{n}} \tag{2.2.17}
\end{equation*}
$$

where $k=\Phi^{-1}\left(\theta_{0}\right)$. Using (2.2.17) the $O C$ function can be written as

$$
\begin{aligned}
& L(\mu)=P_{\mu}[\text { Accepting the lot] } \\
& =P_{\mu}[\vec{x} \text { 亘 } U+k \sigma \sqrt{\sqrt[n]{n}-1}]
\end{aligned}
$$

$$
\begin{align*}
& =k-\hbar\left[\left(\frac{U-\mu}{\sigma}\right) \sqrt{n}+k \sqrt{n-1}\right] \\
& =d-\Phi\left(Z_{\theta} \sqrt{n}+k \sqrt{n-1}\right) \tag{2.2.18}
\end{align*}
$$

where $Z_{\theta}=\frac{U-\mu}{\sigma}$. We find n and k so that the resulting plan has $O C$ function passing through the producer's risk point $\left(\theta_{1}, 1-\alpha\right)$ and consumer's risk point $\left(\theta_{2}, \beta\right)$.

Using (2.2.18) we get the following two equetions.

$$
\begin{align*}
& \Phi\left(z_{\theta_{1}} \sqrt{n+k \sqrt{n-1})=-\alpha}\right. \tag{2.2.19}\\
& \Phi\left(z_{\theta_{2}} \sqrt{n}+k \sqrt{n-1}\right)=-\beta \tag{2.2.20}
\end{align*}
$$

The equations $(2.2 .19)$ and $(2.2 .20)$ can be written as

$$
\begin{equation*}
z_{\theta_{1}} \sqrt{n}+k \sqrt{n-1}=-z_{\alpha} \tag{2.2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{\theta_{2}} \sqrt{n}+k \sqrt{n-1}=+Z_{\beta} \tag{2.2.22}
\end{equation*}
$$

Solving (2.2.21) and (2.2.22) simultaneously we get the value of n, that is,

$$
n=\left[\begin{array}{l}
z_{\alpha}+Z_{\beta} \tag{2.2.23}\\
Z_{\theta_{1}}-Z_{\theta_{2}}
\end{array}\right]
$$

from equation (2.2.21) we get

$$
\begin{equation*}
k=\frac{-z_{\alpha}-z_{\theta_{1}} \sqrt{n}}{\sqrt{n-1}} \tag{2.2.24}
\end{equation*}
$$

and from equation (2.2.22) we get

$$
\begin{equation*}
k=\frac{\left(Z_{\beta}+z_{\Theta_{2}} V n\right)}{\sqrt{n-1}} \tag{2.2.25}
\end{equation*}
$$

It is found that (2.2.24) the resulting OC function of the plan passes through the producer's risk point ($\left.\theta_{1}, 1-\alpha\right)$ and if it is found from (2.2.25) it passes through the consumer's risk point $\left(\theta_{2}, \beta\right)$.

Example 2.1:
Suppose that we are given $\alpha=.1, \beta=.1, \theta_{1}=.01$ and $\theta_{2}=.0383$ using (2.2.11) we will get the value of n. That is $n=22$. We can find the value of k from equation (2.2.12) and from equation (2.2.13), that is

$$
\mathrm{k}=-1.5319
$$

and

$$
k=-2.6605
$$

Taking the average of k, we have $k=2.0962$. Similar tables can be prepared for upper specification limit.

In the following tables I to IV for different values of α, β and θ_{2} the n and k is computed and is compared with the attribute plan parameters n and c .

TABLE -I

$$
\alpha=.1, \beta=.1, \quad \theta_{1}=.01
$$

Q_{2}	Attribute plan ___ parameters		Variable plan . parameters	
	n	c	n	k
. 0383	174	3	27	-2.0962
. 0329	243	4	28	-2.1212
. 0253	465	7	47	-2.1611
. 0206	863	12	81	-2.1952
. 0176	1536	20.	141	-2.2259

TABLE-II

θ_{2}	Attribute plan parameters		Variable plar parameters	
	n	c	n	k
. 0942	82	3	15	-1.7901
. 0716	127	4	22	-1.8678
. 0412	350	8	45	-1.9992
. 0356	476	10	57	-2.0355
. 0319	609	12	72	-2.0670
. 0305	677	13	75	-2.0723
. 0293	746	14	83	-2.0829
. 0258	1034	18	112	-2.1151
. 0252	1106	19	118	-2.1204
. 0246	1181	20	125	-2.1258

TABLE-III

TABLE-IV

θ_{2}	Attribute plan parameters		Variable plan parameters	
	n	c	n	k
. 0376	243	4	29	-2.1234
. 0334	314	5	35	-2.1392
. 0242	700	10	68	-2.1860
. 0225	864	12	81	-2.1966
. 0189	1537	20	142	-2.2260

2.3 Variable plan when mean is known and variance is unknown

In this section we shall consider the variable plan when mean is known and variance is unknown in the case of lower specification limit and upper specification limit. Case(g): Lower specification limit L is given :

Let θ be the probability of an item being defective then,

$$
\begin{align*}
\theta & =P_{\sigma}(X \leq L) \\
& =P_{\sigma}\left(\frac{x-\mu}{\sigma} \leq \frac{L-\mu}{\sigma}\right) \\
& =\Phi \quad\left(\frac{L-\mu}{\sigma}\right) \tag{2.3.1}
\end{align*}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be the measurements on the n items chosen at random from the lot so that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. normal with mean μ and variance σ^{2}. In order to obtain minimum variance unbiased estimate of θ,
define,

$$
T_{1}= \begin{cases}1 & \text { if } X_{1} \leq L \\ 0 & \text { otherwise }\end{cases}
$$

and $S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$. Clearly T_{1} is unbiased for θ.
When μ is known S^{2} is sufficient and complete for σ^{2}. Then by using Rao-Blackwell-Lehmann-Schefte Theorem we get the MVUE of θ as

$$
\begin{equation*}
E\left(T_{1} \mid S\right)=P_{\sigma}\left[X_{1} \leq L \mid S\right] \tag{2.3.2}
\end{equation*}
$$

In order to evaluate the right hand side of (2.3.2) we need to know the conditional distribution of X_{1} given $S=s$. Consider,

$$
\begin{align*}
& P_{\sigma}\left[X_{1} \leq L \mid S=s\right] \\
= & P_{C}\left[\left.\frac{X_{1}-\mu}{S} \leq \frac{L-\mu}{s} \right\rvert\, S=s\right] \\
= & P_{\sigma}[T \leq \text { to } \mid S=s]
\end{align*}
$$

where

$$
\left.\begin{align*}
& T=\left(X_{1}-\mu\right) / S \tag{2.3.4}\\
& t_{0}=(L-\mu) / s
\end{align*} \right\rvert\,
$$

