
CHAPTER III

BAYES SEQUENTIAL TEST PROCEDURES 

3,0 Introduction'
In all the problems that we have considered so far, 

the sample size was fixed in advance. Such a procedure 
does not take aecount . the infomration being collected in 
the course of collecting observations. Also, the fixed sample 
size procedure ignores the fact that sampling is expensive 
and taking of each observation involves some cost. In this 
chapter an attempt is made to explain how a statistician can 
use the information collected in the course of experimentation 
and this information be used to take a decision. Basically 
the observations are being collected (may be to the extentcf 
desired accuracy). However, once the sampling is terminated 
after, say n observations, the decision is taken as if being 
taken for a fixed sample size procedure.

In Bayesian sequential analysis, in order to decide when 
to stop sampling, one has to compare the posterior Bayes risk 
of an immediate decision with the expected Bayes risk of con­
tinuing sampling. At each stage one uses the current poste­
rior as the basis of comparing the present with future.

In the following we .have introduced sequential sampl
components of sequential sampling procedure and gain due to



sequential sampling procedure with the help of an example.
A short discussion about the most commonly used sequential 
probability ratio test (SPRT) is given in (1.3.c). In 
Section (3.2) theorotical development of sequential decision 
procedure is discussed. Also, it is shown with the help of 
an example that a sequential Bayes procedure need not always 
exists. A technique of backward induction is stated as optimal 
sequential decision procedure and directly used for optimal 
bounded sequential decision procedure. Lastly an attempt is 
made to show that SPRT is Bayes procedure.

3.1. Preliminaries
3.1.a Sequential Sample :

Consider a statistical problem in which the statistician 
can take his observations one at a time from some
distribution involving a parameter W whose value is unknown. 
After each observatiob Xn he can evaluate the information 
he has obtained so far about W from the observations 
And he can decide whether to terminate the sampling process 
or to take another observation A sample obtained in
this way is called sequential sample.

Suppose a lot of large size of certain items is to be 
accepted or rejected based upon its quality. Let *P* be the 
probability that an item is defective. A fixed sample size
procedure would be : Take a random sample of * n1 items and

tkeaccept the lot if number of defective items in the sample is



less than Me' (k-specified) 0 < k < n. If ' c' 
is the cost for each observation, then total sampling cost 
is n.c.

Instead of sampling all •n* units at a time consider “he
following procedure. Take observations sequentially and stop

r r
for the first ’r* such that either E d. = k or Z [l-d.]= n-k+1

i=l i=l
where

d.
1
0

if i-th item is defective 
otherwise.

If ’N' denote the number of observations to stop the sampling
f r r

i.e. N = <[ first r : E d.= k or I (l-d.) = n-k+1 
L i=l 1 1 1

Here N is a discrete random variable taking values k, k+l,...,n. 
Observe that the decision reached by the fixed sample size 
procedure or by sequential sampling procedure are the same; 
the number of observations in the above sequential procedure 
never exceeds the fixed size 1 n’ (N < n).

In fact E(N) < n.

* C E(N) < n.c. ; c > 0.

Thus by adopting the sequential procedure to reach the same 
decision we require less number of observations except on 
rare occassions.
3.1.b. Components Sequential Decision Procedure :

A sequential decision procedure has two components one is
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called sampling plan or a stopping rule. It specifies 

whether a decision in D should be chosen without any obser­

vation or whether at least one observation should be taken.

If at least one observation is to be taken for every possible 

set of observed values X^= x-^,...,Xn= xn (n > 1) whether 

sampling should stop and a decision in D should be chosen 

without further observations or where another value Xn+^ 

should be observed. ^

The second component of sequential decision procedure 

is called a decision rule. It gives if no observations are 

to be taken the decision dQG D is to be chosen. If at least 

one observation is to be taken the decision 6(x^,...,xn) & D 

should be chosen for each possible set of observed values 

Xi= x^,...,Xn= xn after which sampling might be terminated.

