CHARPTER-— IV

t

CURVATURE OF & FRNILY OF DXSTRIEUTIONS

4.1 INTBODUCTION : '

i

This chapter i1s basically based on a part of Efron’s
(1975) paper on ‘'Curvature’. Curvature is used to measure
closeness between one parameter family of distributions and
one paramneter £.F.D. In section 4.2 we study concept @r;f
curvature with it’s role in statistics. We:have shown that
curvature of one parémeter E.¥.0). is zero. Also curvatures of

non exponential models are calculated. In section 4.3, curved
E.®F.D.’s are introduced; curvature of a family of HNormal
distributions with mean ¢ and variance g(9) where g(8) is

twice differentiable funchion of ¢ is calculated.

4.2 CUORVATURE AND IT’S RBOLE IN STATISTICS
L,

Let L be a curve in F* as shown ‘ -

in fig. 1. A measure of the rapidity

with which a curve in R%*, or it’s
tangent line, is turning at a particular

point on the curve is diven by the rate

of change of the angle made by the

tangent line with some fixéd direction

(which can be taken for convenience to

be that of coordinate axis} with respect . X

\ukd

b1
to the arc length, wmeasured from some fl
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fixed point on the curve. The absolute value of this rate of
change (if it exists) is called the curvature of curve at the
particular point. From fig.l, curvature of the curve L at

point A is given by

o
Curvature = { %&—l
[
whete = .8 aro length of the curve L between points A and B

and « ig angdle uvetween tangents to the curve at the points A
and B. Suppose that Y = Y(x) is the equation of the curve,

then the curvature of the curve evaluated at x, is given by

NS o
(x+Yz)3/2

That 1is
( 2 41 /z
Yo, = | —Y
Txe { (1+¥%)*® } (1)
where - denotes differntiation w.r.t. x and derivatives arc
cvaluated at x,. Reciprocal of the curvature is called the

redi%ﬁs of the curvature at that point. For further details

we refer John (1970).
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Example 1 : Curvature of the circle

at point B is given by

= nfz =1
'B znr/a r B

and curvatbure at C is given by

fquation of the circle {whose

centre is origin and rediTus is r,

as in fig.2) is given by

e <

Y=—§andy‘=-3~§ﬁl—

By putting these values in (1) we get,

Thus the curvature of the circle is constant and the red;%us
of curvature of the circle at that point is the redious of

circle. Note that the curvature is independent of origin. It

is easy to check that curvature of straight line is zero.



-g7 -
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For non—exponential families the M.L.E. 1s not, in
general, a sufficient statistic. The information 1ossed%{as
compared with information in the sample) by M.L.E. éan be
expressed in terms of curvature. This is done by Fisher

(1925). Let X, . X,,..., %, be a random sample from the

distribution with p.d.f. f(x18}; we denote, In(e) as Fisher
information about &, contained in the whole sample, In(é) be

Fisher information in the M.L.E. é(x,,xi,...,xn) and ig be

Fisher information contaired in single observation. According

to Fisher (1925),

i A . Bogm2R, (R, p® 4pl —2p o,
%&g [In(a)—ln(d)] = ig [ igx ac _q.- 14 vciz 11720 . (2)
& & |
where
f’- ’th {“-' _iJ
wos = Eg fi{x]8) (£ (x]18) , (3)
1 ‘[f(xéG)J L f(x!é)j

the dot * indicating differentiation w.r.t. &. Later on we

will show that the bracketed quantity on R.H.S. of (2) equals

to v§ where vg is curvaturre of the family of distributions

NN
\_/\NW

f(xle). Also it is observed that (proved later on) curvéture
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of the one parameter exponential family is zero. Thus if, the
bracketed quantity is =zero then the distribution from which

sample is drawn, forms exponential family. otherwise it does
g

not forms exponential family. Thus originally, bracketed

\ W“,“,.» ) ) ‘
gquantity (this quantity being called curvature by Efrom) is
basic tool to measure departurness of one parameter family

s

N oA R

ggzmwgée parameter exponential family. Efron has discussed
the fact that, if curvature of the family of distributions is
small (that is near zero} then that family has good
statistical properties as exponential family has. For
example, locally most powerful test has poor characteristic,
if it is based on the sample from distribution having larger
curvature. One parameter exponential families have very nice
properties for estimation, testing, and other inference
problems. Fundamentally this is because they can be
considered to be ‘straight lines’ through the space of all
possible probability distributions on the sample space.