Let,

$$
\begin{equation*}
T^{\prime}=\frac{\left(x_{1}-\mu\right)}{\left[-\frac{1}{n-I} \sum_{2}^{n}\left(x_{i}-\mu\right)^{2}\right]^{1 / 2}} \tag{2.3.5}
\end{equation*}
$$

we note that the numerator and denominator of (2.3.5)
are independent. Now the right hand side of (2.3.5)
can be written as,
that is

$$
\begin{equation*}
T^{\prime}=\frac{\sqrt{n-1} T}{\left(T^{2}\right)^{1 / 2}} \tag{2.3.6}
\end{equation*}
$$

where T is an defined in (2.3.4). Also $T \leq t_{o}$ is equivalent to

$$
T^{\prime} \leq \frac{(n-1)^{1 / 2} t_{0}}{\left(t_{0}^{2}\right)^{1 / 2}} \quad, \quad t_{0}<\sqrt{n}
$$

and T ' follows student's t-distribution with ($n-1$) d.f. and by Basu's Theorem it is independent of S. So that the right hand side of (2.3.3) is equivalent to,

$$
\begin{align*}
& P_{\sigma}\left[T^{\prime} \leq(n-1)^{1 / 2} t_{o} /\left(n-t_{o}^{2}\right)^{1 / 2}\right] \\
= & F_{t_{n-1}}\left(\frac{(n-1)^{1 / 2} t_{o}}{\left.\left(-t_{0}^{2}\right)^{I / 2}\right)}\right.
\end{align*}
$$

where $t_{o}<\sqrt{n}$ and $F_{t_{n-1}}(x)$ is the distribution function of t-variate with ($n-1$) d.f. Hence, the MVUE of θ is

$$
\begin{equation*}
\hat{\theta}=F_{t_{n-1}} \quad\left(\frac{(n-1)^{1 / 2}\left(-\frac{L-\mu}{s}\right)}{\left(n-\left(\frac{L-\mu}{s}\right)^{2}\right)^{1 / 2}}\right) \tag{2.3.8}
\end{equation*}
$$

If $L>\mu$ then $\theta>$.5. But from section (1.1) $0<\theta<.5$, then obviosuly $L<\mu$. Using the estimator $\hat{\theta}$, the criteria for accepting or rejecting the lot is as follows. Accept the lot if $\hat{\theta} \leq \theta_{0}$ otherwise reject the lot, But
$\hat{\theta} \leq \theta_{0} \quad$ iff $F_{t_{n-1}}\left[\frac{(n-1)^{1 / 2}\left(\frac{L-\mu}{s}\right)}{\left(n-\left(\frac{L-\mu}{s}\right)^{2}\right)^{1 / 2}}\right] \leq \theta_{0}$
which implies that,

$$
\frac{(n-1)^{1 / 2}\left(\frac{L-\mu}{s}\right)}{\left[n-\left(\frac{L}{-} \frac{\mu}{s}\right)^{2}\right]^{1 / 2}} \leq-F_{t_{n-1}^{-1}}^{-}\left(\theta_{0}\right)
$$

That is,

$$
\frac{(n-1)^{l / 2}\left(\frac{L-\mu}{s}\right)}{\left(n-\left(\frac{L}{-}-\mu\right)^{2}\right)^{1 / 2}} \leq-k^{\prime}
$$

where k : $=-F_{t_{n-1}^{-1}}^{-1}\left(\theta_{0}\right)$. Solving inequality (2.3.9) we get,

$$
\begin{equation*}
s^{2} \leq\left(\frac{n-1}{k^{\prime} 2}+1\right)\left(\frac{(L-\mu)^{2}}{n}\right) \tag{2.3.10}
\end{equation*}
$$

using (2.3.10) the OC function can be computed as follows. For this we note that θ is a strictly decreasing function of σ. Thus we write the OC function of σ. Let Z_{p} denote the lower path quantile of the standard Normal distribution then, $Z_{\theta}=\frac{\bar{L}-\mu}{\sigma}$. So that

$$
\begin{align*}
L(\sigma) & =P_{\sigma}[\text { Accepting the lot }] \\
& =P_{\sigma}\left[S^{2} \leq\left(\frac{n-1}{\left.k \cdot \frac{1}{2}+1\right)} \frac{(L-\mu)^{2}}{n}\right]\right. \\
& =P_{\sigma}\left[(n-1) \frac{S}{2}^{2} \leq \frac{(n-1)}{n}\left(\frac{n-1}{\sigma^{\prime}}+1\right)\left(\frac{L-L}{\sigma}\right)^{2}\right] \\
& =P_{\sigma}\left[x^{2} \leq k Z_{\theta}^{2}\right] \\
& =Q_{n}\left(k z_{\theta}^{2}\right) \tag{2.3.11}
\end{align*}
$$

where $k=\left(\frac{n-1}{n}\right)\left(\frac{n-1}{k^{2}}+1\right)$ and Q_{n} is distribution function of chi-square random variable with r. d.f. We find n and k so that the resulting plan has $O C$ function passing through the producer's risk point $\left(\theta_{1}, 1-\alpha\right)$ and consumer's risk point $\left(\theta_{2}, \beta\right)$. Using (2.3.11) we get the following two equations.

$$
\begin{align*}
k z_{\theta_{1}}^{2} & =Q_{n}^{2_{n}^{-1}(1-\alpha)} \tag{2.3.12}\\
& =\chi_{n,}^{(1-\alpha)}
\end{align*}
$$

and

$$
\begin{align*}
k Z_{\theta_{2}}^{2} & =Q_{n}^{-1}(\beta) \\
& =\chi^{2}, \beta \tag{2.3.13}
\end{align*}
$$

Dividing (2.3.13) by (2.3.12) which gives

From equation (2.3.12) we get

$$
\begin{equation*}
\mathrm{k}=\frac{x_{n_{2}}^{2}=\alpha}{z_{\theta_{1}}^{2}} \tag{2,3.15}
\end{equation*}
$$

and from equation (2.3.13) we get

$$
\begin{equation*}
\mathrm{k}=\frac{x^{2}}{z_{\hat{n}_{2} \beta}^{2}} \tag{2.3.16}
\end{equation*}
$$

It is found that from (2.3.15) the OC function of the plan passes through the producer's risk point $\left(\theta_{1}, l-\alpha\right)$ and if it is found from (2.3.16) it passes through the consumer's risk point $\left(\theta_{2}, \beta\right)$.

Case (b) : Upper specification limit U is given :
For the upper specification limit θ is,

$$
\begin{align*}
\theta & =p_{\sigma} \quad(X>U) \\
\theta & =P_{\sigma}\left(\frac{X-\mu}{\sigma}>\frac{U-\mu}{\sigma}\right) \\
& =1-\sigma\left(\frac{U-\mu}{\sigma}\right) \tag{2.3.17}
\end{align*}
$$

In order to obtain minimum variance unbiased estimate of θ define,

$$
T_{2}=\left\{\begin{array}{lc}
1 & \text { if } X_{1}>U \\
0 & \text { otherwise }
\end{array}\right.
$$

Clearly T_{2} is unbiased for θ. Proceeding similarly as per case (a), we will get the MYUE of θ as follows:

$$
\begin{equation*}
\hat{\theta}=1-F_{t_{n-1}}\left(\frac{(n-1)^{2 / 2}}{\left(\frac{U-\mu}{5} \frac{U}{5}\right)^{2}}\right. \tag{2.3.18}
\end{equation*}
$$

Using the estimator $\hat{\theta}$, the criteria for accepting or rejecting the lot is agelfows. Accept the lot if $\hat{\theta}$ 尽 θ_{0} otherwise reject the lot. Knowing that $U>\mu$. Then,

$$
\hat{\theta} \underline{\theta_{0}} \text { iff } q-F_{t_{n-1}}\left(\frac{(n-1)^{1 / 2}\left(\frac{U-\mu}{s}\right)}{\left(n-(-\mu)^{2}\right)^{l / 2}}\right) \geqq \theta_{0}
$$

which implies that

$$
\frac{(n-1)^{1 / 2}\left(\frac{U-\mu}{s}\right)^{-1}}{\left(n-\left(\frac{U-\mu}{s}\right)^{2}\right)^{1 / 2}} \geq+F_{t_{n-1}}^{-1}\left(i-\theta_{0}\right)
$$