With every stopping rule we associate a stopping random 

variable 'N* which takes the values 1,2,.... the total number 

of observations taken before sampling is terminated. If 

ultimate termination of sequential sampling procedure is 

guaranted; then it is called closed sampling procedures,

■i.e. P[N<«»J=1.

or P[N = “J = 1 - P[N < ooj = o.
Gain that may result from sequential sampling :

Consider a statistical decision problem

Suppose -^"i* and D



d^) — L(vj21 d2) - 0 
L(wi> = L^w2* = b > 0,

Let X be a discrete random variable with fX(x)- P [X=x/Vi=w. ] 

as follows.
fjjd) = 1 - a fx(2) = 0 fx(3) = a

f2(l) = 0 f2(2) = 1 -a;f2(3) = a, 0 < a < 1.

Suppose that the cost per observation is *C••

The prior distribution of X be specified as
Pr[W = w^j = e = 1 - Pr[W - w2], © < 1/2.

From the p.m.f of X; it follows that after an observation 

has been taken ;
P[W = wx/X = xj = 1

= 0

similarly P[W = w2/X = xj
= ©

= 0 
= 1 

= 1-©

if x = 1 

if x = 2

if x = 3 

if x = 1 

if x = 2 

if x = 3

Thus after an observation has been taken either the value 

of W becomes known or else the distribution of Vi remain 

just as it was before the observation was taken. Also, if 
the Bayes decision is taken either when P(V/ = v/^) = 0 or 
P[W = w^j = 1 then expected loss will be zero. If Bayes 

decision is taken after *n’ observations X^,X2».••,X have
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been taken, the expected loss will be eb if = 3 for every 
observation i = l,2,...,n and will be zero if at least one 
of the observation is different from 3.

Pr[ = 3, i = l,2,...,nj = an for all w 6 W. 

Therefore risk function ^(n) including the sampling cost, 

for the optimal procedure when exactly 1 n' observations must 
be taken is,

J°( n) = e b an + cn
Assume that f(l) < f(0); otherwise it is not necessary to 

go for an observation.
The optimum value n* of n can be obtained by assuming n -fc®13
continious variable.

= 0 => e ba11 log a + c =0.
bn

n cgives a = --------
e b log (l/a)

Therefore n* = { log }

log(l/a) u c

observe that ------ >0.
dn

Hence j^in) by treating ’ n’ as continious is convex and 

hence the integer optimum value of 'n* must be [n*J or 
[n*J +1 where [x] is integer part of x.



Therefore risk corresponding to n* becomes

P(n*) = — £— [1 + log 2_S-i22iiZ2l ]
log(l/a) c

^(n*) is the risk due to fixed sample size procedure with 

sample size n*.
Now we shall consider the following bounded sequential 

procedure: suppose we take n* observations sequentially and 
we suppose to stop sampling as soon as the value of the 
observation is different from 3. In other words we will 
have to take all n* observations only when X^= 3 for all 
i = 1,2,...,n*-l. Under such sequential procedure the post­
erior distribution when sampling terminates will be the same 
as it was for the fixed sample size procedure. However, 
the number N of observations that will be taken now is a 
random variable. Expected sample size is given by;

E(N) = E(N/W= wx) = E(N/W= w2) 
n*

= E j Pr[N=j/W= w.J
j=i 1
n*_i= I j aJ’"1(l-a) + n* a11*"*1
j=l
. n*- ilS-
1 - a 

< n*

The total risk J5 from above sequential procedure



= e b an* + c E(N) < f(n*)

C_ + ________

log(l-a)
[ i-----£----- ]

eb(l-a)

Assumption f(l) < f(0) is equivalent to the assumption 

that expression inside the bracket is positive. The pro­

cedure that we considered is nodoubt sequential but it is 

bounded and the number of observations that can be taken 

is at most n*.

Finially we consider a sequential procedure without 

any upper bound on number of observations. Stopping rule 

is now stop as we get an observation different than 3. 

Decision rule is now given as; choose decision W = w. if

X^ = 1 is observed or choose decision VV w? if = 2 is

observed. If this procedure is adopted we can always, 

when we terminate the sampling, choose a decision whose 

expected loss is zero. Now, a random variable N follows, 

waiting time distribution, i.e. P[N=j] = (l-a) j=l,2,

Therefore, total risk for this pruely sequential procedure 

f3 * is given by;

= c E(N)

-j”-*- (l-a)
CO

c 2 j. a1 
j=l

_c__
l-a

6 it



This shows that the sequential procedure we consider fina­

lity has a smaller total risk than other procedures that we

considered before. However, it should be noted that this 

procedure may require more indeed many more than n* obser­

vations.

