CHAPTER 1II

‘BAYES TEST PROCEDURE FOR VECTOR VALUED
PARAMETER AND MULTIPLE HYPOTHESIS TESTS

2.0 Introduction :

Let X be a random variable (may be vector) with

density function f (x), wé& <. where o c gk

y kK 2 2,

Let H;: w €W, and Hyr w € W,, W, = g S Wy. Let d;
denote the Qecision of accepting the hypothesis Hi, i=1,2,
When w € Wi, if the decision taken is di, then there is no
error in the decision taken. However if wé;Wi and the deci-
sicn taken is dj’ j # i then there is an error associated

with the decision. As - C RK there are different ways to

quantify the loss associated with a decision rule. For

We K and?
this essentially-we have to define norms on R°, based on the
~.

norm défined the loss function can be defined. Some commonly

used norms are 3}

(1) [Ixl] = (52 )1/2
(2 Il = max Ix,]
(3) x| =t lxii

Let A ¢ R¥ we definggfthe distance of A from w,

d(w,A) = inf llw—ﬁi{. A general form of a loss function
C A
1s given by 0, if w € W,
’

Li=L(w,d,)=
1 1 hy[d(w,W))], if w € W,



0, if  w € W,

L,=L(w,d,) =
2 2 {;hQ[d(w,W2)], if we .

where hi’ i = 1,2, is non-negative increasing function
defined on [0,)

dlw, A) =0 if w € A.
The above loss function can be written as

L(w,di) = hi[d(w,wi)J, i =1,2 with h(0) =0

In remainder of this chapter we consider the testing
of hypothesis problem concerned with mean = e of normal
distribution and for this we need to refer resu% (Degroot 176),
" A random sample from multivariate normal distribution with
| unknown value of the mean vector M and a specified precision
. matrix (inverse of variance co-variance matrix) r. Suppose
also that the distribution of M is a multivariate normal
distribution with mean vector ¥ and precision matrix “T' such
“that u € Rk and “T is a symmetric positive definite matrix.
Then the posterior distribution of i when Xi=xi(i=l,2,..,n)
is a multivariate normal distribution with mean vector u¥* and
precision matrix "' +nr, where p* =("F‘-i-nr)"'l (%‘Q +nr §)' .

t2ad-1)
In Section 2.1 we introduce ’ model *by choosing

suitable norms and the h-functions. The problem of multiple
hypothes®s testing is described in Section 2.2. A finite

partition of the parameter space ~ - is specified as
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{wl,wz,...,wm} . The statistician has to decide to which
one of the m subsets w belongs. Here the decision WGEWj
2 WeE W,
it =Y
(i=1,2,...,m) and rejection of all other (m=-l) hypothes®s.

is interpreted as the acceptance of the hypothesis H

In this problem we notice that Bayes procedure &against any
prior is not necessarily unique and does not requires

randomisation.,

2.1 Models :

2,1.1 : HKodel :

Hypothesis concerning mean of bivariate normal distribution.
Let X,Y be random variables having bi-variate normal
distribution with mean (el, 92) and the precision matrix 12.
The prior distribution be normal with mean (0O, O) and preci-

sion matrix 12.
(A) Hj: eec @ 1 ={(el,92) : 8 20, 922_0} .
2
Hy: e e@®@ 5 9 GD}2=:GD ..@Dl , ) =R".

Let |].]]| be any norm and

1, if t> 0
h{t) = {:
0, if t =0

In this case hl(t) = hz(t) =1 for t » O. This is zero-one
loss functiion. |
Using the result given in section 2.0 . the

posterior distribution of o will be bivariate normal (BN)

o
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with mean vector (x/2, y/2)' and variance-co-variance matrix

1/2 ( é g ).

Following the notations in (1.3.1) and (1.3.2) we get
Ry =J J 1.BN6162( x/2, y/2, 1/2, 1/2, 0) de
-] GC:) o
where BNel,eo( x/2, y/2, 1/2, 1/2, 0) represents the
postericr digtribution of ©,,8, given X = X;,e0.,%_ and
) 172 1 n
Y = Yyseee,Ytis bivariate normal with parameters /2,
v/2, 1/z, 1/2, 0.
Ry =S [ 1.Bn, o (%/2, ¥/2, 1/2, 1/2, 0) de
96691_ 1272
By the criteria given in (1.3.3)

Accept the H, if Rl < Roe But in this case we get

Therefore accept H, if R, > 1/2 or Ry < 1/2  (2.1.1)
Ry = S ?' . exp - ~L.. (el— 5?/2)2 dej. ===
o o YV2=my1l/2 2.1/2 Yenyi/2

exp = =t- (0= §/2)% dey.

o{-ol

=Ple; > 0]. Ple, > O]
where elva(§/2, 1/2) and

e, N(Y/2, 1/2).

