CHAPTER III

BAYES SEQUENTIAL TEST PROCEDURES

3.0 Introduction

In all the problems that we have considered so far,
the sample size was fixed in advance. Such a prccedure
does not take aecount . the infomration being cocllected in
the coursz of collect}ng observations. Also, the fixed szmple
size proc=dure ignores the fact that sampling is expensive
and taking of each observation involves some cost. In this
chapter an attempt is made to explain how a statistician can
use the information collected in the course of experimentation
and this information be used to take a decision. Basically
the observations are being collected (may be to the extentof
desired accuracy). However, once the sampling is terminatad
after, say n observations, the decision is taken as if being
taken for a fixed sample size procedure.

In Bayesian sequential analysis, in order to decide when
to stop sampling, one has to compare the posterior Bayes risk
of an immediate decision with the expected Bayes risk of con-
tinuing sampling. At each stage one uses the current poste-
rior as the basis of comparing the present with future.

In the following we have introduced sequential csample,

components of sequential sampl}ing procedure and gain due tc



sequential sampling procedure with the help of an example.

A short discussion about the most commonly used sequential
probability ratio test (SPRT) is given in (1.3.c). In

Section (3.2) theorotical development of sequential decision
procedure is discussed. Also, it is shown witn the help of

an example that a sequential Bayes procedure need not alwavs
exists. A technique of backward induction is stated as optimal
sequential decision procedure and directly used for optimal
bounded seqﬁential decision procedure. Lastly an attempt is

made to show that SPRT is Bayes procedure.

Jel., Preliminaries :

Selea ¢ Seguential Sample @

Consider a statistical problem in which the statistician
can take his observations Xl'XZ""' one at a time from some
distribution involving a parameter W whose value is unknown.
After each observatioh Xn he can evaluate the information
he has obtained so far about W from the observations xl,xz,..,xn.
And he can decide whether to terminate the sampling process
or to take another observation Xn+l' A sample obtained in
this way is called sequential sample.

Suppose a lot of large size of certain items is to be
accepted or rejected based upon its quality. Let 'P!' be the
probability that an item is defective. A fixed sample size
procedure would be : Take a random sample of 'n' items and

the
accept the lot if number of defective items in the sample is

i
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less than 'k!' {k-specified) 0 < k < n. If f¢
is the cost for each observation, then total sampling cost
is n.c.
Instead of sampling all 'n' units at a time consider =he

following procedure, Take observations sequentially and stop

T T

for the first 'r' such that either £ d. = k or £ [l-d.]= n-k+l
‘ R i . i
i=1 i=1
where
1 if i-th item is defective
d. =
* { 6 otherwise.

If 'ii' denote the number of observations to stop the sampling
r

: T r
N\ =<¢first r: I d;=k or Z(l-di) = n—k+l}
L i=1 1

Here N is a3 discrete random variable taking values k, k+l,...,n.

—

i.e.

UCbserve that the decision reached by the fixed sample size
procedure or by sequenﬁial sampling procedure are the same;
the number of observations in the above sequential prccedure
never exceeds the fixed size ‘'n' (N < n).

In fact E(N) < n.

y C E(N) < n.c.. 3 c > 0.

L] L]

Thus by adopting the sequential procedure to reach the same
decision we require less number of observations except on
rare occassions,

3.leb. Comgonents “equential Decision Prccedure :

A seguential decision procedure has two components one is

(40
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called sampling plan or a stopping rule.’ It specifies
whether & decision in D should be chosen without any obser-
vation or whether at least one observation should be taken.
If at léast one observation is to be taken for every possible

set of observed values X;= Xj,e..,X =vxn (n 2 1) whether

n
sampling should stop and a decision in D should be chosen
without further observations or where another value Xn+l
should be observed. o
The second component of sequential decision procedurs:
is called a decision rule., It gives if no observations are
to be taken the decision doe D is to be chosen. If at least
one observation is to be taken the decision 6(xl,...,xn) €D
should be chosen for each'possible set of observed values
Xl= Xl”"’xn= Xn after which sampling might be terminated.
With every stopping rule we associate a stopping random
variable 'N' which takes the values 1,2,.... the total number
of observations taken pefore sampling is terminated. If
;hltimatg termination of sequentiél sampling procedure is
guaranteds; then it is called closed sampling procedures.,
i.ee P[N< ] =1,
or P[N =] =1 «P[N < ] = 0.
Gain that may result from sequential sampling ¢

Consider a statistical decision problem

Suppose . ={wl, WQ} and D’={dl, d2} .