In sequential test procedure the expected number of 

observations required to reach a decision may be more than 

the size of the sample required in case fixed sample size 

procedure (with the same precision).

3.1.c. The Sequential Probability Ratio Test (SPRT) :

Let be a sequence of i.i.d. r.v. with

common pmf(pdf) fw(x). Consider the hypothesis of testing 

H^: X^fw (x) against a simple alternative X^fw (x) 

when observations are taken sequentially. Then
n

where x = (x^, x9,...,xn)

The sequential probability ratio test states : if at any 

stage of sampling

stop and reject

if Xn(x) < B i
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stop and accept ; and
if B < An(x) < A,

continue sampling by taking another observation
Here A and B (A > B) are constants which are determined 

so that the test will have strength (a, p).
If N is stopping r.v.
“ = pWi{an^) > a| . P = pW2 UN(X) < B •

Take Z, = 10, f»l (X±)
Therefore \ nlogAn(x) =£zt=Sn, say. n i=l
Now the 3PRT may be written as follows :nAt each stage compute Sn = Z Z., Ifi=l 1

b = log B < Sn < log A = a.
Continue by taking observation Zn+^; if 

a _< Sn, reject
and if b > Sn, reject H2«
Remark :

With respect to any hypothesis H(not necessarily H,f 1 f o\X1)Lor H2) for which P jjzj > 0| Hj > 0 where Z = log
then ph{n < -} - and

Eh ^e^J < 00 for < t <. tQ, tQ > 0,
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The SPRT terminates with probability 1 under both and H2< 
The most commonly used sequential procedure is SPRT 

introduced by ./aid in the 1940S. The SPRT is designed for 
testing a simple null hypothesis against a simple alterna­
tive hypotiiesis, when sequential sample is avai­
lable. SPRT requires at least one observation. SPRTs are 
frequently used for testing problems which are more compli­
cated than just testing simple against simple hypothesis. 
The most common such use is in testing © < ©Q v/s

H, > eQ (©Q < ©^). It is natural in this situation,
that the problem is that of testing © = ©Q versus
H2: © = ©^ and to use the relevant SPRT. It can indeed, 
be shown that, if the have a density with monotone like­
lihood ratio in ©, then the SPRT with error probabilities
ot and gives error probabilities aQ(©) ccQ for © < ©Q 
and a^C©) < for © > ©^. In a classical sense, therefore, 
an SPRT is very reasonable in this situation (th ough 
probably not optimal).
Example (l.2.c) :

Let X^,X2,..., be i.i.d N(p, 1) r.v.'s. It is required 

to test \x = 0 against H2* p. = 1.
Fixed numbers of observations required for the current 

test procedure of strength (a, (3) is n(a,p). Test function 
|> can be given as

6"



if x > k4>( x)= i ;
0 ; otherwise.
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fn k = )\ 0 = 1.65 and fn (k-1) = -1.65 gives n = 10.9.

In sequential test procedure

A = 2i23 =19 , B = 2z22 = 1/19 .
0.05 0.95

Z = X - 1/2 .
So that E (Z) * n - 1/2P

EH (Z)* - 1/2 

EH (Z) = 1/2.

£ (Z)2 = E (X- 1/2)2 = e2 - e + 5/4
P P
% S^. a log A + (1-a) log B.

= - 2,265.

Eu (N) ^ 5.3.H1 “
E^ ^2. 0*95 log 19 - 0.05 log 19

= 0.90 log 19
so that E„ N ^ 5.3.H2 —
In this case we see that there is some saving (on the average) 
if we use the sequential test over the fixed sample size test. 
3,2 Sequential Decision Procedure :

Let 'S' denotes the sample space of any particular 
observation X^, for n = 1,2, ... we shall let Sn = SXSX...XS 

(with n factors) be the sample space of the n observations
OOXf,Xg,...,Xn and we shall let S be the sample space of the 

infinite sequence of observations X^jXg,... . A sampling plan



in which at least one observation is to be taken can be
characterised by a sequence of subsets Bn£ Sn(n= 1,2,..] 

which have the following interpretation :
Sampling is terminated after the values X^= x1,...,Xn= xR 
have been observed if (x^ ,x2» • • »xn) £ Bn. Another value Xn+^ 
is observed if (x^,...,xn) £ Bn. If there is some value r 
for which Br = Sr or, more generally if