P[(e)-X/2)V2 > (0-%/2)V2]. P [(e,-F/2)V2 > =7/2 V,]

50 F/V2) . B F/V2).

"
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Thus the acceptance region is given by
{(x,y) p(x/V2). &(y/V2) > 1/2;} , that is
PR ICIEE RSO S ESIDREVEI IS

In the following we sketch this region of acceptance.

(44
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Note that both X and Y should be positive (otherwise the
condition will not be satisfied). For a given X > O we
choose the value of Y such that the equality in (2.1.1)
holds. Different values of X and Y are tabulated in the

table (Z2.1.9).
Table : (2.1.9)

X B(X) B(Y) Y

0.5 0.6915 0.7230 0.59
0.6 0.7257 0.6890 0.49
0.7 0.7580 0.6596 0.41
0.8 0.7881 0.6344 0.34
0.9 0.8159 0.6128 0.29
1.0 0.8413 0.5943 0.24
1.1 0.8643 0.5785 0.20
1.2 0.8849 0.5650 0.16
1.5 0.9332 0.5358 0.09
1.8 0.9641 0.5186 0.05
2.0 0.9772 0.5117 0.03
2.5 0.9938 0.5031 0.01

"
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B) Let us study the same problem by changing the hyp=-

othesis of test and corresponding loss functions.

H2 2 ey + o, > 0 =
Hy
e + e,
——-v—-2——-— ’ if e € H2
Ll =
0 , if e E Hl
] , if e € HQ
L. =
2 el + 92 .
This is equivalent to choosing ||x|| = |x,|+|x,| and

h(t) = t/¥2 for t > O.
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- f ‘g‘_;“"ﬁ- BNG ’90(32/2, ?/2, 1/2: l/2a O)dﬁl-
—rO Z “
€,+6e
172
R = E ————— + R
1= ECEE) v,

Accept Hl if Rl - R2 <0
That is if E ( -==== ) < 0.

gives, accept H; if X + §< 0.

C) For the same hypothesis as in (B) consider the loss function

as given below ¢

0 , if e€ H,
Ly = . |
(el+92@ , if e €& H,
0 , if e € H,
(e;+e,)%, if e E H 1
h(t) = t2.
Rl 2 |
R, =J J (e,+e,)° BN (x/2, y/2, 1/2, 1/2, 0) de
1= ¢ -e 172 €119, -
1 2



i

) oo 5 A R
= f{ f (el+92) BNel’GQ(X/Q’ Y/“‘a 1/2’ 1/23 O) de

GO OO

-8
N 2
- J (ey+e,)” BN

©0

(%/2, §/2, 1/2, 1/2, 0)ds]
el ,92

< o
= L (eyver)™ BN, o (372, §/2, 1/2, 1/2, 0) de
oo _Ol
> -~ -
=L legre) T BN, o (R/2, ¥/2, 1/2, 1/2, 0) de

_ 2
Therefore R Ra = E( o.+ o )2
1~ %2 = 17 62

_ 2 . 1

= E( e] + 2e0y0, + 92) |

= 1/2 + %2/4 + 1/2 + §2/4 + 2 7/2.5/2.
Therefore R, - Ry = 1 +{3%479)/4 + (53)/2

=4 + (X + ?)2
We have accept Hl if Rl - R2 <0
Therefore accept d; if (X + 7)° < -4

D) Now for the same bivariate distribution let us consider

different hypothesis.

2 2
Hb : 91 “+ 62 S 0
. L2 2
corresponding loss functions defined are -

’:‘n



. 2 2
o R if e +e; L0
Ly = 2 2 . 2.2
l+92-6 ’ if o] +e, 2 0
. 2 2
L. =
k L 6-(e%+e§) , if ef +e§ <0
Hxl] = (x2y9)Y2  and n(t) =
RH = Risk in accepting HO.
Rk = Risk in accepting k.
R, =J J [0-(e2 +92)] BN, ez(i/z, v/2, 1/2, 1/2, 0)de J

Hy

C{WJ[6°(9 +62)] BNg l,e,)(x/2,y/2 1/2 1/2, 0) de

2 * foe +92-5)BNe o, (x/2,y/9 = Q)de

. . = 2
That is Ry - Ry = 3 = E( o] + e, ). '2’

2
=0 = 1 = _-__X
4

We have reject Hd bf Rk < RH.
Therefor for 0 £ 1 reject Hy.
If 0 > 1, then reject Hé if
3+ ?2 > 4(0-1).
E) In the following discussion take zero-one loss function
for the same problem. as,
{1 , if e} + e5 2 0.
2 2
1 2

0 , if e



) 2 2
1, if o] + o5 <9
Sk c if 62 + 82 > 0
b 4 1 2 ——
Accept Hy if‘Rk - R, > O.
But R, + Ry =1

Therefore accept Hy if R > 1/2.