]

L(wl, dl) = L(wg, d2) o)
L(wl, dQ) = L(wz, dl) =Db > 0.
Let ¥ be a discrate random variable with fi(x)= P §X=X/W=wi]
as follows,
£,(1)
£,(1)
o

Suppose that the cost per observation is 'C!'.

i

j —t fl(2 = 0 fl(B) = g

0 f2(2) = 1 —a;f2(3) =q, 0 < o< 1.
The prior distribution of & be specified as

Pr{W=w ] =e=1-PrlW=w], o {1/2
From the p.m.f of X3 it follows that after an observation

has been taken ;

PlW =w,/X = x] =1 if x =1
=0 if x =2
= @ if x =3

Similarly P[W = wy/X = x] =0 if x = 1
=1 if x =2
= l-6 if x =3

Thus after an observation has been taken either the value
of ¥ becomes known or else the distribuiion of V| remain
just as it was before the observation was taken. Also, if
the Bayes decision is taken either when P(¥W = wl) =0 or

plw = wl] = 1 then expected loss will be zero. If Bayes

decision is taken after 'n' observations }(l,}(,ﬂ...,}{,1 nove



been taken, the expected loss will be &b if Xi = 3 for every
observation 1 = 1,2,...,n and will be zero if at least one
of the okservation is different from 3. |
Pr[ X; =3, i = 1,2,...,n] = o for all wE W.
Therefore risk function [(n) including the sampling cost,
for the ontimal procedure when exactly 'n' observations must
be taken is,
P(n) = e b o™ + cn
Assume that £(1) < £(0); otherwise it is not necessary to
go for an observation.
The optimum value n* of n can be obtained by assuming n to ke

continious variable.

_é;fxﬁl =0 = e ba" log a + ¢ = 0,
dn
gives o = mmm S
e b log (1/a)
Thersfore n* = -2 <Llog e_b_log(l/a)
log{l/a) c
2 :
observe that Q_ingl > 0.
an

Hence jD(n) by treating 'n' as continious is convex and
hence the integer optimum value of 'n' must be [n*] or

[n*] +1 where [x] is intecer part of x.

o




Therefore risk corresponding to n¥* becomes

%) = .S __ log 8.0 1og(1l/a)
fne) log(l/a) 1L+ deg c ]

f(n*) is the risk due to fixed sample size procedure with
sample size n¥*,

Now we shall consider the following bounded seguential
procedure: suppose we take n* observations sequentially and
we suppose to stop sampling as soon as the value of the
observation Xi is different from 3. In other words we will
have to take all n* observations only when A= 3 for all
i=1,2,...yn*¥=1, Under such sequential procedure the post-
erior distribution when sampling terminates will be the same
as it was for the fixed sample size procedure. However,
the number N of c¢bservations that will be taken now is a

random variable. Expected sample gige is given byj;

E(N) = E(N/w= wl) = E(N/W= w2)
n*
= I j Pr[N=j/u= wi]
J::
n¥=1 .
= I j aJ"l{l-a) + n¥ an*"l
*
- l=a”
l -«
{ n¥*

§

The total risk f from above sequential procedure

N



e b an* + ¢ E(N) < f’(n*)

Il

= E- -+ -S——~~~ [ 1l - ——E—-——J
I-a log(l-a) eb(l-a)

