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4.1 IM.TRQDU.C1XQH :
I

This chapter is basically based on a part of Efron's 
(1975) paper on 'Curvature'. Curvature is used to measure 
closeness between one parameter family of distributions and 
one parameter E.W.D. In section 4.2 we study concept 
curvature with it's role in statistics. We have shown that 
curvature of one parameter is aero. Also curvatures of
non exponential models are calculated. In section 4.3, curved 
S.F.D.’s are introduced; curvature of a family of Normal 
distributions with mean & and variance g(§) where g(&) is 
twice differentiable function of 0 is calculated.
4.2 CURVATURE AND IT'S ROLE IN STATISTICS :

Let L be a curve in IRZ as shown 
in fig. 1. A measure of the rapidity
with which a curve in FR1, or it's 
tangent line, is turning at a particular 
point on the curve is given by the rate 
of change of the angle made by the 
tangent line with some fixed direction 
(which can be taken for convenience to 
be that of coordinate axis) with respect 
to the arc length, measured from some
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fixed point on the curve. The absolute value of this rate of 

change {if it exists) is called the curvature of curve at the 

particular point. From fig,1, curvature of the curve L at 

point A is given by

Curvature = -?—
fi ^

where s is arc length of the curve L between points A and B 

and « is angle between tangents to the curve at the points A 

and B. Suppose that Y = Y{x) is the equation of the curve, 

then the curvature of the curve evaluated at xc, is given by

That is

xo = IV I 
(s+Y£)3/^

. (i+V£)3

where ■ denotes differntiation w.r.t. x and derivatives are 

evaluated at xc,. Reciprocal of the curvature is called the

redi^us of the curvature at that point. For further details

(1)

we refer John (1970).
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Equation of the 

centre is origin 

as in fig.2) is

circle (whose

and

given

rediQUE 

by

is r>

rj 2*x +y = r 
so we get

V = — ^ and V = —

By putting these values in (1) we get,

Thus the curvature of the circle is constant and the redipus

of curvature of the circle at that point is the redious of

circle. Note that the curvature is independent of origin. It 

is easy to check that curvature of straight line is zero.
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Role of Curvature :

For non—exponential families the M.L.E. is not, in 

general, a sufficient statistic. The information lossed (as 

compared with information in the sample) by M.L.E. can be 

expressed in terms of curvature. This is done by Fisher 

(1925). Let Xj.X,,...,Xn be a random sample from the

distribution with p.d.f. f(xl9); we denote, In(9) as Fisher 

information about &, contained in the whole sample, In(0) be

Fisher information in the M.L.E. 9(Xj,X£,...,X,^) and ig be

Fisher information contained in single observation. According 

to Fisher (1925),

where

(3)

the dot ' indicating differentiation w.’r.t. 9. Later on we 

will show that the bracketed quantity on R.H.S. of (2) equals

to y| where Yq is curvaturre of the family of distributions 

f(x!9). Also it is observed that (proved later on) curvature
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of the one parameter exponential family is zero. Thus if, the 
bracketed quantity is zero then the distribution from which 
sample is drawn, forms exponential family. otherwise it does 
not forms exponential family. Thus originally, bracketed 
quantity (this quantity being called curvature by Efrom) is 
basic tool to measure departurness of one parameter family 
formjone parameter exponential family. Efron has discussed 
the fact that, if curvature of the family of distributions is 
small (that is near zero) then that family has good 
statistical properties as exponential family has. For 
example, locally most powerful test has poor characteristic, 
if it is based on the sample from distribution having larger 
curvature. One parameter exponential families have very nice 
properties for estimation, testing, and other inference 
problems. Fundamentally this is because they can be 
considered to be 'straight lines' through the space of all 
possible probability distributions on the sample space.