P » • • • ! M Bn for n= l,2,...,r] =0 then samp­

ling must stop after at most r observations have been taken.
The decision rule of a sequential decision procedure is 
characterised by a decision dQ6 D and a sequence of functions 
di,d2,... with the following property i For any point 
(x.,x^,...,x_)6 D, if the sampling plan specifies that an 
immediate decision in D is to be selected without any samp­
ling then the decision dQ 6 D is chosen. If on the other- 
hand the sampling plan specifies that at least one observa­
tion is to be taken and if the observed values X, = x.,...,X = x_l l 7 n n
satisfy the condition that (x^ ,... ,xn)6 ^N=nj- then sampling 

is terminated and decision x^»•.. »x ) £ D is chosen.
The values of the function 6n need only be specified on the 
subset |^i4=njc(Sn).

Illustration :
Suppose we wish to estimate the probability e 6(0,1) 

of obtaining heads when a given coin is tossed. In a fixed 
procedure (say,n) we know that the proportion of heads is a 
’good* estimator of e.

{



Consider a sequential sampling procedure as follows: 
Stopping rule is ; toss a coin until k-th head

occurs.
! C/V

Decision rule is ; after stopping the trails estimate
K \ ^

© ; by « = where 'll' the number of trails required to 
get ' k* heads first time* here N follows negative binomial 
distribution

ek (1 - ; 0 < e < 1
n = k, k+1,...

Pr[N = n] = (JJlh -k -'n'k

since P [N <00]= £ P [N = n] = 1 above sampling oro-
n=k

cedure is closed one.
To illustrate idea of stopping regions consider example 
where

r r rI'krir: Z d.= 3, or Z (1-d.) = n-k+1 = 3
i=l i=l }

In particular, k = 3 gives 3^ = =|l,l,l} .
Since if Sn is the sample space corresponding to

*^2 * * * * 9 *

S1 = {l,oj
s2 =[(1,1), (1,0), (0,1), (1,1)} 
s3 =[(1,1,1), (1,1,0), (1,0,1), (0,1,1), (1,0,0), 

(0,1,0), (0,0,1), (0,0,0)J .
on similar line = [(0,1,1,1), (1,0,1,1), (l,l,0,l)j .



3,2,a A Bayes Sequential Decision Procedure :
The total risk ^(e, d) of a sequential decision proce­

dure din which at least one observation is to be taken is

^(©, d) — E L[W,dj^ (X-^,... ,Xn) J+ C-^+ .... +
CO

= ,/ _rLL^:'J’ dn^xl,#* * ,xn^n=l i,'i=n -* *~
e(w] x-^,... ,xn) d (w)d in( ,... ,x^ J e)

+ Vcl+ cn> •
n=l

/ l[w, an(x1,

N=n
f xn)]

n n
% f(x./w) % d (x-) «(w) dv(w)
i=l 1 i=l ^ 1

+ 2 (0^ + 
1=1

+Cn) Pr

For further reference we shall denote the posterior g p.d.f.
of W when X, = x, ,...,X=x„ where © is the prior q o.d.f. of linn J *

y'J is e(xlf.. . ,Jtn) .
For any g p.d.f. of W, let A>‘*> be defined as,

fn(<j>) = inf / L(w,d) <j>(w) dv (w).... (3.2.a)
I ° d £ D -Tl-

In this case is the minimum risk from an immediate
decision without any further observations when the g. p.d.f. 
of W is ^>, If we continue to assume tjhis against each 
possible g p.d.f. (j> which arises during sampling process,

*
/



there is Bayes decision in D which actually yields the 
minimum risk /oW*

A Bayes sequential decision procedure, or an optimal 
sequential decision procedure, is a procedure d for which 
the risk J(g, d) is minimized. If sampling is to be termi­
nated after the values x^,....,xn have been observed, then, 
the decision d ( xn,... x ) that is chosen should be 3ayes 
against the posterior g p.d.f. e(x^,...,x ) of W. Suppose 
ti'Cat a given sequential decision procedure d will not always 
lead to a Bayes decision when sampling is terminated. Then 
a sampling procedure d*, which has the same stopping rule 
as d but which does always lead to a 3ayes decision, will 
have the property that f(e, d*) < ^(e, d).