Aséumption f(l) < f(O) is equivalent to the assumption
that expression inside the bracket is positive. The pro-
cedure that we considered is nodoubt sequential but it is
bounded and the number of observations that can be taken
is at most n¥*,
/ Finially we consider a sequential procedure without
any upper bound on number of observetions. Stopping rule
is now stop as we get an observation different than .
—
Decision rule is now given asy choose decision W = vy if
Xi = 1 is observed or choose decision W = W, if Xi = 2 1is
observed. If this procedure is adopted we can always,
vhen we terminate the sampling, choose a decision whose
expected loss is zero., HNow, a random variable N follows,
waiting time distribution. i.e. P{N=j] = oJ-1 (L) 3=1,2,...
Therefore, total risk for this pruely sequential procedure
f'* is given byy

ﬁi&

E(N)

i
O

]
O

co 1
£ j. a7 (l-a)
j=1



This‘shows that the sequential procedure we consider fina-
llly has a2 smaller total risk than other procedures that we
|

‘considered before. However, it should be noted that this
procedure may require more indeed many more than n¥ obser-
vations,

In sequential test procedure the expected number of
observations regqguired to reach a decision may be more than
the size of the sample required in case fixed sample size
procedure (with the same precision).

3.1.c. The Sequential Probability Ratio Test (SPRT)

Let Xl,XQ,..., be a sequence of i.i.d. r.v. with
common pnf(pdf) fw(x). Consider the hypothesis of testing
Hy: Xvf  (x) against a simple alternative Hnp: Xwraf, (x)

1 Ny ‘ 2 Wy
when observations are taken sequentially. Then

n
fjn(xl,xg,.,.,xn) =5 fw.(xi)’ j =0, 1.

i=1 7j
£, (x)
: _ “In'=

where x = (xl, XZ”"’xn)

The sequential probability ratio test states : if at any
stage of sampling
Aplx) 2 A

stop and reject Hl

“e

if )\n(zs) < B

s

<
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stop and accept Hl s and

if B <A (x) < A,

continue sampling by taking anothexr observation Xnel®

Here A and B (A > B) are constants which are determined
so that the test will have strength (a, B).

If N is stopping r.v.

o = Pwl{xN(:}_{) 2 A} y B = sz %N(‘?‘() < B} .

Take Z; = log wo 1

n

Therefore log>\n(_>_c_) = ZzL= Sn, say.
i=1

Now the ZPRT may be written as follows :

n
At each stage compute Sn = I Z, If

i=1 i’
b = log B < Sn < log A = a.

¢, Lontinue by taking observation Zn+l; if

a £ Sn, reject H,

and if b 2 Sn, reject H,.
Remazrk
With respect to any hypothesis H(not necessarilz %}
f X
ny . - 2\
or HQ) for which P {}wl > 0] H} > O where 24 = log -flrxl)

then PH{N < oo} =1 and

tNY |
EH{e }<‘oo for ~» < t < t_, t > O,
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The SPRT terminates with probability 1 under both Hl and Hz.
The most commonly used sequential procedure is SPHT
introduced by Wald &n the 19405.. The SPRT is designed for
testing a simple null nypothesis against a simple alterne-
tive hypothesis, when seguential sample Xl,XQ,... is avai-
lable. 5SPRT requires at least one observation. SPRTs are
frequently used for testing problems which are more compli-
cated than just testing simple against simnle hypothesis.
The rost comzon such use is in testing H;: e § o v/s
Ho: © > o (eo < el). It is natural in this situation,
that the problem is that of testing Hl: Hl: e = eoxversus
H2: ® =9 and to use the releyant SPRT. It can indeed,

be shown that, if the Xi have a density with monotone like-

lihood ratio in e, then the SPRT with error probabilities

@, and a; gives error probabilities ao(e) < do for e < e
and al(e) <oy for @ > e;. In a classical sense, therefore,
an SPRT is very reasonable in this situation (th 'ough
probably mot optimal).