Now we discuss, curvature of the curve in K>2 dinensional

space, we refer Efron (1975). Let L = {ne,eeegm} be a curver

line in FK that is a locus of points ng,9e¢8ER.  For each &,
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ng is a vector in RK and we denote tg = oo Mo e T

We assume that these derivatives are exist in a neighbarhood

%, .
i e AT e =
e PSS TS 1.3 2 A DA 55 PRI o P

of a value of &, where we wish to define curvature. Let Zg be

K ¥ K symmetrie non—negative definite matrix, defined
2

continuously in 8. Let My be the 2 X 2 matrix, with entries

e

e RS o SRS

s e NS

denoted by v,,(9), v,,(8) and v ,(8) as below

vea(®) v (8) g Lg Mg fg Lg g

Mg = N Bl P e . (3)
Vi (8) vl {9) g Lg Mg Mg Lg Mg

and let

- 1/2

_ IMg | ()

Yo = —S——

d v£0(8)

n

Plhev wg in ‘the curvature of L at ¢ with respect to the inner

product Lg. For further details we refer John M.H.O. (1972).

ote 1 : If we take K= 2, & = X, ng = (X Y(X) and Zg = I in

{3) and (4) we getl

e = (1,¥) , @5 = (0,Y)
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and

P¢’
e

M&}:

X

{ 1+%°
R4 ¢

Hence we have

oz 1 L3 /%
vg = [¥ 1(14Y)7]
For straight line, ng = (&, at+bd) and for circle with centre
. i 1/ -~ S
at oridgin and r bes radious, ng = [d, A r2—8% where O<6<r].

P o

Quantities in (3), can be expressed in terms op f(xi8)
RN
as below (we refer Efron [18751}).

Let f5(x) = log[f(x18)] and denote

Q@

z
ba(x) = 2= [2a(x)], Batx) = =3 [2a(x)]

&8
{for convenience we will supress random element x in much of
the subsequent notations)

It can be shown that (refer Kendall and Stuart [1973])
Eg(2g) = 0 and Eg(?§) = — Eg(lg) = ig.
We take
Mg = Covariance maatrix of (i, 23)

e e

S



1g = Eg(®§)
Ee(bebé)

From (3) and (5) we can write

v,o(8) = Eg(23)

v, (8)

1.;02(6) == Ee(yei) — 13

Using above notations,

y§ = 1

i3

Mote : Equation (2) can be

L [1.08) - 1,¢6)] =

From (7)) we have

Ea(beké)

Ee(?éi) -

i

3
[sa]

=)
5]

]

Var. (¥g)

can be written as

-

[Voz(e) -2

written as

P v, (9)
g Sz
15

By definition

#

8~
“d

Hence

o

f(x1t€)

log £(xi18&)

b = E(x18) g4 pn = _E(xlE) _

-101-

(5)

(6}

(7)

(8)

(9)



Using (3) and (8) we have

Voo (8) = E(2g%) = i

= Hor v Hao 28,
and
b‘ll(e) = E(be’}e)

Hence from (8) we get

Pootiy~2r,,
ig

W% o=
“d

.._1._.
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!
H-
Qe

z z
Ry gHRG720 By

(10)

Dl

1

Hence result follows from (2), (8) and (10).

Example 1 : If X ~ b(n,®) then we have

1, (] = , V.. 8
2ol G(1—8) o2 (8)
14 g = n_g..l'__:_z.@_)__:
11( ) 9‘(1——8)‘

= n{l1-283)%

8%(1—8)*

By putting these values in (7) we get

'}*‘9"‘:0

Example 2 : If X ~ P{€} then we have

1"‘2'_C.(€“) =4 ’ VC«Z(Q) =

v (8) = - ——

-1

2
3, <



By putting these values in (7) we get

Yo T 0
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NMow we show that Curvature of one Parameter Exponential

Family is Zero.

Theorem 1 : Curvature of one Parameter E.F%.D. is Zero.