Therefore, whenever a decision in D is chosen after sampling 
has been terminated, that decision is a Bayes decision against 
the posterior distribution of W. Hence it is not necessary 
to mention explicitly the decision rule in any procedure.
Hence for any such procedure d which specifies that at least 
one observation is to be taken satisfy following relation

^ ) =- b , . . . jXj^j) J + Cj^+ ....
And for the procedure dQ which specifies that an immediate 
decision in D should be chosen without any observations



satisfy,
/“(«, a0) = f0(«).

Example ; (3.2.a) :

Let is a sequential sample from a N(e,l)

density, and that it is desired to estimate e under loss
9 n

L(«,a,n) = (« - a) + 2 C.
i=l

inhere Ci = [2 i( i+l) ] -1

It can be easily shown that

n n i iE C.i=l 1 i=l 21(i + 1) 2 n+1

Hence L(e,a,n) = (e - a)2 + 1 ---- )
2 n+1

If now the prior is N(0,1), so that posterior distribution
is N( «'(x) , (n+1)-1)

U\.where e(x) = nx = M-n (say).

The corresponding Bayes risk (Ref. example 1.2.e).

JK

L (n) = _i. +1- (1 - -1- )
d(x) n+1 2 n+i

= i (i + -I- ),
2 n+1

which is independent of parameter.

This is decreasing in n, so that it never pays to stop 

sampling, another observation always lowers the posterior 

Bayes risk. Hence no proper Bayes procedure can therefore

exists



Remark :
A sequential Bayes procedure need not always exists 

as the above example shows.
3.2.b Backward Induction :

A sequential decision procedure d is bounded if there 
is positive integer n such that Pr(N < n) =1. In this 
section we shall consider problems in which there is fixed 
upper bound n on the number of observations.

When statistician employs the technique of backward in­
duction, he begins by considering the final stage of obser­
vation and he then works backward to the first stage of 
observation. If X is observed, then the fixed limit on the 
number of observation makes it'compulsory to terminate the 
sampling and to choose a decision in D. Hence, if sampling has 
not been stopped earlier, the statistician must determine at 
this final stage whether to choose a decision in D based or. the 
values of or to take exactly one more observation
and then choose a decision in D. The optimal decision will 
usually depend on the values of X^,...,Xn_^ have been
observed. After determining this he can-begin to work 
backward. Knowing the values of the observations X^,...,Xn 2 
at the next to last stage, he can now decide whether it is 
worthwhile to take the next observation X By working
backward in this way to the first stage, the statistician 
determines, for each possible value of , the optimal conti­
nuation throughout the remaining stages. He can evaluate 
the risk from observing



and can compare this risk with the risk from the immediate
choice of a decision in D without any observations. These 
comparision at the first and subsequent stages, determine 
the optimal sequential decision procedure.

Bellman (1957 a) has called the construction of opti­
mal procedure by backward induction as principle of optim­
ality. It is stated as : The optimal sequential decision 
procedure must satisfy :he requirement that if, at any stage 
of the procedure, the values X, = xir...,X. = x. (j < n) 
have been observed, then the continuation of the procedure 
must be the optimal sequential decision procedure for the 
problem where the prior distribution of W is e(x, , ...,x.)

J
and the maximum number of observations that can be taken is
n-j.
3«2,c Optimal Bounded Sequential Decision Procedure :

Assume that there is fixed cost c per observation.
X

If is any g p.d.f. of W and if the value fQ(<|>) is defi­
ned by ('3.2.a) then

E (fjMX)]} = / /„[*(*)] d Fl(x/*).

Suppose the values . »^n_g=xn_i ^ave been observed
and the statistician mus,t decide whether to choqse a deci-

%

sion in D without another observation or to observe Xn
The risk from choosing a decision in D without another ob­
servation is If the value Xfi=x is observed and

m h

\



a decision in D is then chosen, the risk will be fo[sn-l(x)]-

Hence the expected total risk from observing Xn and then 

choosing a decision in D is E

The final choice in the optimal procedure will be as 

follows :

If />„-!> < E {foK-hX»}+0’

then sampling should be terminated and should not be 

observed. If this inequality is reversed then Xn should 

not be observed. If the two sides of the relation are 

equal, then the risk is the same whether sampling is termi­

nated or continued and we shall assume sampling is termina­

ted in this case.