Example (1.2.c) :

Let Xy,X5y..., be i.i.d N{p, 1) rov.'s. It is reguired
to test Hl: p = O against HQ% p o= 1,

Fixed numbers of observations required for the current

P st

test procedure of strength (a, B) is n(a,B). Test function

b can be given as

®
v}



1 if X
o(x)=
0O 3 otherwise.

EH [b(x)] =«
1
EHz[b(X)B =

gives

w _ n(®)*?

J Yo 2 dx

K V2n
and _nF=1)

J Yn_ e 2 dx

K Van
Therefore

Blyn (k - 0)] =1

and

BVn (k - 1)] =38

Let Yn(k) =), and Vn (k = 1) = A1

Therefore

l -«

B\ )
5()\1) = §

gives Yn =>\o '>\1

n = (>\o'>\l)2 = n{a. ).

~

X

In particular for a = g = 0.05

> k

and >\0-

and>\l =

(1)

(2)



Vn k ==AO = 1,65 and Yn (k-=1) = =1.65 gives n = 10.9.

In sequential test procedure

A =2:22 & 19 , B = 0:0% 1/19 .

0.05 ‘ 0.95
So that Ep(Z) =u - 1/2

EHlQZ)z - 1/2
Ep(z)2 =g, (x-1/2)% = 6” - o + 5/4

EH SN “w o log A + (l-a) log B.

I

I
N,
<4
N
(o)}
o

EHl(N) 9.3,
EH SN o 0.95 log 19 = 0.05 log 19
2
= 0.90 log 19

so that E;, N » 5.,3.

2
In this case we see that there is some saving (on the average)

H

if we use the sequential test over the fixed sample size test,

3.2 Sequential Decision Procedure @

Let 'S' denotes the sample space of any particular
observation X;, for n =1,2, ... we shall let s = SXSX...XS
(with n factoré) be the sample space of the n observations
xl’XQ”"’Xn and we shall let S° be the sample space of the

infinite sequence of observations Xl,XQ,... « A sampling plan
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in which at least one observation is to be taken can be
characterised by a sequence of subsets BnE s™n=1,2,..]
which have the following interpretation :
Sampling is terminated after the values Xl= xl,...,Xn= X
have been observed if (xl,xg,..,xn)ﬁ B,+ Another value X__,
is observed if (xl,...,xn) & B,. If there is some value r

for which Br = Sr

or, more generally if

P_l(X;see..X) £ B, for n=1,2,...,r] =0 then samp-
ling must stop after at most r observations have been taken.
The decision rule of a sequential decision procedure is
characterised by a decision dOE D and a sequence of functions
61,62,.,. with the following property 3 For any point
(xl,xg,...,xn)e D, if the sampling plan specifies that an
immediate decision in D is to be selected without any samp-
ling then the decision do € D is chosen. If on the other-
hand the sampling plan specifies that at least one cbserva-
tion is to be taken and if the observed values Kl= xl,.;.,xn= Xn
satisfy the condition that (xl,...,xn)e'{Nzn} then sampling
is terminated and decision bn(xl,...,xn)GE D is chosen.
The values of tne function'én need only be specified on the
subset {Nzn c(s™y.

Illustration

Suppose we wish to estimate the probability e €(0,1)
of obtaining heads when a given coin is tossed. In a fixed
procedure (say,n) we know that the proportion of heads is a

'good! estimator of e.



Consider a sequential sampling procedure as follows:
Stopping rule is 3 toss a coin until k-th head
occurs. \
HEAY
Decision rule is ; after stopping the trails estimaze
v
e ;3 by = %, where 'N' the number of trg;ls required to
get 'k' heads first time, here N follows negative bincmial
distribution
o n-1 k n-X
Pr[” = n] = (k—l) e (1 - o) ‘k; 0<ex1l
n= k, k+l,.oa
<o
since Pr[N { o] = % PI[N = n] = 1 abcve sampling pro-
n=k
cedure is closed one.
To illustrate idea of stopping regions consider example
where
T r
%:{T: I d;= 3, or L (l—di) = n=k+l = 3}
i=1 i=1
In particular, k = 3 gives By = B, = b5 By ={l,l,l} .
Since if s” is the sample space corresponding to
Xl,XQ’...’XS.
st ={1,o}
2
S ={(lsl)9 (l,O), (O,l)’ (l,l)}
3 ‘ - .
s ={(1,1,1), (1,1,0), (1,6,1), (0,1,1), (1,0,0),
(0,1,0), (0,0,1), (0,0,0)} .