Now we discuss, curvature of the curve in K>2 dinensional

space, we refer Efron ( 1975). Let L = t?e8£IR} be a curved

line in that is a locus of points ti.q , 9 e ©cff?. For each e,
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ri.a is a vector in iRK and we denote 'fig — —- c ^ 00 T,0 > 'n-0 00' n0

We assume that these derivatives are exist in a neighbarhood 
of a value of 9, where we wish to define curvature. Let Eg be

K x K symmetrie non—negative definite matrix, defined
continuously in 9. Let Mg be the 2x2 matrix, with entries

denoted by V4O<0)* vtj(0) and i•O£<0) as below

V4O<0> vn<®> ’ * T-f,0 ^0 '^0 • t ^'^0 ^0 'A0Me =
V04<®> ■ • /T,0 2Zg '“•0 Tl’0 ^0 '^0

and let

>‘ i-i
IMaI

^o<e)
i/z

(3)

(4)

yq is 'the curvature of L at 9 with respect to the inner

product Eg. For further details we refer John M.H.O. (1972).

Rote.. 1 : If we take K = 2, 9 = X, 'fig = (X, Y(X)' and Eg = I in 

(3) and (4) we get

'ng = (1 'fig = (0,V )'
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and

Mey
» 2. * • «l+Y YY

yy y£
Hence we have

ye = [Y *i(1+yV]lA
For straight line, rig = (9, a+b<3) and for circle with centre

at orig'in and r be radioes, Tig = [<S>, v2'—&z where 0<9<r]

Quantities in (3), can be expressed in terms op f(xlS>) 

as below (we refer Efron [1975]).

Let ?g(x) = log[f(xl£)] and denote

Oe<x)], %(x) = [ee<x>]

(for convenience we will supress random element x in much of 

the subsequent notations)

It can be shown that (refer Kendall and Stuart [1973])

E0(!?g) = 0 and Se(i?|) = - Eg(*g) = ig

We take

Mg = Covariance maatrix of (£'g,i?g)



-101-

ie = Ee(&i) E 0(&9&0>

E©(E@(&9“) - i|

From (3) and (5) we can write

vzo<0) - E0< !?0) - iq
— E0(fcg&g) — Cov. (^9

^(9) = Ee{!?0£) - i| = Var

Using above notations, (4) can be written as

■4 K*<a> f.ia)
i9

Mote : Equation (2) can be written as

ilS - Va>] " is >■!
From (7) we have

..z = voi<9> _ vi i(0)
>e i ?1$ x9

By definition

= log f(x 10)

Hence

(5)

(6)

(7)

(8)

(9)

= .ilxiff.Id f(xl0) and ^‘0 f~ (x!0)
f(xlS)



Using (3) and (6) we have 

vOi<0) = E{!?0£) - i|

= -uoi + No - 2m£1 ~ i|

and

vlt(e) = E( fi'e)

= Ni “No

Hence from (9) we get

.,2. _ -UQ2+Ji4.Q
y9 -±x0

L_ -»'l i

il

Hence result follows from (2), (8) and (10)
Example 1 : If X ~ b(n,0) then we have

__ n__ v /q\ = n.Q-£Q.);0(1-0) ’ ; &z{t-€>)V 2 O ( ® . —Ci \ * “02

(q\ - nX.lr2.gJ— 1111 0^1-0)-

By putting these values in (7) we get
0

: If X P{0) then we have

V2O<0> = } ’ VO2<0> x~

-102-

(10)
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By putting these values in (7) we get

y& = o

Now we show that Curvature of one Parameter Exponential 

Family is Zero.

Theorem 1 : Curvature of one Parameter g.^.SD. is Zero.

Proof : Let f{x|t?) be p.d.f. of X which forms one parameter 

B.F.D. then f(xl8) is given by 

f(xl0) = h(x) exp{Q<e)T<x)+d<e)}

In terras of above notations, we have 

!?e = Q T(x)+d,

where Q and d are functions of 9 only.

Hence we have
• •

t>6 = o T(x)+a
and

= h. T (x) +d

Now we consider

• * **

!? _ — —to = _A_ — & d..
0 * 1 #

— D(6) say
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Hence we can write,

&q(x) = D(0)+Dt (0) <?0<x),

where D^t?) = ; fliM.)..
£ (0)

Hence, for fix 0, fr@(x) and i?g(x) are linearly related.