R, = Plef + o2 < 8 / (e~BN(3/2, ¥/2, 1/2, 1/2, 0)]

2
=P[X_ (A) <]

2
e% + eg follows non-central X distribution with 2 d.f.
the non-centrality parameter being A = 32 4 <.

R, = g(A) is a decreasing function of A= 2 4+ 7
2

or A=0, g(0) = Pﬁjzg <9

_= o} 2 - -]
- e = J1/2 X /2 (2)27 qx
' R o
Y Y
0 )6
acceplt H#y aceepl K‘;
Reject Hé if Rk < RH.
/
&> Rk <172

& ¢(0) < '1/2"
&1 - ™2 ¢ 1/0

M
o
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(= e_a/2 > 1/2.

= - 3/2 » log et/2,
& - 0> 2 1log 1/2
¢=> 0 < -2 log 1/2.

If 0 2 =2 log , 1/2 then accept Hj whenever
Ry < Ry 1. A<

-2 -
where )\o = x° + yz.

1/2

t
|
Qcce{,k Hg AO %ue%‘— .

n,1.2 Model : Multinomial :

Let X = (Xl,Xz,...,Xk)' be a k-dimensional random
vector {multinomial) with parameter n, e = (el,ez,...,ek)'.

Its diszribution be denoted by Mk(n,g), 0 <e; 1 and

k

z o; = 1. The problem is to test the hypothesis
i=1

. _ _ ' .

Hy : 8 =8 = (ell, 912,...,elk) against

: = = ® 8 ® ’ G i 54

Hy t 8 =8, (921, ©50s »95), )" based on a single

observation x. Let the prior distribution be Ple = —6-1] =§
and Ple = gzj = l'-g . Consider the loss function

zero-one. 1t is very evident from the discussion of

section (1.3) that accept Hy if P(el/x) > P(eg/x).

A\
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That is accept Hl if,

) 8, X, e,, X
(D%, (222, (gZE) ko
2 22 2k
k . P
, : i
That is I x. log == > 0.
i=1 1t 23

Now consider the case where Xv1mk(n, @) having
. Y A — - (
Hl : P < PO, ghere P e, + e + +9r, r k
against H2 P p 2 Poe
With zero-one loss function, the nrior distribution of
p will be beta (a,b). (The prior distribution of e be
a direchlet distribution with parameter (ml,mz,...,mk)).
Wote that y = x;#Xo+ ...+x_ has B(n,p); p = 946, ,+———+o_.
Now the problen receives the form exactly ecual to

example 1l.3.3.

242 lFultiple Hvpothesis Testing

Let Xl’XQ""’Xn be i.i.d. random variables, having
a common distribution functicn. Fw(x), we ", L is
a specified interval in a Luclidean k-space, E(k). The
sample space n is fixed. Let T designate thie minimal

sufficient statistic for the family F ={F we -n-} .

w’?
T is some r dimensional vector, 1 { r £ n. The prcoblem
of multiple hypotinesis testing is described in section

(2.0) where the parameter space - is partitioned into

LN
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&’il,Wg,...,%‘u'm}. The decision that w(:\"afj is inter-
preted as the acceptance of hypothesis Hj: wE:Wj ’
(j = 1,2,.0.,m) and the rejection of the other (m-l1)
alternative hypothes®s. The decision is performed by a
randomized test function $(T), which is probability\
vector §(T) = (§;(T), «oev, b (T))'.
bj(T) 20, J =1,2,00.,m,

\

m
T b.(T) = 1.
j=1 ‘

The class D of all randomized test functions is the (ﬁ~l)
dimensional simplex of all paobability vectors
b= (¢y5 o55--.-,0 )" HNon-negative functions Lj(w),
j=1,2,.e..,m are defined on -~ - ., The function Lj(w)
designate the loss associated with the acceptance cf Hj,
when w s the value of the parameter.