on similar line B, =~{(O,l,l,l), (1,0,1,1), (l,l,O,l%} .
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2.2oa A Baves Seaquential Decisiocn Procedure :

The total risk f(e, d) of a sequential decision proce-

EN

dure Oin which at least one observation is to be taken is

r(ero)

E{L[w,oN(xl,...,xn)]+ Cit evee + CN}

[e2)

z f J\{L[Vx’, Cn(xl,...,xn)]

n=1 K=n

H

e(wlxl,...,xn)d (w)d Pn(xl,...,xnle)

+ 5 (Cp+ wevut C) Pr{N=n} .
n=1 '

=S4T Ll 0k seee )]
n=4

igl f(xi/w) lnl dp(x ) e(w)dv(w?}

-+ E‘ (Cl+ RN +Cn) pr {-I\I=n} .

i=1
For further reference we shall denote the posterior g p.d.f.
of W when Xl= xl,...,Xn:xn where e is the prior g p.d.f. of
Wois e(xl,...,xn).

For any g p.d.f. of i, let fg(b) be defined as,

fo(b) 2 g Jﬁ. L{w,d) ¢(w) dv (w).... (3.2.a)

In this case f;(@) is the minimum risk from an immediate
decision whthout any further observations when the g, p.d.f.
of W is $. If we continue to assume this against each

possible g p.d.f. ¢ which arises during sampling process,



e

there is Bayes decision in D which actually yields the
minimum risk f;(%).

A Bavyes sequential decision procedure, or an optimal
sequential decision prccedure, is a procedure O for which
the risk|f(e, d) is minimized. If sampling is to be termi-
nated after the walues XypeeeosXy have been observed, then
the decision én(xl,...xn) that is chosen should be Bayes
against the posterior g p.d.f. e(xl,...,xn) of V. Suppose
th_at a given sequential decision pnrocedure d will not always
lead to a Bayes decision when sampling is terminated. Then
a sampling procedure 0%, which has the same stopping rule
as 0 but which does always lead to a Bayes decision, will
have the property that f(e, %) < f(e, 3).

Therefore, whenever a decision in D is chosen after sampling
has been terminated, that decision is a Bayes decision against
the posterior distribution of W. Hence it is not necessary

to mention explicitly the decision rule in any procedure.
Hence for any such procedure 0 which specifies that at least

one observation is to be taken satisfy following relation

f(e, 9) =\E'{fg[e(xl,...,xw)] + Cit ven +Cg} .

And for the procedure 60 which specifies that an immediate

decision in D should be chosen without any observations

L3S |



satisfy,
fle, 0,) = [ ().

Example : (3.2.a)

Let X;,X5,+.., is a sequential sample from a N(e,1)
density, and that it is desired to estimate e under loss

5 D
L(e,a,n) = (e -~ a)“ + % Cy
i=1

where C; = [?i(i+l)]—l

It can be easily shown that

n n
Z Ci - z --._é_...._— = l (l - _l'._.
i=1 i=1 24(i + 1) 2 n+1l
Hence
L(e,a,n) = (& - a)2 + l(l - i
2 n+l

If now the prior is N(0O,l), so that posterior distribution

is N( e(x), (n+l)—l)

where ;Yx) = nx = B, (say).

The corresnonding Baves risk (Ref. exampnle l.2.e).
! g ) i

= kesba o

d(x) n+l 2 n+l
=1 Ll
—2(l+n+l),

which is independent of parameter.