Therefore, covariance matrix of is singular.

That is IMel = 0 

Hence, from (4)

Yq = 0

i i I

Allter : We find

* * • « at

vto(0) = -£—d

v (9) = .-£L.T.dr&. Q___ d_
o 2.V ' .3

**, 2. f * • * * *v (e) = —d_

By putting above values in (7) we get 

ye = 0
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Now we obtain curvature of some non—exponential families or 

distributions.

Example 3 : Let X has student’s t distribution with n degrees 

of freedom as below

f(xie) =
..Eixi+i.... ..
r(nA)■-/ nn

[i n co < x, 0 < co 
n l 1, integer

0 other wise.

We observe that differentiation w.r.t. x and w.r.t. 9 are 

same (except for negative sign) and moreover curvature is 

independent of change of origin. Thus if we put 9=0 then 

differentiation w.r.t. x and w.r.t. 9 are same.

Hence if 9 = 0 then,

f(x) £(n+i)
r(n/z)-./ nn [i n J

We obtain

!?q — K — log (1+^-) ,

.ELnt i
r(n/4)-</ nnWhere K = log
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Hence we have

- - m x[l ♦ -£]"

and

% - ~ m [i - -£] [i - -£]
Also we obtain

g(£>'*■) = (n+ i ) (n+a) (n£ + 18n+19) 
* n(n+3){n+E)(n+?)

V oz (&) n±i. la.± *d a* tl8n±.lS..). - a±i
n+3 n(n+s)(n+?) n+3

vlt(0) = E(M'e)

E t^] _Xi'_a_j
(1 + ——)

o :ince integrant becomes odd function of X.

By putting above values in (7) we“”get,

VQ1{S)' 0

n(n+i)(n+s)<n+?)
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If n = 1 then X has standard Cauchy distribution and = 5/2 

Example 4 : For Gamma translation family

f(xl9) =
(x-a>a-, -(x-9) 1 x > a, a > o

< ia

0 , other wise

we obtain

Q& — — log Ta + (a—1) log (x—S) — x+9

*J9 = — SC~ 1 
yr-&

---a~l.(x-e)*

^o(S) " a-z

II

S
k'O> _____4 a~ IQ______(a-£)z{a-3)(a-a)

vll(e) = 2
(a-i)(a-3)

and

II —2— _a__L a > 4, fixed constant.
(a- 3 ) a- 4

4.3 CURVED E. !F. £). : Curved g.!F.S). is one parameter family of

distributions for which there does not exists one dimensional 

sufficient statistics and is obtained from any K dimensional

g.SP.D. by converting K parameters to one parameter using some
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intermediate relations in single parameter. For example, if 

X ~ then it forms two parameter E.F.Et while if we

take y — 9 and cr2, = e2- (©>0) then X N(8,©2) and it form 

curved g.F.D.

Let f(xiTi.) be p.d.f. of X which form kl—parameter E.P.I)., 

then f(xl3) is given by

f(xlli) = h(x) exp{E T^(x)+d('ft)} , (1)

where ti is natural parameter and n e N £ fR^.

We convert, K natural parameter nl,nz,...,to

n0 = (Tl i (& ), ), ■ . • ^(8)), 9 •= O £ K. Hence (1) can be

written as

Let

f(xlS) = h(x) exp{z 'ai(0)Ti(x)+d(n0)} 

L = fee : 9 S e £ *>}

<2)

(3)

is one parameter subset in the interior of N, where is 

twice differentiable function of 9.

Definition 1 : Let IP = {f (x 19) : ©eeSlR, and it is given by (2)}. 

Statistical curvature of IP at 9 is the geometrical curvature

of L — {rig : 3 s e| at <3,

,, H 'iv-

•vM. ,-?"

■
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Properties of Curvature : We state invariance properties of

curvature, for further details we refer Efron (1975).

(i) Statistical curvature is intrinsic property of family P 

and does not depend on particular parametrization used to 

index P.