Proof : Let f(xi8) be p.d.f.

of X which forms one parameter

E.F. . then f(xi8}) is given by

£(x19) = h(x) exp{Q(e)T(x)+d(8)}

In terms of above notations,

99 = Q T(X)+d,

where Q@ and d are

t‘e = @ T(x)+d

and

Now we consider

44
D -

e
|

o :}O )
i

i

we have

functions of € only.
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Hence we can write,

where b, (&) = :QLQL“
Q (&)

Hence, for fix 8, fe(x) and Dé(x) are linearly related.
N

Therefore, covariance matrix of (#g,25) is singular.
That is  IMgl = O

Hence, from (4)

Aliter : We find

v, (8) = 9 _d-9 d
Q
v, (8) = “Q;:dzg_é;:d;
Q
[ LA WA 9
v (e) = R 449
Q

By putting above values in (7) we det

3'9=O
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Now we obtain curvature of some non—exponential families of
distributions.

Example 3 : Let X has student’s t distribution with n dedrees
2

e

of freedom as below

—(B5)
F(nﬂ)ﬁ_~ [1 o {x=8) 7 , —w { %X, 8 { ®
. Mn/z)w on n .
f(xig) = ¢ n ¥ 1, integer
0] , other wise.

We observe that differentiation w.r.t. x and w.r.t. & are
same (except for negative sign) and moreover curvature is
independent of change of origin. Thus if we put & = 0 then
differentiation w.r.t. x and w.r.t. 9 are same.

Hence if 8 = 0 then,

= C{n+1) xz
f(x) Fn/z) o an [1 +

We obtain

g = K — n%l log (1+§i) ,

Where K = log —{ntt)
T{n/z) on




-106-

Hence we have

z -1
o = - ] s o]
and
ve = - ] [1 -] [vor 3]

Also we obtain

("

1 = +
Vo (®) e

ntyz
E(béz) — (n+t +2 2y +
n(n+z){(n+=)(n+7)
v (8) = bt |{n+z(n*+18n+19) _ n+s
oz n+z n{n+s}{(n+7) n+z

vy (8) = E(kghg)

0] ~ X2
- el Lo
(1 + &)=
= Q since intedrant becomes odd function of X

e e,
",

By putting above values in (7) wa gét,

N I’IG‘ 8)

Qe { e

e

= “+18n+
n{n+st}y(n+=i{n+7)
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If n = 1 then X has standard Cauchy distribution and »§ = 5/2

Examnple 4 : For Gamma translation family

(x-8187¢ o= (%-9)

f(xig)y = j Ta
{ 0 ) other wise
we obtain
tg = — log Ta + (a—1) log (x—9) — x+¢
;‘9 = - ﬂ:} + 1
X
A‘a == e— ___&:l_.;_
(x—8)"
v, o(8) = gz
Vg, (9) = 4a—10

(a-z)*(a-2)(a-4)

v, (&) = _a

(a~-z)}(a-2)

and

= ( 2 X a-d a > 4, fixed constant.
a-z a-4

!
Qe
]

4.3 CURVED E.F.D, : Curved £.¥.9. is one parameter family of

distributions for which there does not exists one dimensional
- i fab i " o
sufficient statistics and is obtained from any K dimensional

E.¥.I. by converting K parameters to one parameter using some
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intermediate relations in single parameter. For example, if
¥ ~ N(»,c*) then it forms two parameter £.%.0:. while if we
take » = & and o = 8% (8>0) then X ~ N(¢,9¢%) and it form

curved E.¥.D.

Let f(xin} be p.d.f. of X which form ¥—parameter E.¥.D.,

then f(xin) is given by

f(xln) = h(x) exp{E n; T;(x)+d(n)} , (1)
where n is natural parameter and w € N € ‘k.
We convert, K natural parameter n,,n,,...,np to
g = (1,(8),0,(8),...0(8)), 6 =6 & R. Hence (1) can be

written as

£(x18) = h(x) expiL n;(8)T;(x)+d(ng) } (2)

Let L={ng :9=ecRr} (3)

is one parameter subset in the interior of N, where wg is

”

i
rm""’w
=

twice differentiable function of 8.
Definition 1 : Let ® = {f(x16):8¢6SR, and it is given by (2)}.
Statistical curvature of P at ¢ is the geometrical curvature

of L=4{ng : 8 =6} at e,




~-109-

ertie ure : We state invariance properties of
curvature, for further details we refer Efron (1975).
{i) Statistical curvature is intrinsic property of family #

and does not depend on particular parametrization used to

index .