This 1is decreasing in n, so that it never pays to stop
sampling, another observation always lowers the postericr
Bayes risk. Hence no proper Bayes procedure can therefcre

exists.



Remark
A sequential Bayes procedure need not always exists
as the above example shows.

3.2.b Backward Induction ¢

A sequential decision procedure 0 is bounded if there
is positive integer n such that Pr(N < n) = 1. 1In this
section we shall consider problems in which there is fixed
upper bound n on the number of observations.

When statistician employs the techntie of backward in-
duction, hé begins by considering the final stage of obser-
vation and he then works backward to the first stage of
observation., If Xn is observed, then the fixed limit on the
number of observation makes it’compulsory to terminate the
sampling and to choose a decision in D. Hence, if sampling has
not been stopped earlier, the statistician must determine at
this final stage whether to choose a decision in D based or. the
values of xl,...,xn_l or to take exactly one more observation
and then choose a decision in D. The optimal decision will
usually depend on the values of xl,...,xn_l that have been
observed. After determining this he can-bégin to work
backward. Knowing the values of the observations Xl""’xn—Q
at the next to last stage, he can now decide whether it is
worthwhile to take the next observation Xnnl' By working
backward in this way to the first stage, the statistician
determines, for each possible value of Xl, thé bptimal conti-

nuation throughout the remaining stages. He can evaluate

the risk from observing Xl



and can compare this risk with the risk from the immediat
choice of a decisgion in U without any observations, These
cemparision at the first and subsequent stages, determine
the optimal sequential decision procedure.

Bellman (1957 a) has called the construction of opti=-
mal procedure by backward induction as principle of optim-
atlity. It is stated as : The optimal sequential decision
procedure nmust satisfy :the requirement that if, at any stage
of the procedure, the values X; = xl,,..,xj = Xy (j < n)

have been observed, then the continuation of the procedure

must be the optimal seguential decision procedure for the

o

roblem where the prior distribution of W is e(xl,...,xj)
and the maximum number of observatiions that can be taken is
n"ju

Lo

S.2eC Optimal Bounded Seguential Decision Procedure :

Assume that there is fixed cost ¢ per observation.
AN
If § is any g p.d.f. of W and if the value ro(cb) is defi-
ned by (3.,2.a) then

ﬁ{fo[b(xn} =J\{ fo[b(x)JdEFl(x/«b).

Suppose the values X,= veesX = i
upp L alu Al X1 R e R have been gbserved

and the statistician mus}t decide whether to chogse a deci=-

A

sion in D without another observation or to observe Xn‘

The risk from choosing a decision in D without another ob-

servation is ﬁo(en~l}' If the value X,=% 1s observed and



"a decision in D is then chosen, the risk will be f;[en_l(x)].
Hence the expected total risk from observing Xn and then
choesing a decision in D is E{f;[en_l(x)]}<+ c.

The final choice in the optimal procedure will be as
follows :
If [ole 1) < E {j’oien_l(x)}}-i-c,
then sampling should be terminated and Xn should not be
observed, If this inequality is reversed then Xn should
not be observed., If the two sides of the relation are
equal, then the risk is the same whether sampling is termi-
nated or continued and we shall assume sampling is termina-
ted in this case.

Let rl(é) denote the risk from the optimal procedure
in which not more than one observation is taken and the
g p.d.f. of W is ¢.

[io) = min {fo(b), ELBCOT 4}

In particular fl(en_l) is the risk from the optimal
continuation after the values X1=X1""’Xn-1=xn~1 have been
observed.

Now we shall move backward one stage, Suppose

K1=Xqy9se0X =X, _» have been observed. The risk Zrom a
decision in D without any further observations is /oc(en_Q).