<ii) statistical curvature is invarient under any mapping vo 

sufficient statistics including of^ course all one to one 

mappings of the sample space. That is, if T = T(X) is

sufficient for P = {f(x|3) : 9 e e £ H?} and 

let Pt = {fj(tl0) : G € 0, £ (R, ft is p.d.f. of t} then 

ve ~

where y$ and y^T are curvatures of P and Pt respectively. 

Curvature of Family of Distributions N(Q.g(g)) :

We obtain curvature of the family of Normal distributions 

with mean 9 and variance g(&), g(&) is twice differntiable 

function of &. Using central limit theorem, asymptotic

distribution of sample mean of !?.£'. d. observations from any 

distribution f(x!©) is normal distribution with mean = Eq(&)—&

J . Var0(X)and variance = ---g---- = g(&) say.
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The following is new result to the extend that we have
., ||T| .|T—iiiniiiiiiniiiirT-r-^^*

proved it independently and is not found in the earlier 

literature.

Theorem : Let X be a random variable having normal

distribution with mean 9 and variance 6(9) where g(9) is 

twice differentiable function of 9, then curvature y^ of the

family of normal distributions is given by

4g~g £
'® <g2 +2g)J ’

where g - g(8), g" - -g(8).dt* d£

(we have written g instead of g(9)). 

Proof : p.d.f. of X is given by

(1)

f(xl0)
-.exp{- -K; (xr-e) z} ,
a/ zng 1 zg J

0

using definitions and notations in previous 

= SjX1 + b*x + c.

if — <o < x, 9 < oo

other wise 

section we obtain

and

— eij.x1 + b£x + c,.
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where a* k , _ g~0g _ 0*g - 20g - gg
-Z * ® i Z 9 ^ i zZg g zg

a* gg’ _ 2g£ , 20g£ - egg' - 2gg
~ 3 , Oz ~*g " g“

0*gg‘ + 46gg - 2g* - 20zgz - g*g* + gg£
s*gw

since X ~ N(0,g(0)) we have

E e(X) = 0 , E0(X*) = g+0^

E0(X3) = 30g+03 , E0(X*) = 3g*+60*g+04

Using these results we obtain

vi0(9) =10“ Fisher Information in a single observation

= Eg ( )

= - Ee(»e>

_ g+2g 
*g*

vii<9> = E0(!?0!?0)

2ggg" - 8gg + 4g3
4g3

and

vo*<0) “ E< &0 ) - i|
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2g*g‘* + 8g4 + 16gg* - 8gg£g’

curvature Yq is given by

Carollorv 1 : If we take g{0) = C0* then Efron's example 5

(refer Efron (1975),p.p.1200) becomes particular case of above

result. In this case X ~ N(0, C0£).

Hence

g(0) = C&z and we get

Ea(X) = 0 Ee(X*) « <C+1)0*

E0(X3) = (3C+1)&z Eq( x4) = (3c*+6c+i)64

Also we obtain
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Hence we obtain

*Q ~ 4(C+i/2)3

Mote : If X ^ N{9, 9Z) 9 > 0, then curvature Yg of family of

normal distributions N(9, 9Z) is

Corollary 2 : Using central limit theorem asymptotic

distribution of sample mean of i.i.d. observations

Xt, Xj., . . . , Xn from b(l,9), is normal with mean 9 and variance

g(9) = 1 . Thus X ~ N<9, ; curvature of this

family of normal distributions is obtained as below.

E(X) = 9, E(X*) = g±la-lIQ-

E(X3) = 3.eH(n-3)e3 ^ E(x4) = 39*+693(n-1 V+94(nz-6n+3I

zo (9) 2.3D). 12Q (n~2) 112{9-9z)z

V (9) = 9.9 3 ( 4—2n—1H129 *(2n~3 ) +9 ( 20~8n) -4 
11 4(9-9 *)3

294 (9-Sn)+49 3(8n—9) +59Z{ 6~4n) 449 (n~3H2
(9-9z}4

y| = ____ 16n (9-9z)z
[2.9 z ( z—n) +29 (n—4) +1 ]