That is

$$
\begin{equation*}
\frac{(n-1)^{1 / 2}\left(\frac{(1-\mu}{s}\right)}{\left(n-\left(\frac{U-\mu}{s}\right)^{2}\right)^{1 / 2}} \geq+k^{\prime} \tag{2.3.19}
\end{equation*}
$$

where $\boldsymbol{k}^{\prime}=+F_{t_{n-1}}^{-1}\left(1-\theta_{0}\right)$. Solving (2.3.19) we get

$$
\begin{equation*}
\left.s^{2} \leq \frac{(n-1}{k}+\frac{1}{2}+1\right) \frac{(U-\mu)^{2}}{n} \tag{2.3.20}
\end{equation*}
$$

Using (2.3.20) the OC function can be computed as follows:

$$
\begin{align*}
L(\sigma) & =P_{\sigma}(\text { Accepting the lot }) \\
& =P_{\sigma}\left(s^{2} \underline{\leq}\left(\frac{n-1}{k}+1\right) \frac{(U-\mu)^{2}}{n}\right) \\
& =\left(X_{n}^{2} \leq k Z_{\theta}^{2}\right) \tag{2.3.21}\\
& =1 Q_{n}\left(k z_{\theta}^{2}\right)
\end{align*}
$$

where $Z_{\theta}=\frac{U-\mu}{\sigma}, k=\frac{(n-1)}{n}\left(\frac{n-1}{k^{\prime}}+1\right)$ and Q_{n} is distribution function of chi-square random variable with n def. We find n and k so that the resulting plan has $O C$ function passing through the producer's risk point $\left(\theta_{1}, 1-\alpha\right)$ and consumer's risk point $\left(\theta_{2}, \beta\right)$. Using (2.3.21) we get the following two equations.

$$
\begin{align*}
k Z_{\theta_{1}}^{2} & =Q_{n}^{-1}(f-\alpha) \\
& =x_{n, 1-\alpha}^{2} \tag{2.3.22}
\end{align*}
$$

and

$$
\begin{align*}
k Z_{\theta_{2}}^{2} & =Q_{n}^{-1}(z \beta) \\
& =X^{2} \tag{2.3.23}
\end{align*}
$$

From equation (2.3.22) and (2.3.23) we get

$$
\begin{equation*}
\frac{z_{\theta_{2}}^{2}}{z_{\theta_{1}}^{2}}=\frac{x_{n, j-\beta}^{2}}{x_{n \zeta \alpha}^{2}} \tag{2.3.24}
\end{equation*}
$$

from equation (2.3.22) we have

$$
\begin{equation*}
\mathrm{k}=\frac{x_{n_{1}-\alpha}^{2}}{z_{\theta_{1}}^{2}} \tag{2.3.25}
\end{equation*}
$$

and from equation (2.3.23) we get

It is found that $(2.3 .25)$ the resulting $O C$ function of the plan passes through the producer's risk point ($\left.\theta_{1}, l-\alpha\right)$ and if it is found from (2.3.26) it passes through the consumers risk point $\left(\theta_{2}, \beta\right)$.

Example 2.2 :
Suppose that we are given the following quantities. $\alpha=.1, \beta=.1, \theta_{1}=.01$, and $\theta_{2}=.0383$.
Then by using equation (2.3.14) we will get the value of n.

By using chi-square distribution table we have $n=44$. From equation (2.3.15) we will get the value of k that is

$$
k=10.4190
$$

and from equation (2.3.16) we get

$$
k=10.3696
$$

Taking the average of k we have $k=10.3942$.
In the following tables V to VIII the different values of α, β and θ_{2} the n and k is computed. Those values are compared with the attribute plan parameter with the same quantities.

TABLE -V

$\alpha=.1, \quad \beta=.1, \quad \theta_{1}=.01$

θ_{2}	Attribute plan parameters		Variable plan parameters	
	n	c	n	k
. 03883	174	3	44	10.3942
. 0329	243	4	60	13.7368

TABLE-VI

TABLE-VII
$\alpha=.05, \quad \beta=.05, \quad \theta_{1}=.01$

	Attribute plan parameters	Variable plan parameters		
.1335	35	1	10	3.2907
.0770	47	2	23	6.4966
.0465	197	4	52	12.9086

TABLE-VIII

$\alpha=.1, \quad \beta=.05, \quad \theta_{1}=.01$

	Attribute plan parameters	Variable plan parameters		
.0376	243	4	60	13.6910
.0334	314	5	70	15.6289

2.4 Variable plan when both mean and variance are unknown : Case(a): Lower specification limit L is given :

Let θ be the probability of an item being defective,
then

$$
\begin{align*}
\theta & =P_{\mu, \sigma}(X \leq L) \\
& =P_{\mu, \sigma}\left(\frac{X-\mu}{\sigma} \leq \frac{L-\mu}{\sigma}\right) \\
& =\Phi \quad\left(\frac{L-\mu}{\sigma}\right) \tag{2.4.1}
\end{align*}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be the measurements on the n items chosen at random from the lot so that $x_{1}, x_{2}, \ldots, x_{n}$ are i.i.d. normal with mean μ and variance σ^{2}. In order to obtain minimum variance unbiased estimate of θ define,

$$
T_{1}= \begin{cases}1 & \text { if } x_{1} \leq L \\ 0 & \text { otherwise } .\end{cases}
$$

When μ and σ^{2} are both unknown then $\left(\bar{X}, \mathrm{~s}^{2}\right)$ is sufficient and complete statistic, where $\bar{X}=\frac{1}{n} \sum_{1}^{n} x_{i}$ and $s^{2}=\frac{1}{n}-1 \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. Then by Rao-Blackwell-Lehrnann Scheffe Theorem we get the MVUE of θ as,

$$
\begin{equation*}
E\left(T_{1} \mid \bar{X}, s^{2}\right)=P_{\mu, \sigma}\left[X_{1} \leq L \mid X=x, s^{2}=s^{2}\right] \tag{2,4.2}
\end{equation*}
$$

We need to evaluate the right hand side of (2.4.2) we reed to know the conditional density of X_{1} given that $\bar{X}=x, s^{2}=s$. Consider,

$$
\begin{aligned}
& P_{\mu,}\left[X_{1} \leq L \mid X=x, s^{2}=s^{2}\right] \\
= & P_{\mu, \sigma}\left[\left.\frac{X_{1}-\bar{X}}{S}-\frac{L-\bar{x}}{s} \right\rvert\, \bar{X}=\bar{x}, s^{2}=s^{2}\right]
\end{aligned}
$$

$$
\left.\left.=P_{\mu, \sigma} \Gamma \frac{\sqrt{n-1}\left(x_{1}-\bar{X}\right)}{\left[\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}\right]^{1,2}} \leq \frac{L-\bar{x}}{s} \right\rvert\, \bar{X}=\bar{x}, s^{2}=s^{2}\right]
$$

$$
=P_{\mu, \sigma} \quad\left[\left.\frac{\left(X_{1}-\bar{X}\right)}{\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]^{1 / 2}} \leq \frac{L=\bar{x}}{s \cdot(n-1)^{1 / 2}} \right\rvert\, \bar{X}=\bar{x}, s^{2}=s^{2}\right]
$$

$$
\begin{equation*}
=\mathrm{P}_{\mu, \sigma}\left[\mathrm{T} \leq \mathrm{t}_{0} \mid \overline{\mathrm{X}}=\overline{\mathrm{x}}, \mathrm{~s}^{2}=\mathrm{s}^{2}\right] \tag{2.4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\frac{\left(x_{1}-\bar{X}\right)}{\left[\sum_{1}^{n}\left(x_{i}-\bar{X}\right)^{2}\right]^{1 / 2}} \text { and } \tag{2.4.4}
\end{equation*}
$$