Let denote the risk from the optimal procedure

in which not more than one observation is taken and the 

g p.d.f. of u is

/x(4>) - min (J>), e[4>(x)J +cjl .
In particular Ti^n-l^ is r;i-sk from the optimal

continuation after the values X1=x.,...,X ,=x , have been11’ n-1 n-1
observed.

Now we shall move backward one stage, Suppose 

^l=xl>* * *»*n-2~xn-o have been observed. The risk from a 
decision in D without any further observations is /*Q(e 0).

On the ohter rvnd, if the values of X„ is observed and’ n-1
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this value is x the posterior g p.d.f. becomes e p(>c)
and the risk from optimal continuation at the stage is

j ,[©^ 0(x)j. The total risk from observing this value 
■'1 n— jl

becomes E {fl(«n-2(X)]> +C. Hence the optimal procedure

can be described as follows :
If />n-2> E{Tlten-2‘X^} +c-

then sampling should be terminated and Xn_^ should not be
observed.

Now let the risk from optimal procedure when
sampling is terminated after not more than two observations.

f 2^) ~ min | f0(i>) » E[ f x( j>(X)) J + C j- .
In particular, it follows from the above discussion that 

fp(«n_2') is the risk from the optimal continuation after 

the values Xj=x^,...,Xn-0=x p have been observed.
In general, for any g p.d.f. of W, let f0($>) be defined by 
(3.2.a ) and let f <j>) , 4>),... , /*n(<|>) be defined

recursively by :
/*j+lC i») - min />0( 4>) , E[/^(<j>(X))] + cj j = 0,l,...,n-l.

It is assumed that each expectation in the above equation exists.
Despite the simple theoretical nature of the optimal 

procedure, the computation of the function f for a value of 

n larger than 4 or 5 is extremly difficult and time-consuming.
The example presented here will provide further insight in­
to the properties of optimal sequential decision procedure.



Example (3.2.c) :
Suppose that a sequential random sample 

can be taken from the Bernoulli distribution for which the 
value of the parameter W is unknown. Suppose also that 
either W = 1/3 or W = 2/3 and that the statistician must
decide which value of W is correct. Therefore, it is

di’d
loss function as specified in the table below. Suppose 
further that each observation costs 1 unit and that the 
prior distribution of W is specified by the probability 
© = Pr(»/ = 1/3) = 1- Pr(W = 2/3). We shall compute f (©), 

f1(©) and /%(©).

and that theassumed that the decision space D = f

loss table

dl d2

W=l/3 0 20

W=2/3 20 0

If © < 1/2 , dg is Bayes decision.
If « > 1/2 , di is Bayes decis ion.

( 20 © for 0 < © < 1/2
-

<- 20(1-•) for 1/2 < © < 1.
Therefore />> = fo^ - ©) for 0 < © < 1
Hence fj(1 - ©) for 0 < © < 1

(1)
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From the symmetry of the problem, we shall compute /^(«) 
and /0(e) only for the values of 0 < e < 1/2. For 
x = 0,1 let e(x) denote the posterior probability that 
W = 1/3 when the value of single observation X is x.

«(1) = ----- and «(0) = --2-----
e+2(l-e) 2e +(l~e) (2)

f2
f0Wo)3 ^

Hence
f0[«(l)3 = 20 «(1) for 0 < e < 1/2.

20 e(0) for 0 < e < 1/3. (3)

>0 [1- «(0) ] for 1/3 < e < 1/2
The marginal distribution of any observation X is

Pr(X=l) = 1/3 e + 2/3(1 - e) = 1 - Pr(X = 0) (4)
Therefore

H |f0[«(X)]J = f0Ce(l)J Pr(X=l)+ fQle(0)] Pr(X=0)

(5)■{ 20 e for 0 < e < 1/3
20/3 for 1/2 < e < 1/2.

Since C = 1, it now follows that
fx(e) = min^f0(e), E[ Q(e(X)))] + 1^ .