{ii) statistical curvature is invarient under any mapping to
='\-.—..,,_'

sufficient statistics including off course all one to one

mappings of the sample space. That is, if T = T(X} is

sufficient for P = {f(x16) : & ¢ @ € R} and

let P, = {f,(t18) : 6 ¢ ®, é R, f, is p.d.f. of T} then
vg = vagTl,
where vg and vgT are curvatures of P and P, respectively.
. . . . 8 (8
We obtain curvature of the family of Normal distributions

with mean @ and variance g(9), g(8) is twice differntiable

function of 8. Using central limit theorem, asymptotic

distribution of sample mean of ¥.¥%.d. observations from any

distribution f(xi8) is normal distribution with mean = Eg(X)=9

and variance =

‘Y—?%o]ii}—“ = g(a) say.



-110-

The following is new result to the extend that we have
rTom—
proved it independently and is not found in the earlier

literature.

Theorem : Let X be a random variable having normal

distribution with mean & and variance g(&) where g(8) is

twice differentiable function of 8, then curvature »g of the

family of normal distributions is given by

4g3é' z
S R 1
(g“+2g)= (1)

~
O
!

where g = ~g§ g(8), g = *%gz g(98).

(we have written g instead of g(8)).
Proof : p.d.f. of X is given by

{ —L1— exp{- 1y (x99}, if -0 <x, 8 <0
f(xl8) = ¢ ~/ ang 2g

0 , other wise

using definitions and notations in previous section we obtain

o
¢

— z
a,x" + b,x + c,
and

2

Pg = a,x* + b,x + ¢, ,
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_ & _ 94 _ 6%*g — 26g — ag
where a, = e b, = gz > % T zg®
_ g - 2&* _ 28¢* — egg’ — 2ag
a, = 28 =28 , by = :
zg g

6*gg’ + 46gg — 2g* — 268%g* - g*g + gg*

Ce = RPE
since X ~ N(8,g(8)) we have
Eg(X) = 8 s Eg(X*) = g+8°
Eg(X¥) = 30g+8* , Eg(X*) = 3g*+68%g+8?
Using these results we obtain
v,q(®) = 15 = Fisher Information in a single observation.
2z
= Ee(t'e)
= - Ee(&'e)
iz
_ g%2¢g
z2g®

v, (&) = Eg(ighy)

2ggg’ — B8gg + 4g°
4g*®

and

cz(8) = E(lg ) — if
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_2g*g"* + 8g* + 16gg* - 84g*g’

4g*
curvature r¥g is given by
[P S | V?z(a)
g = = [voa(e) — 22—
. 1lg ig
_ ag® i*
(g%+9g)°

P

Corollory 1 : If we take g(8) = C8% then Efron’s example 5

{refer Efron (1975),p.p.1200) becomes particular case of above

result. In this case X ~ N(8, C8%).

Hence

g(9) = C8% and we get

Eg(X)

]

g ,  Eg(X®) = (C+1)8%

i

Eg(X*®) = (3C+1)e? ., Eg(X*)

i

(3C*+6C+1)8*

Also we obtain

Vzo(a) = 2%%%

vii(e) = - ﬁgé%
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Hence we obtain

(vi’.
== . ¥ S

- 4(C+1/2)*

-
D

Note : If X ~ N(&, %) @ > 0, then curvature vg of family of

normal distributions N(&, 8%) is

-2
27

W

Qp

Corollary 2 : Using central limit theorem asymptotic

distribution of =zample mean of i.i.d. observations

Xi,Xz,...,Xn from b(1,8), 'is normal with mean & and variance
g(o) = ¢ n—e . Thus X ~ N(@, QL%:QJ); curvature of this

family of normal distributions is obtained as below.

E(X) = 8, E(x*) = 2x(n=1)e%

¢}

E(X?) = 38%4(n=3)6% = g(yxe) — 38%+66%(n=1)+6*(n*-6n+3)

n .
= 28% +26(n—23)+
v, (8} =
LCQ( ) 2(8_82)ﬁ
v (g} = 887(4-2n—-1)+120%(2n—31+6(20-8n)—4
119 4(8-9%)°

= 20%(9-8n)+48%(8n—91+58%(6—4n)+48(n—3)+2
(8-9%3°

vg = 16n(8-8%)® _
[282(2~n)+29(n~z)+:]'