Now consider,

$$
t_{0}=L-\bar{x} / s \sqrt{n-1}
$$

$$
\begin{equation*}
T=\frac{\left(x_{1}-\bar{x}\right)}{\left[\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{\sim} 1^{1 / 2}\right.} \tag{2.4.5}
\end{equation*}
$$

Define $U_{i}=\left(X_{i}-\bar{X}\right)\left(\frac{n}{n}-I\right)^{1 / 2}, \quad i=1,2, \ldots n$.
Then $U_{2}, U_{3}, \ldots, U_{n}$ have a symmetric ($n-1$) variate normal distribution with $E\left(U_{i}\right)=0$ for all $i, i=1,2, \ldots, n$ and their dispersion matrix is of the form

$$
\Sigma=\sigma^{2}\left[\begin{array}{cccc}
1 & \rho & \cdots & \rho \\
\rho & 1 & \cdots & \rho \\
\vdots & & \cdots & 1
\end{array}\right]_{(n-1) \times(n-1)}
$$

where $\rho=-\frac{1}{n}-I$, then T becomes

$$
T=\frac{U_{1}}{\left[\sum_{i=1}^{n} U_{i}^{2}\right]^{l / 2}}
$$

$$
=\frac{U_{1}}{\left[\sum_{2}^{n} U_{i}^{2}+U_{1}^{2}\right]^{1 / 2}}
$$

$$
\begin{equation*}
=\frac{U_{1}}{\left[\sum_{i=2}^{n}\left(U_{i}-U\right)+(n-1) U^{2}+U_{1}^{2}\right]^{1 / 2}} \tag{2.4.6}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{U} & =\frac{1}{n-I} \sum_{i=2}^{n} U_{i} \\
& =-\frac{1}{(n-1)}
\end{aligned}
$$

and

$$
\begin{equation*}
V=\frac{\sum_{i=2}^{n}\left(U_{i}-0\right)^{2}}{(1-Q)(n-2)} \tag{2.4.7}
\end{equation*}
$$

so, right hand side of (2.4.5) becomes,

$$
\begin{array}{cc}
& {\left[(1-Q)(n-2) \cdot V_{1} U_{1}^{2}+\left(U_{1}^{2} /(n-1)\right)\right]^{1 / 2}} \\
= & {\left[(1-Q)(n-2) V+\left(\frac{n}{n-I}\right) U_{1}^{2}\right]^{1 / 2}} \\
= & {\left[\left(\frac{U_{1}}{n-1}\right)(n-2) V+\left(\frac{n}{n-I}\right) U_{1}^{2}\right]^{1 / 2}} \\
= & {\left[U_{n} \cdot a_{n} v+b_{n} U_{1}^{2}\right]^{1 / 2}} \\
= & {\left[U_{n} a_{n}+b_{n} U_{1}^{2} / v\right]^{1 / 2}}
\end{array}
$$

where $b_{n}=n / n-1$ and $a_{n}=(n-2)$. In the following lemma we prove the independence of U_{1} and V and obtain their distribution.

Lemma 2.1 :

Let $U_{2}, U_{3}, \ldots, U_{n}$ have a symmetric ($n-1$) variate normal distribution with mean $E\left(U_{i}\right)=0$, for $i=\ldots, 2, \ldots, n$ and the dispersion matrix as

56

$$
\Sigma=\sigma^{2}\left[\begin{array}{cccc}
1 & २ & \cdots & \cdots \\
e & 1 & \cdots & e \\
\vdots & \vdots & & \vdots \\
\dot{\rho} & \rho & \cdots & 1
\end{array}\right] \quad(n-1) \times(n-1)
$$

Where $P=\frac{-1}{n}-I$, then $0=\sum_{2}^{n} U_{i} /(n-1)$ and the variance $S_{U}^{2}=\sum_{i=2}^{n}\left(U_{i}-0\right)^{2} / n-2$. are independently distributed, U_{1} is normal variate with mean zero and variance σ^{2} and $S_{U}^{2} / \sigma^{2}(1-\rho)$ has chi-square distribution with ($n-2$) d.f.

Proof:

Let $U_{i}, i=2,3, \ldots, n$ have a symmetric $(n-1)$ variate normal distribution. Now, consider the orthogonal transformation

$$
\begin{equation*}
w=C U \tag{2.4.9}
\end{equation*}
$$

where C is the orthogonal matrix with first row of C as

$$
\left(\frac{1}{\sqrt{n-1}}, \frac{-1}{\sqrt{n-1}}, \cdots \cdots, \frac{-1}{\sqrt{n-1}},\right)
$$

In particular let C be the orthogonal matrix obtaincd by Helmert's transformation as,

$$
\left.c=\left[\begin{array}{cccc}
\frac{-1}{\sqrt{n-1}} & , \frac{-1}{\sqrt{n-1}} & \cdots \cdot & , \frac{-1}{\sqrt{n-1}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \cdots & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
\sqrt{\frac{1}{2}}-\sqrt{(n-1)(n-2)} & \cdots & \sqrt{(n-1)(n-1)}
\end{array}\right] \quad(n-1) x \cdot n-1\right)
$$

$$
57
$$

so that,

$$
\begin{aligned}
& {\left[\begin{array}{c}
w_{2} \\
w_{3} \\
\vdots \\
w_{n}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{n-1} & \sqrt{n-1} & \cdots & \sqrt{n-1}-1 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\sqrt{1(n-1)(n-2)} & \cdots \cdots \cdots & \frac{-1-(n-1)}{(n-1)(n-2)}
\end{array}\right]\left[\begin{array}{c}
\vdots \\
U_{3} \\
\vdots \\
\vdots \\
U_{n}
\end{array}\right]} \\
& \text {.. (2.4.10) }
\end{aligned}
$$

Now,

$$
\begin{aligned}
E(w) & =E(C U) \\
& =C E(U) \\
& =0
\end{aligned}
$$

That is,

$$
E\left(w_{i}\right)=0, i=2, \ldots, n
$$

And the dispersion matrix transforms to

$$
D=c \cdot\left[\begin{array}{cccc}
D=c^{\prime} \Sigma c \\
\rho & \rho & \cdots \cdot & \rho \\
\cdots & 1 & \cdots \cdot \cdots & \rho \\
\rho & \rho & \cdots \cdots \cdot \cdot
\end{array}\right] \cdot c
$$

On simplification we get the, dispersion matrix D as,
$D=\sigma^{2}\left[\begin{array}{cccc}1+(n-2) g & 0 & \cdots & 0 \\ 0 & (1-9) & \cdots & 0 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & 0 & & \cdot \\ \cdots & (1-9)\end{array}\right]$
from the right hand side of (2.4.11) it follows that

$$
\begin{aligned}
& V\left(w_{2}\right)=[1+(n-2) \rho] \sigma^{2} \\
& v\left(w_{i}\right)=(1-\rho) \sigma^{2} \quad i=2, \ldots n
\end{aligned}
$$

and

$$
\begin{equation*}
\operatorname{Cov}\left(w_{i}, w_{j}\right)=0, \quad i \neq j \tag{2.4.12}
\end{equation*}
$$