On the ohter h-nd, 1f the values of Xn 1 is observed and



’this value is x the nosterior g p.d.f. becomes en_z(x)
and the risk from optimal continuation at the stage is
fl[ean(x)}. The total risk from observing this value
becomes E {fl(en_Z(X)]}' +C. Hence the optimal procedure
can be described as follows @
If (e o) < E{'fl[en_z(x)]} + C,
then sampling should be terminated and Kn—l should not be
observed,
Novi let fz(é) the risk from optimal procedure when
sampling is terminated after not more than two observations,
Poto) = min{ F,(0), 5L Fitbeanl +cf.
In particular, it follows from the above discussion that
rg(en_zi is the risk from the optimal continuation after
the values Xl=xl,...,xn_2=xn_2 have been observed.
In general, for any g p.d.f. of W, let [ _($) be defined by
(3.2,a ) and let fl(é)’<[;(¢)"“’ ‘fn(b) be defined
récursively by ¢
fjﬂw) = min{fo(b), E[fj(b(}{))] + c} j =0,l,ec0e,n=1.
It is assumed that each expectation in the above equation exists.
Despite the simple theoretical nature of the optimal
procedure, the compuiation of the functionlfn for a valus of
n larger than 4 or 5 is extremly difficult and time-consuming.
The example presented here will provide further insight in-

to the properties of optimal sequential decision procedure.



Example (3.2.c) :

Suppose that a sequential random sample Kl’XQ""
can be taken from the Bernoulli distribution for which the
value of the parameter W is unknown. Suppose also that
either W = 1/3 or W = 2/3 and that the statistician must
decide which value of W is correct., Therefore, it is
assumed that the decision space D = {dl’dz} and that the
loss function as specified in the table below. Suppose
further that each observation costs 1 unit and that the
prior distribution of W is specified by the probability
e = Pr(W = 1/3) = 1= Pr(W = 2/3). We shall compute f;(e),

fl(e) ana  f (o).

loss table
dy dy
W=1/3 0 20
W=2/3 20 6]

If e< 1/2, d, is Bayes decision.

Ife > 1/2, d, is Bayes decision,

20 e for 0 L e £ 1/2
fole) = { (1)
20( 1-e) for 1/2< e £ 1.
Therefore f;(e) = f;(l - o) for 0 e 1.
Hence fj(e) = fj(l -~ 9) for 0 e<X 1.



' From the symmetry of the problem, we shall compute fl(e)
and ‘fo(e) only for the values of 0 { e £ 1/2, For
x = 0,1 let o(x) denote the posterior probability that

W = 1/3 when the value of single observation X is x.

o(l) = =2—mm and e(0) = SeZemmm- (2)
e+2(1l-e 26 +(l-e)
Hence
fo[e(l)J = 20 o(1) for 0 el 1/2. |
{fzo 8(0) for 0 < e < 1/3. g (3)
o)} = '
r"[e( )] 20 [1- e(0)] for 1/3 < e < 1/2 [

N'd

The marginal distribution of any observation X is

Pr(Xx=1) = 1/3 e + 2/3(1 = &) = 1 - Pr(X = 0) (4)

Therefore
E {fofe(x)j} = f [e(1)] Pr(x=1)+ f [s(0)] Px(x=0)
20 e for 0 £ 1/3
) { 20/3 for 1/2 < e X 1/2{ (5]
Since C =1, it now follows that
flle) = min{fo(e), EL G0N + 1} .
23
- {3 DEE e
== forz5< e < 1/2

From (2) it can be shown that
o(1) <22 irr, o 4%,
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v e(0) £ 60 iff, e 57 , and
o(0) 23 ifr, o> 2L,

By making use of symmetry of the function F(1) and
equations (4) and (5) we get

20 e for 0L el %%,
E{fl[e(x)]} = 83 g + 23 £op 33 <o X %%, (7)
= for 2£<e<1/2 .,
Hence /32(9) = min {f (e), E(e(X))] + l}»
20 o for 0% e <32,
=¢ 83. 3 + 32 oo %% Co< %%’ (8)
i for 3L < o < 1/2.