Let f(t,w; "~ the density functioan T with
respect to a measure M(dt) under w. Let H(w) designate a
prior distribution on 4~ ., The risk function associated

with a test function § is
m
R(w, ) = Z L.(w) J b, (t) f(t,w) u(dt).
j=1 J J

0 < R({w, ¢) < o for all weL L since
0 <& bj(t) <1 fori=1,2,..., m.

The prior risk associated with H(w) and $ is



R(H,$) =.§lj'¢j(t) m(dt) f(aw) Li(w) £(t,w) «.(2.2.1)

J::
‘e assume that, for each j = 1,2,...,m.
Ry(t) = JH(aw) Ly(w) £(t,m) < a.s.[p] (2.2.2)

= fl(t) J'Lj(w) f(w/t) dw.
Jou(dt) Ry(t) <.
This implies that R(H,$) < = for all ¢ € D. A test
functicn bH is called Bayes against H if it minimizes

(Z.2.1). HNow it is easy to verify that

1, if R.(T) = nmin R.T) .
H J i=1,2 !
&):(T) - 1 PRI
J o, otherwise.

lie notice that a Bayes procedure against any prior
distrikbution 1is,

i) not necessarily unigue D ?

ii) it does not require randomization. —- mJL«ﬁ !

Example 2.2,1

Suppose that Xl,Xz,...,X is a random sample from a

n
normal distribution with an unknown value of mean e and an
unknown value of variance l/c’, the prior joint distribution
of e and 1/0" is the conditional distribution of e when

o' =0 {0 > 0) is a normal distribution with mean p and

variance 1M ¢ such that == < p < « and T* > 0 and

marginal distribution of 1/c' is gamma distribution with

N
L2



parameter a such that a« > 0. Then the posterior joint

distribution of e and 1/c' when X; = xi(i=1,2,...n) is

the conditional distribution of e when 1/¢' = 1/0 is a
normal distribution with mean p' and variance -

‘P u+nX T +n)o
where p' = wER And marginal distribution of 1/o is

a gamma distribution with parameter a. In particular
' = 1. The marginal posterior density of o,f(e/x) foll-
ows 't' distribution with 2@ d.f. with location para-
meter p' and scale parameter i (Ref. examole 1.3.2).

a{n+l)
Consider the problem of testing

Hi: o €@ _; = (~=, -1)
Hy: ¢ €@, = [-1, 1]

H3: 96@1 = (_]_,oo)

0, if e < =1
1, "7 otherwise
0, if le] <1
i 1, otherwise
o, ifg>1
1, otherwise.

BAMS. BALASARES Kbisiiiii w1 srusapn
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20+1 | _ (2a+1) \

— v — —— - —-

°0 2
-1 210 [a 20
where t = ng&l)u_
1/Va(n+l)
2a+l_ - (20+1)
= f? 2 ;E_ . (1 + E% ) 2 dt
-1 [af1/2 Voo 20
= P(e 2> -1)

That is P[(e = p")Va(n+l) > =(1 + p')Va(n+l) ]

R, = Ple <-1] +P[e > 1]
= Pl(e = p")Wa(n+l) < =41 + p') Va(n+l) ]
+ P[(e = u') Voa(n+l) > (1 = u') V&(n+1) ].
Ry 5 Ple < 1]

=P[(e = p') Va(n+l) < (1 = u') Va(n+l) ]
Fisher and Yates tables gives the significant values of
t, say t?/corresponding to PF‘

P

]

g =Pl It] >t ]=1-P[t] < t, 1.
=l-2Pl0Ltst ]
=2 (1~ Ps)

LN
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t
P, =Pt < t, ]=0.54+/ °£(t) at.

s o}
Therefore
Ry =1 - Ps[ (1+ p') Va(n+l) ]

Ry =1 = P [(14p")Va(n+l) J+ 1= P_[(1-p')Va(n+1) ]

i

2

Pgl(1+pt )Wa(n+1) ] = Pgl(1-p')Va(n+1) ]

]

Ry = Pgl(1-p') Ya(n+1)]
RQ is symmetric in pu' with minimum at p =0

R, is monotone decreasing on (~«~.0) with lim R, =1
Ko =00 =

The function Rl is monotone increasing with

lim Rl = QO and lim Rl =1
X we) =0 X D00

Hence there exists a unique point '§—l in (=~,0) at which
Ry = Ry. Symmetrically §, = E_; is the unique point in
(C,») is partitioned into three subsets, (-w,'f_l);

( I RE §1)§ (Ei’“’)-

If XG.(—w,‘g_l) we accept Hl

If XG&( E-l"gl) we accept H,

if XG(‘gl, © ) we accept Ha.