That is the transformed variables are uncorrelated.
Now, the distribution of w_{2} is normal with mean zero and variance $(1+(n-2) P) \sigma^{2}$. But from (2.4.10) we have,

$$
w_{2}=\frac{-1}{\sqrt{n-1}} \sum_{i=2}^{n} U_{i}=\frac{(n-1) 0}{\sqrt{n-1}}=-\frac{-U_{1}}{\sqrt{n-1}}
$$

So, the distribution of U_{1} is normal with mean zero and variance $[1+(n-2) \rho](n-1) \sigma^{2}=\sigma^{2}$, that is U_{1} is normal with mean zero and variance σ^{2}, and w_{i} has normal distribution with mean zero and variance $\left[(1-\rho) \sigma^{2}\right]$ for $i=3, \ldots . n$ and all are independent. Now, since the transformation (2.4.9) is orthogonal we have

$$
W \cdot W=U ' U
$$

That is,

$$
\begin{aligned}
\sum_{2}^{n} w_{i}^{2} & =\sum_{2}^{n} U_{i}^{2}=\sum_{2}^{n}\left(U_{i}-0\right)^{2}+(n-1) 0^{2} \\
& =(n-2) s_{u}^{2}+(n-1) 0^{2} \\
& =(n-2) s_{u}^{2}+w_{2}^{2}
\end{aligned}
$$

from (2.4.12) it follows that U and S_{u}^{2} that is U_{1} and S_{u}^{2} are independently distributed. And

$$
(n-2) s_{u}^{2}=-\sum_{2}^{n}\left(U_{i}-0\right)^{2}=(1-8) \cdot x_{n-2}^{2} \text { has a chi- }
$$

square distribution with $(n-2)$ d.f. Where X_{n-2}^{2} is chisọuare variate with ($n-2$) d.f. Let

$$
\begin{equation*}
v^{\prime}=\sum_{2}^{n}\left(u_{i}-0\right)^{2} / 1-9 \tag{2.4.13}
\end{equation*}
$$

Now, it follows that V ' has chi-square distribution with ($n-2$) d.f. This proves the lemma. An outline of the proof of this lemma is given on page 136 of Rao (1965).

Let,

$$
\begin{equation*}
t_{1}=\frac{U_{1}}{\sqrt{V}} \tag{2.4.14}
\end{equation*}
$$

Now from (2.4.7) and (2.4.13) it follows that

$$
V=\frac{V^{\prime}}{(n-2)}
$$

where V ' has chi-square distribution with (n-2) d.f. and is independent of U_{1}. Hence we get the t_{1} has a student's t distribution with $(n-2)$ d.f. Hence the right hand side of (2.4.8) is equivalent to

$$
\begin{aligned}
& \quad T=t_{1} /\left(b_{n} a_{n}+b_{n} t_{1}^{2}\right)^{1 / 2} \\
& \text { or } \quad T^{2} b_{n} a_{n}=t_{1}^{2}-b_{n} t_{1}^{2} T^{2}
\end{aligned}
$$

That is,

$$
\left.t_{l}^{2}=\frac{b_{n} a_{n} T^{2}}{\left(1-b_{n}\right.} \mathrm{T}^{2}\right), \quad \sqrt{b_{n}} T<1
$$

That is,

$$
\left.t_{1}=\frac{\left(b_{n} a_{n}\right)^{1 / 2} T}{\left(1-b_{n}\right.} T^{2}\right)^{1 / 2}, \quad V b_{n} T<1
$$

Now, $T \leq t_{0}$ is equivalent to

$$
t_{1} \leq \frac{\left(b_{n} a_{n}\right)^{1 / 2} t_{0}}{\left(1-b_{n} t_{0}^{2}\right)^{172}}, \quad \sqrt{b_{n}} T<1
$$

also, the distribution of t_{1} is independent of μ and σ^{2} hence by Basu's Theorem, the right hand side of (2.4.3) is equivalent to

$$
\begin{align*}
& P_{\mu, \sigma}\left[t_{1} \leq \frac{\left(b_{n} a_{n}\right)^{1 / 2} t_{0}}{\left(1-b_{n} t_{0}^{2}\right)^{17} \frac{o}{2}}\right], \quad \quad \sqrt{b_{n}} T<1 \\
& =F_{t_{n-2}}\left[\frac{\left(b_{n} a_{n}\right)^{1 / 2} t_{o}}{\left(1-b_{n} t_{0}^{2}\right)^{1 / 2}}\right] \tag{2.4.15}
\end{align*}
$$

Hence, MVUE of θ is given by,

$$
\hat{\theta}=F_{t_{n-2}}\left[\frac{\left(\frac{n(n-2)}{(n-1)}\right)^{1 / 2} \frac{L-\frac{\bar{x}}{n}}{s 1}}{\left(1-\frac{n}{n-1}\left(\frac{L-\bar{x}}{s \sqrt{n-1}}\right)^{2}\right)^{1 / 2}}\right]
$$

Miss Surekha N. Kulkarni proved the results (2.2.3), (2.3.7) and (2.4.15) in her M. Phil dissertation (1986). Now, using the estimator $\hat{\theta}$, the criteria for accepting or rejecting the lot is as follows.

Accept the lot if $\hat{\theta} \leq \theta_{0}$ otherwise reject the lot.
Then

$$
\left.\left.\left.\hat{\theta} \leq \theta_{0} \text { inf }_{F_{n-2}} \frac{\left(\frac{n(n-2)}{n-1}\right)^{1 / 2} \frac{L-\bar{x}}{s} \sqrt{n}=I}{\left(1-\frac{n}{n}-I\left(\frac{L}{s \sqrt{x}}\right.\right.} \sqrt{n-1}\right)^{2}\right)^{1 / 2}\right] \leq \theta_{0}
$$

which implies that

That is

$$
\frac{\left(\frac{n(n-2)}{n-1}\right)^{1 / 2} \frac{L-\bar{x}_{-}}{s \sqrt{n-1}}}{\left(1-\frac{n}{n-1}\left(\frac{L-\frac{1}{x}}{s \sqrt{n-1}}\right)^{2}\right)^{1 / 2}} \leq k^{\prime}
$$

Where $k^{\prime}=F_{t_{n-2}}^{-1}\left(\theta_{0}\right)$. Solving (2.4.17) we get

$$
\begin{gathered}
\frac{n(n-2)(L-\bar{x})^{2}}{s^{2}(n-1)^{2}-n(L-\bar{x})^{2}} \leq k^{\cdot 2} \\
\frac{n(n-2)(L-\bar{x})^{2}}{k \cdot 2} \leq s^{2}(n-1)^{2}-n(L-\bar{x})^{2} \\
-\frac{n}{(n-1)^{2}}\left(-\frac{n-2}{k \cdot 1}-1\right) \leq \frac{s^{2}}{\left(L-\frac{\bar{x}}{2}\right)^{2}} \\
\sqrt{-\frac{n}{(n-1)^{2}}\left(\frac{\left.n-\frac{2}{2}+1\right)}{k \cdot 2}\right.} \quad \geq \quad \frac{L-\bar{x}}{s}
\end{gathered}
$$

which gives

$$
\begin{equation*}
\frac{L}{s}=\frac{\bar{x}}{s} \leq K \tag{2.4.18}
\end{equation*}
$$

where $\mathrm{k}=$

$$
\sqrt{\sqrt{-\frac{n}{(n-1)^{2}}\left(\frac{1}{k^{\prime} \cdot 2}+1\right)}}
$$

using (2.4.18) the OC function can be computed.
Approximated method for finding n and k :
Using (2.4.18) the OC function can be written as,

$$
\begin{aligned}
L(\mu, \sigma) & =P_{\mu, \sigma}(\text { Accepting the lot }) \\
& =P_{\mu, \sigma}\left(\frac{L-\bar{Z}}{s} \leq k\right) \\
& =P_{\mu, \sigma}(\bar{X}+k s \geq L)
\end{aligned}
$$