The functions fo, .rl and f; are sketched.
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The computations of f; for a large value of n is more

difficult because the number of linear segments defining

the function increases as n becomes larger. The conmputa-

tions will require more detail if symmetry that has been

ascsumed in this example is deleted.

3.3 The

I

Seguential Probability Ratio Test as Bayes Procedure

Consider a sequential decision problem in which the

parameter spnace is . =q{wl, W2} and the decision space is

D= {dl’ dz}. Loss function is given by

[&]

uppo

[£2]

be taken at a cost of C unit per o
let fi denote the conditional g.p.

X wnen W

Wl O
Wo ‘AQ ’0
’C\«\, o

= ;. Pr(d = wl)= e. The risk fo(e} from choosing

a decision immediately is

fo(e) = min{)le, >\2(1 - e)} .

1
Let A denote the calss of all sequential decision proce-

A1 )\1’ ,\2 > 0.

e thalt ta seguential random sample Xl,XQ,.... can

bservation. For i = 1,2

3

d.f. of any observation

dure 0 which requires that at least one observation should

be taken

P s,

inf f(e,a) ,
€ A

for 0 L e £ 1.

.
L4



The Bayes risk f*(e) = min{fo(e), f’(e)} .

f3‘ is concave continious function on the interval 0£eXl
(Ref. 1.2.b), and every procedure 3 &€ A' involves a sampling
cost of at least C units. F'(O) = P'(l) = C and F'(e)_>_ C
for all values of e, (0 < e < 1). The functions f  and f

are sketcnhed below : ‘

Al A2
M A2

— e

.‘
N

Let Z¥ be the set of all values of e at which it is optimal
to terminate sampling.

Therefore L% ={e : fo(e) gf’(e)}

suppose that Ao

Co A2y Mre
( At A 2)— w

83



This relation is satisfied in the figure.
L* is the union of intervals O £ & £ o' and '' o { 1
where ' and e'' follows ithe following eguations.

kle' = P'(e‘) and ,x2(1~e') = f‘(e").
If the e inequality (1) is not satisfied then it can bhe
seen from figure that I* is the entire interval 0 £ e £ 1.
In this case, regardless of the prior distribution of W,
it is never worthwhile to take any observations. An inter-
pretation of the above can be as follows:

Smallness of e (e < ') or largeness of © (e > e'') indicates

o

that the orior knowledge itself is so sitirong that it does not
require additional observations.

The set L% characterises the Bayes sequential decision
procedure. Suppose that the prioxr probability e lizs in

the intexrval o' < @ < o'', It follows that the first obser-

vation should be taken. If e{xl,...,xn) is the posterior

il

probability that W = w; after the values X, X4 (i= 1,¢..,n)
have been observed, then optimal procedure is to continue
taking observaiions whenever the following relation is
satisfied.

o' < e(xl,...,xn) < ot'! (2)
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Inequality (2) can be written as

-%T {1 + (1-e) £2(x1)5:000,E2(xn) < _ET
® efl(xl) e s o0 fl(xn) i

which reduces to

(1-e'') o '< f?_(xl)"""fz(xn) (1-e') o

___________________________ 4 2 e e e e e em
e'!'(1l-9) fl(xl),....,fl(xn) o' (l-e)
Define .{.g‘.:gllg
e'(1l-0)
B = {1=8!!)e
o' (1-0)

take decision dl
f (x )’ LI A ¥ f (X )
1f 2y 2l oy
fl()(l) ’ ¢ o0 ] fl(xn)
take decision d-.
Since o' < 8 < @'' it follows that A< 1 and B > 1.
The problen of finding an optimal sequential decision
procedure has now been reduced to the prcblem of finding an

optimal choice of the constants A and 5.

C
S}



A seguential decision procedure of the tvpe just
described, is called a sequential probability-ratio test.
In proolem in which both the parameter space - and the
decision space D, have exactly two points,vthe optimal
sequential decision procedure is either to choose a decis-
ion immediately without any observations 2r to use a

sequential prcbability-ratio test.,