20 e 
23T

for 0 < e < 23
60

for < e _< 1/2
(6)

From (2) it can be shown that
«U) <-|k iff> « < In" »
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* ande(0) OQ
- 60 iff, e <_ 23

97

«(0) >-21- 60 iff, © 2 37
83

By making use of symmetry of the function fd) and 
equations (4) and (5) we get

r 20 © for 0 < © <
/ 83 © + 23

I 9
. 23 , vfor ^ < e (

L 20
3

07for •g’g 4 © <.
Hence f*2(©) = min | f0(*) , E(e(X))] + l)-

/ 20 © for 0 <, © <, ■
— < 83. © + 32 for e < :XOX gj ^ ^ —1 9

\ 20V. 3- for < © <,

23
97 ’
37
83’

32

37

(7)

(8)

The functions 2 are sketched.
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The computations of f for a large value of n is more 

difficult because the number of linear segments defining 
the function increases as n becomes larger. The computa­
tions will require more detail if symmetry that has been 
assumed in this example is deleted.
3.3 The Sequential Probability Ratio Test as Bayes Procedure 

Consider a sequential decision problem in which the 
parameter space is =^w^, w2J- and the decision space is 

= , d2J . Loss function is given byD

1 dl d2

W1 1 0 Ai
w2

| A2
0

Ai* A2 > °*
t^v

Suppose that jta sequential random sample can
be taken at a cost of C unit per observation. For i = 1,2 
let f^ denote the conditional g.p.d.f. of any observation 
X when w = wn . Pr(W = w^)= e. The risk (©) from choosing 
a decision immediately is

fQ(e) = min^^e, ^2(1 - ©)J> .
Let ^ denote the ealss of all sequential decision proce­
dure d which requires that at least one observation should

p*(«) = inf f(©,d) , for 0 < © < 1.
I d € A’ ” "

be taken



The Bayes risk = min {f>>. f(®)} •

j*' is concave continious function on the interval CXejCl 

(Ref. 1.2.b), and every procedure d& A' involves a sampling 

cost of at least C units. j>'(0) = J>' (1) = C and C
for all values of e. (0 <_ e <_ 1). The functions f Q and J5 1 

are sketched below : Ai Ap

Ai+ A 2
Let Z* be the set of all values of e at 

to terminate sampling.
Therefore E* = : f0(«) <

p. f \ hh
i Wi+A2rAi+^2

suppose that

.?hich it is optimal

(1)



This relation is satisfied in the figure.
E* is the union of intervals 0 < © < ©’ and ©''£©<. 1 
where o' and ©'* follows the following equations.

V*' = f'<«*> and
If the e inequality (1) is not satisfied then it can be 

seen from figure that E* is the entire interval 0 < © < 1.
In this case, regardless of the prior distribution of . /, 
it is never worthwhile to take any observations. An inter­
pretation of the above can be as follows:
Smallness of « (« < e1) or largeness of « (« > e") indicates 

that the prior knowledge itself is so strong that it does not
require additional observations.

The set 2* characterises the Bayes sequential decision 
procedure. Suppose that the prior probability © lies in 
the interval ©' < © < ©'' . It follows that the first obser­
vation should be taken. If ©(x^,...,x ) is the'posterior 
probability that W = after the values = x^ (i= l,...,n] 

have been observed, then optimal procedure is to continue 
taking observations whenever the following relation is 
satisfied.

©' < ©(x^ ,... ,xn) < ©’ ' (2)
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Inequality (2) can be written as

■y*j» ^ 1 “1* ii=s)_f2(>aLrr-.i£2ixQ2 < 1
* efl^xl^ ....  fl^xn^ ^

which reduces to
(l-«") e < UrfiL

, • • (1—e) fj^(x^) • • • »^jl( xn ^
e

(l-«)

Define A = (l-g,1, )g

B = iizSlLiS
«*'(l-e)

Therefore, continue sampling if
fg( X-i), .... , f0( X )B < ±-----------±__2_ < a.
fl(xi), •••• , f ^ (x^)

^q( x^) * •••• , f p( )
fl^xl^» ***• » fl^xn^If < B

take decision d.

If
fxx)» • • •
fl(xx) , • • • • »

take decision dr-,*

1S2LI si
fjxn) > A

Since e* <©<«'' It follows that A < 1 and B > 1,
The problem of finding an optimal sequential decision 
procedure has now been reduced, to the problem of finding an 
optimal choice of the constants A and B.



A sequential decision procedure of the type just 
described, is called a sequential probability-ratio test. 
In problem in which both the parameter space -O- and the 
decision space D, have exactly two points, the optimal 
sequential decision procedure is either to choose a decis­
ion immediately without any observations or to use a 
sequential probability-ratio test.
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