In order to obtain the distribution of $\bar{X}+\mathrm{ks}$ we shall
consider the following Theorem.
Theorem 2.4.1 : (Walker [1]) :
If the density functions $f(x ; \theta), \theta \in(H) \subset E^{(K)}$,
satisfy the Cramer-Rao regularity conditions ; if T_{n} is a sequence of asymptotically normal estimators, with an asymptotic qovariance matrix $n^{-1} \notin(\theta)$; and if, for each $\theta \in(H)$, (a) the sequence $\left[E_{\theta}\left|\sqrt{n}\left(T_{i, n}-\theta_{i}\right)\right|^{2+\sigma}\right]$, $i=1, \ldots, k$ are all bounded, and $(b)\left(\partial / \partial \theta_{j}\right) E_{\theta}\left[I_{i, n}-\theta_{i}\right] \rightarrow 0$ for all $i, j=1,2, \ldots, k$, then $\nexists(\theta)-I^{-1}(\theta)$ is nonnegative definite, for $\operatorname{cach} \theta \in$ (H) (The matrix $I(\theta)$ is the fisher information matrix).

It is known that $\left(\mathbb{X}, S^{2}\right)$ ' is the maximum likelihood estimate for $\left(\mu, \sigma^{2}\right)^{\prime}$. Also the Cramer-Rao regularity conditions will be satisfied in this case. Then by above Theorem it follows that

$$
V n\left(\mathbb{X}-\mu, s^{2}-\sigma^{2}\right) \text { converges in distribution }
$$

to bivariate normal with mean vector $(0,0)$ ' and variance covariance matrix I^{-1} where

$$
I^{-I}=\left[\begin{array}{cc}
2 & 0 \\
0 & 2 \sigma^{4}
\end{array}\right]
$$

Define $h\left(\mu, \sigma^{2}\right)=\mu+k \sigma$ which is a continuous function of μ and ∂ and also $\frac{\partial h}{\partial \mu}$ and $\frac{\partial h}{\partial \sigma^{2}}$ does not vanish.

Hence by Theorem (5.5.3) of Zack (1971), it follows that $h\left(\bar{X}, S^{2}\right)=\bar{X}+k s$ is such that $\operatorname{Vn}[(\bar{X}+i k s)-(\mu+k \sigma)]$ converges in distribution to normal with mean O and variance $\left(\frac{\partial h}{\partial \mu}, \frac{\partial h}{\partial \sigma^{2}}\right) I^{-1}\left(\frac{\partial h}{\partial \mu}, \frac{\partial h}{\partial \sigma} 2\right)^{\prime}$ which is equal to mean $\mu+k \sigma$ and variance $\left(\sigma^{2} / n\right)\left(1+k^{2} / 2\right)$. So that

$$
\begin{align*}
& =P_{\mu, \sigma}\left[\frac{\bar{X}+k s-(\mu+i k \sigma)}{(\sigma / \sqrt{n})\left(1+k^{2} / 2\right)^{1 / 2} \geq} \frac{L-(\mu+k \sigma)}{(\sigma / \sqrt{n})\left(1+k^{2} / 2\right)^{1 / 2}}\right] \\
& =P_{\mu, \sigma}\left[Z \geq \frac{\sqrt{n}\left(Z_{\theta}+k\right)}{\left(1+\frac{\left.k^{2} / 2\right)^{1 / 2}}{}\right]}\right. \\
& =1-P\left[Z \leq \frac{\sqrt{n}\left(Z_{\theta}+k\right)}{\left(1+k^{2} / 2\right)^{1 / 2}}\right] \tag{2.4.19}
\end{align*}
$$

where $Z_{\theta}=\frac{L-\mu}{\sigma}$. We find n and k so that the resulting plan has $O C$ function passing through the producer's risk acint $\left(\theta_{1}, 1-\alpha\right)$ and consumer's risk point $\left(\theta_{2}, \beta\right)$. Using (2.4.19) we get the following two equations.

$$
\begin{equation*}
P\left[z \leq \frac{\sqrt{n}\left(z_{\theta_{1}}+k\right)}{\left(1+k^{2} / 2\right)^{1} / 2} \quad\right]=\alpha \tag{2.4.20}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left[z \leq \frac{V n\left(z_{\theta_{2}}+k\right)}{\left(1+k^{2} / 2\right)^{1 / 2}}\right]=1-\beta \tag{2.4.21}
\end{equation*}
$$

equations (2.4.20) and (2.4.21) can be wiritten as

$$
\frac{\sqrt{n}\left(Z_{\theta_{1}}+k\right)}{\left(1+k^{2} / 2\right)^{1 / 2}}=Z_{\alpha}
$$

and

$$
\begin{equation*}
\frac{\sqrt{n}\left(z_{\Theta_{2}}+k\right)}{\left(1+k^{2} / 2\right)^{1 / 2}}=-z_{\beta} \tag{2.4.23}
\end{equation*}
$$

Substracting (2.4.22) from (2.4.23) we get

$$
\frac{\sqrt{n}\left(z_{\theta_{2}}-z_{\theta_{1}}\right)}{\left(1+k^{2} / 2\right)^{1 / 2}}=-z_{\beta}-z_{\alpha}
$$

that is

$$
n=\left(1+k^{2} / 2\right)\left(\frac{z_{\alpha}+z_{\beta}}{Z_{\theta_{1}}-Z_{\theta_{2}}}\right)^{2}
$$

Substituting the value of n in (2.4.22), we get the value of k, that is

$$
\begin{equation*}
k=-\frac{Z_{\alpha} Z_{\theta_{2}}+Z_{\beta} Z_{\theta_{1}}}{Z_{\alpha}+Z_{\beta}} \tag{2.4.25}
\end{equation*}
$$

Case-II : Upper specification limit U is given :
For the upper specification limit θ is given by

$$
\left.\begin{array}{rl}
\theta & =P_{\mu, \sigma}(X \geq U) \\
& =P_{\mu, \sigma}\left(\frac{X-\mu}{\sigma} \geq U_{\sigma} \mu\right.
\end{array}\right)
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be the measurements on the n items chosen at random from the lot so that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d normal with mean μ and variance σ^{2}. In order to obtain minimum variance unbiased estimate of θ define.

$$
I_{2}= \begin{cases}1 & \text { if } X_{1} \geq U \\ 0 & \text { otherwise. }\end{cases}
$$

When μ and σ^{2} are both unknown. Proceeding similarly exactly as per case (1). Then MVUE is given by

$$
\hat{\theta}=F_{t_{n-2}} \quad\left[\frac{\left(\frac{n(n-2)}{(n-1)}\right)^{1 / 2} \frac{U-\bar{x}}{s \sqrt{n-1}}}{\left(1-\frac{n}{n-1}\left(\frac{U-\bar{x}}{s \sqrt{n-1}}\right)^{2}\right)^{1 / 2}}\right]
$$

Using the estimator $\hat{\theta}$, the criteria for accepting or rejecting the lot is as follows. Accept the lot if $\hat{\theta} \geq \theta_{0}$ otherwise reject the lot. Then that is

$$
\hat{\theta} \underline{\underline{x}} \theta_{0} \text { inf } F_{t_{n-2}}\left[\frac{\left(\frac{n(n-2)}{n-1}\right)^{1 / 2} \frac{U-\bar{x}}{s \sqrt{n-1}}}{\left(1-\frac{n}{n-I}\left(\frac{U-\bar{x}}{s \sqrt{n-1}}\right)^{2}\right)^{1 / 2}}\right] \underline{\theta_{0}}
$$

which implies that

$$
\begin{aligned}
& \left(\frac{n(n-2)}{n-1}\right)^{1 / 2} \frac{u-\bar{x}}{s \sqrt{n-1}} \\
& \left(1-\frac{n}{n-1}\left(\frac{U-\bar{x}_{-}}{s \sqrt{n-1}}\right)^{2}\right)^{1 / 2} \text { 宏 } F_{t_{n-2}}^{-1}\left(\theta_{0}\right)
\end{aligned}
$$

that is

$$
\frac{\left(\frac{n(n-2)}{n-I}\right)^{1 / 2} \frac{U-\bar{x}}{s} V \frac{V}{n}=1}{\left(1-\frac{n}{n-I}\left(\frac{U-\bar{x}}{s \sqrt{n-1}}\right)^{2}\right)^{1 / 2}}
$$

where $k^{\prime}=F_{t_{n-2}}^{-1}\left(\theta_{0}^{\prime}\right)$. Solving we get

$$
\begin{aligned}
& \frac{n(n-2)(U-\bar{x})^{2}}{s^{2}(n-1)^{2}-n(U-\bar{x})^{2}} \underline{\underline{x} \prime^{2}} \\
& \frac{n(n-2)(U-\bar{x})^{2}}{k^{\prime 2}} \quad \underset{s^{2}(n-1)^{2}-n(U-\bar{x})^{2}}{ } \\
& \frac{n}{(n-1)^{2}}\left(\frac{n-2}{k^{\prime 2}}+1\right) \quad x \frac{s^{2}}{(u-\bar{x})^{2}} \\
& \sqrt{\frac{n}{(n-1)^{2}}\left(\frac{1}{\left.k^{\prime} \frac{2}{2}+1\right)}\right.} \times \frac{(U-\bar{x})}{s}
\end{aligned}
$$

that is

$$
\begin{equation*}
\underset{S}{U-\bar{x}} \underline{\underline{x}} k \tag{2.4.26}
\end{equation*}
$$

where $k=\frac{1}{\sqrt{\left(\frac{n}{(n-1)}\right)^{2}}\left(\frac{n-2}{k^{\prime}}+1\right)}$
From (2.4.26) we can compute the OC function of the sampling plan.

Approximate method for finding n and k :
Using (2.4.26), OC functioncan be written as,

$$
\begin{aligned}
L(\mu, \sigma) & =P_{\mu, \sigma}(\text { Accepting the lot }) \\
& =P_{\mu, \sigma}\left(\frac{U-\mathbb{X}}{S} \geq k\right) \\
& =P_{\mu, \sigma}(\bar{X}+k s \leq U)
\end{aligned}
$$

$\overline{\mathrm{X}}+\mathrm{ks}$ is approximately normally distributed with mean $\mu+\mathrm{k} \sigma$ and variance $\left(\sigma^{2} / n\right)\left(1+k^{2} / 2\right)$, so that

$$
\begin{align*}
& =P_{\mu, \sigma}\left[\frac{\not \subset+k s-(\mu+k \sigma)}{(\sigma / \sqrt{n})\left(1+k^{2} / 2\right)^{1 / 2}} \leq \frac{U-(\mu+k \sigma)}{\left.(\sigma / \sqrt{n})\left(1+k^{2} / 2\right)^{1 / 2}\right]}\right. \\
& =P_{\mu, \sigma}\left[z \leq \frac{\sqrt{n}\left(Z_{\theta}+k\right)}{\left(1+k^{2} / 2\right)^{I}}\right] \\
& =p\left[z \leq \frac{\sqrt{n}\left(Z_{\theta}+k\right)}{\left(1+k^{2} / 2\right)^{2}}\right] \tag{2.4.27}
\end{align*}
$$

We find n and k so that the sesulting plan has $O C$ function passing through the producer's risk point $\left(\theta_{1}, l-\alpha\right)$ and consumer's risk point $\left(\theta_{2}, \beta\right)$ using (2.4.27) we get the folliwing two equations.

$$
\begin{equation*}
P\left[z \leq \frac{\sqrt{n}\left(Z_{\theta}+k\right)}{\left(1+k^{2} / 2 ; 172\right.}\right]=1-\alpha \tag{2.4.28}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left[Z \leq \frac{\sqrt{n}\left(Z_{\theta 2}+k\right)}{\left(1+k^{2} / 2\right)^{1 / 2}}\right]=\beta \tag{2.4.29}
\end{equation*}
$$

equations (2.4.28) and (2.4.29) can be written as

$$
\frac{\sqrt{n}\left(z_{\theta_{1}}+k\right)}{\left(1+k^{2} / 2\right)^{1 / 2}}=-z_{\alpha}
$$

and

$$
\begin{equation*}
\frac{\sqrt{n}\left(z_{\theta_{2}}+k\right)}{\left(1+k^{2} / 2\right)^{1 / 2}}=z_{\beta} \tag{2.4.31}
\end{equation*}
$$

substracting (2.4.30) from (2.4.31) we get

$$
\frac{\sqrt{n}\left(z_{\theta_{2}}-z_{\theta_{1}}\right)}{\left(1+k^{2} / 2\right)^{1 / 2}}=z_{\beta}+z_{\alpha}
$$

that is

$$
\begin{equation*}
n=\left(1+k^{2} / 2\right)\left(\frac{z_{\alpha}+z_{\beta}}{z_{\theta_{2}}-z_{\theta_{1}}}\right)^{2} \tag{2.4.32}
\end{equation*}
$$

substituting the value of n in (2.4.30) we get the value of k, that is

$$
\begin{equation*}
k=+\frac{z_{\alpha} Z_{\theta_{2}}+Z_{\beta} Z_{\theta_{1}}}{Z_{\alpha}+Z_{\beta}} \tag{2.4.33}
\end{equation*}
$$

Exact method for finding n and k :
Case I : Lower specification limit L is given :
Let $X_{1}, X_{2}, \ldots, X_{n}$ be the measurements on the n items chosen at random from the lot so that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. normal with unknown mean μ and unknown variance σ^{2}. The problem is to find a value of k such that

$$
\begin{equation*}
P\left(\bar{X}+k_{s} \geq L\right)=1-\alpha \tag{2.4.34}
\end{equation*}
$$

that is

$$
\begin{equation*}
P\left[\left(\frac{X-\mu}{\sigma}\right) \sqrt{n}-\left(\frac{L-\mu}{\sigma}\right) \geq-\frac{k 3}{\sigma}-\sqrt{n}\right]=1-\alpha \tag{2.4.35}
\end{equation*}
$$

divide both sides of the inequality $(2.4 .35)$ by s / σ and the quantity on the left is of the form of the non-centeral t. Hence we have,

$$
\begin{equation*}
P\left[T_{f} \geq-\left.k V n\right|^{z}=-\left(\frac{L-\mu}{\bar{\sigma}}\right) \sqrt{n}\right]=1-\alpha \tag{2.4.36}
\end{equation*}
$$

where T_{f} is a non-central t variable with f degrees of freedom, where $f=n-1$ the number of degrees of freedom of S^{2} and the non-centrality parameter ∂. Then we have

$$
\begin{equation*}
P\left[T_{f} \geq k \sqrt{n} \mid \partial=Z_{\theta} \sqrt{n}\right]=\alpha \tag{2.4.37}
\end{equation*}
$$

where $Z_{\theta}=\frac{L-\mu}{\sigma}$ and I_{f} has a non-central t-distribution. Hence the quantity k which is desired may be computed from the percentage points of the non-central t-distribution.

Case- II : Upper specification limit U is given :

In this case we have to find k such that

$$
\begin{equation*}
P(X+k \& \leq U)=1-\alpha \tag{2.4.38}
\end{equation*}
$$

that is

$$
\begin{equation*}
P\left[\left(\frac{\bar{X}-\mu}{\sigma}\right) \sqrt{n}-\left(\frac{U-\mu}{\sigma}\right) \sqrt{n} \leq-\frac{k s}{\sigma} \sqrt{n}\right]=1-\alpha \tag{2.4.39}
\end{equation*}
$$

divide both sides of the inequality (2.4.39) by S / σ and the quantity on the left is of the form of the non-central t. Hence we have,

$$
\begin{equation*}
P\left[T_{f} \leq-k \sqrt{n} \left\lvert\, \partial=-\left(\frac{U-\mu}{\sigma}\right) \sqrt{n}\right.\right]=1-\alpha \tag{2.4.40}
\end{equation*}
$$

where T_{f} is a non-central t variable with f degrees of freedom and ∂ is a non-centrality parameter. Then we have

$$
\begin{equation*}
P\left[T_{f} \leq k \sqrt{n} \mid \partial=Z_{Q} \sqrt{n}\right]=\alpha \tag{2.4.41}
\end{equation*}
$$

where $Z_{\theta}=\frac{U-\mu}{\sigma}$ and T_{f} has a non-central t-distribution. By using the tables 1 and 2 of Odeh and Owen (1980), we find the value of k, when all of the parameters are given.

In table 1 values of $\theta=0.75,0.90,0.95,0.975,0.99$, $0.999,0.9999$ and $N=2(1) 100(2) 180(5) 300(10) 400(25)$ $650(50), 1000,1500,2000,3000,5000,10000$ for given $\alpha=0.995,0.990,0.975,0.950,0.900,0.750,0.250$, $0.100,0.050,0.025,0.010,0,0005$ and in table 2 sample sample size required when one specification limit is given, when $\theta_{1}=0.005(0.005) 0.05,0.075,0.10$,
$\theta_{2}=2 \theta_{1}(0.005) 0.10,0.15,0.20,0.30$ for given $\alpha=0.01,0.025,0.05$ and $\beta=0.05,0.10,0.20$.

Example 2.3:

Suppose that we are given the following quantities $\alpha=.05, \beta=.05$, and $\theta_{1}=.01$ and $\theta_{2}=.300$
Using equation (2.4.24) we will get the valuo of n, that is

$$
\mathrm{n}=7
$$

and from equation (2.4.25) we will get the value of k, that is $k=1.423$.

In the following table IX and X the different values of α, β and θ_{2}, the n and k is computed and is compared with the exact distribution parameters.

TABLE-IX

$$
\alpha=.05, \quad \beta=.05, \theta_{1}=.01
$$

Approximate distribution Exact distribution

. 300	7	1.423	8	1.443
. 200	12	1.583	12	1.604
. 150	16	1.678	17	1.695
. 100	26	1.803	27	1.814
. 095	28	1.818	29	1.828
. 090	30	1.833	31	1.843
. 085	33	1.848	33	1.858
. 80	35	1.863	36	1.874
. 075	39	1.883	39	1.891
. 070	42	1.898	43	1.908
. 065	47	1.918	48	1.926
. 060	52	1.938	54	1.946
. 055	59	1.958	61	1.967
. 050	69	1.983	70	1.990
. 045	81	2.008	83	2.015
. 040	97	2.033	102	2.041
. 035	128	2.068	130	2.072
. 030	175	2.103	176	2.105
. 025	252	2.138	267	2.144
. 020	483	2.188	496	2.191

74

TABLE-X

$$
\alpha=.01, \quad \beta=.05, \quad \theta_{1}=01
$$

Q_{2}	Approximate distribution		$\begin{aligned} & \text { Exact distribution } \\ & \mathrm{n} \end{aligned}$	
. 300	9	1.2681	10	1.285
. 200	15	1.4555	16	1.467
. 150	21	1.5668	23	1.578
. 100	36	1.7133	37	1.719
. 095	39	1.7308	40.	1.736
. 090	42	1.7484	43	1.753
. 085	45	1.7660	46	1.772
. 080	48	1.7835	50	1.791
. 075	53	1.8070	54	1.810
. 070	58	1.8246	60	1.831
. 065	65	1.8480	67	1.853
. 060	73	1.8714	75	1.877
. 055	82	1.8948	85	1.902
. 050	96	1.9241	99	1.929
. 045	114	1.9534	117	1.958
. 040	137	1.9827	144	1.990
. 035	181	2.0237	184	2.026
. 030	249	2.0647	251	2.066
. 025	359	2.1057	382	2.112
. 020	692	2.1643	714	2.167

TABLE-XI

$$
\alpha=.025, \quad \beta=.1, \quad \theta_{1}=.01
$$

Q_{2}	Approximate distribution		Exact distribution	
	n	k	n	k
. 300	6	1.233	7	1.270
. 200	10	1.427	11	1.453
.150	14	1.542	15	1.566
. 10 C	24	1.693	25	1.707
. 095	26	1.711	27	1.724
. 090	27	1.729	29	1.741
. 085	30	1.747	31	1.760
. 080	32	1.765	33	1.779
. 075	35	1.790	36	1.799
. 070	38	1.808	40	1.820
. 065	43	1.832	44	1.843
. 060	48	1.856	50	1.866
. 055	54	1.880	57	1.892
. 050	64	1.911	66	1.919
. 045	75	1.941	78	1.949
. 040	90	1.971	96	1.982
. 035	120	2.013	123	2.018
. 030	165	2.056	167	2.059
. 025	238	2.098	254	2.106
. 020	459	2.159	475	2.162

IABLE-XII

θ_{2}	Approximatedistribution_n		Exac dis -n	$\text { ion }-$
. 300	8	1.342	9	1.361
. 200	13	1.517	14	1.533
. 150	18	1.620	19	1.637
. 100	31	1.756	32	1.765
. 095	33	1.772	34	1.781
. 090	35	1.789	36	1.797
. 085	38	1.805	39	1.814
. 080	41	1.821	42	1.831
. 075	45	1.843	46	1.849
. 070	49	1.860	51	1.869
. 065	54	1.881	56	1.889
. 060	61	1.903	63	1.911
. 055	69	1.925	72	1.934
. 050	81	1.952	83	1.959
. 045	95	1.979	98	1.986
. 040	114	2.007	120	2.015
. 035	151	2.045	154	2.048
. 030	207	2.083	209	2.085
. 025	298	2.121	318	2.128
. 020	573	2.175	592	2.179

