
Chapter 3

TOLERANCE LIMITS FOR IFR CLASS OF 

DISTRIBUTIONS

3.1 Introduction:

Shaked and Shanthikumar (1994) have discussed various 

stochastic orders and their applications. They have compared 

random variables or their distribution by various stochastic orders 

with some results. Many researchers ^pointed out the utility of 

stochastic orders in different areas like Finance, Economics, Bio­

statistics, Reliability, etc. They have proved useful results that are 

related to the various stochastic orders. Kijima and Ohnishi 

(1999) have given stochastic orders and their application in 

financial optimization. Cheng and Zhou (2005) have derived some 

applications of stochastic orders to actuarial science.

Let X1,X2,—,Xn be a random sample obtained from an 

IFR distribution with distribution function F. Consider two statistic 

L(X)and U(X) based on this random sample, such 

that LQO < U(X). Suppose L(X) = L (Xj ,...,xn) is such that
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where 0<<?<1 and 0<a<l.Then (£(2D>°°) is called as (l-a) 

level (l-^) content lower tolerance limit for F. Similarly 

U(X) = U (xlt...,xn) is said to be (l-a) level(l—content upper 

tolerance limit for F if

PF[ FifJ(X))>l-q J>l-a.

Goodman and Madansky (1966) have reported parameter 

free and nonparametric tolerance limits. Many researchers have 

provided parametric tolerance limits for various continuous and 

discrete distributions. Patel (1986) has given an extensive review

of tolerance limits. /1
/ v>

Distribution free tolerance limits based on order statistics, 

which suffer from the problem of sample size. If sample size is not 

enough, the corresponding tolerance interval does not give the 

desired coverage. Instead of obtaining distribution free tolerance 

limits for an arbitrary distribution F, it is possible to construct 

tolerance interval for F, when F belongs to an IFR class of 

distribution. Hanson and Koopmans (1964) have provided such 

tolerance interval for IFR distribution for which log F is concave.

Barlow and Proschan (1966) have provided tolerance limits for F, 

when F is an IFR and restricted to be positive on only non­

negative values of corresponding random variable.
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This chapter is devoted to application of the usual 

stochastic ordering. The section 3.2 contains prerequisite. Some 

results related to star-shaped function, convex function, IFR and 

DFR distributions have been discussed. These results are 

necessary to obtain tolerance limits. We have summarized these 

results from Barlow and Proschan (1966). In section 3.3 we 

discuss lower tolerance results for an IFR class of distributions. 

Section 3.4 is devoted to the lower tolerance limits for Weibull and 

Exponentiated exponential distributions.

3.2 Prerequisite:

Definition 3.1 Star-shaped function:

(a) A function (j) is Star-shaped on [0, b),for 0<b<°° ,

if <j>(ax) < a <f>(x), for 0<a<l,0<x<b,

or
<p(x)

is increasing for x in ...(3.1)

(b) Let F and G be continuous distribution, G be strictly increasing 

on its support, and F(0) = 0 = G(0). Then F is star-shaped with

respect to G if G~{F(x) is star-shaped. That is
O-'F (x) 

x
is

increasing forx>0.
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Example 3.1: Let 0 (*) = x2.

We have m=x
X

(3.2)

By taking derivative of (3.2) with respect to x, we get

d_
dx

000 \
V * J

= 1 >0.

Hence ^ is increasing in x.

Therefore 000 is Star-shaped function.

Definition 3.2 Convex function:

(a) A function 0 is convex on (a, b), if for 0 < a < 1,

-oo<a<b<oo, a<x, y<b. Then

<l>[ax+(l-a)y]<a 0(^)+(l-a)0(y). ... (3.3)

(b) Let F and G be continuous distributions, G be strictly 

increasing on its support, and F(0) = 0 = G(0). Then F is convex 

with respect to G if G"‘F(x) is a convex function in x on the 

support of F.

Example 3.2: Let f(x) = x3 . ...(3.4)

Now

(a *+(l-a) yf =«3jc3 + (l-a)3 y3 + 3(a x)2 (1-a) y + 3(a A-)(l-a)2 y2
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'1
<a3 x3 +(l-a)3 y3 ^

= a3 f(x) + (l-a)3 f(y) *

<af(x) + (l-a)f(y).

Hence by definition 3.2, f(x) is convex function.

Let XVX2,.....Xn be a random sample of size n observed

from F and YX,Y2,.....Yn be a random sample of size n observed

from G. We assume that F is continuous, F(0) = 0- G(0) and let 

G(x) = l-e-* for jc>0.

We further assume that F is a member of IFR class of 

distributions. We prove following result.

Lemma 3.1: If F is IFR then

G~l (F(t))=- log* (l - F(t)) is convex when finite.

Proof; In order to prove G^iFit)) is convex, it is enough to show that

iib_1(F(0)]>0 V r>0.
di

Now

~ w)]=£ [- log (r- F«))]
dt at

no and

[o-'(pa»]= a ( m '
3 »[[!->(«>), > 0 Vr >0.
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Hence the proof.

Similarly one can write following Lemma.

Lemma 3.2: If F is DFR then G-1(F(0)=-logc(l-F(f)) is concave.

3.3 Lower tolerance limits for an IFR distributions:

Suppose xx,...,xn and Yl,...,Yn are the order statistics

corresponding to X-sample from F and Y-sample from G 

respectively. Following Barlow and Proschan (1966), define a 

statistic

HD = -£(«-'+ 0(1',-I'm)-
n

Therefore

/=!

Since Y{,...,Yn are the order statistics from an exponential

distribution with mean 1. We have the following Lemma 

immediately.

Lemma 3.3:2nT(Y) has Chi-square distribution with 2n degrees of 

freedom.

Proof: Omitted for brevity.

Let Xi-a&n) be the 100(1 -a),h percentage of Chi-square 

distribution with 2n degrees of freedom. That is
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p(x2(2n)< xL(2n))=l-o.

Define

L(Y) = -2nloge(l-g) T(Y)

xhVn)

-2n ^(n-i + l)(}' -^-i)log,(1 ~ 
1=1

nxL„(2n)

-21og,(l-?) $1(n-i+\)(y,-YM)
_ 1=1

xL( 2«)

Lemma 3.4: KD is (l-a) Ievel(i-<?) content lower tolerance limit for 

exponential distribution with mean 1.

Proof: Consider

/>G[i-c(t(y)>i-?J

= p[e-^> i-,J

= P(-i(D2:log«(l-«))

= P 2X(»-,'+i)(i'-yH)<^(2»)
^ 1=1

Hence by Lemma (3.3) we write 

= />(x2(2n)£ xh(2«))

•l-a.

To obtain lower tolerance limit for F we need following results.
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Lemma 3.5: Let A - Xa; . then
H

n n _
X aixi = X A (■xi ~ *.-i) ’ w/zere X0 = 0 . ... (3.5)
1=1 i=l

Proof: Consider R.H.S. of equation (3.5).

n   n   n  

XA<(*, -XA*m
i=i ;=i /=!

= (A,or, + A2x2 + +A„x„)- (A,*„ + A2x, +.....+ Anxn_x)

= (A -A2)x,+(a2-A3)x2 +....+ (a„_, - A„ + A„ x„.

... (3.6)

Since A, = XaJ,, therefore A, -A2 = Xa; _Xa; = ai *
j=l jm 1 /* 2

Hence equation (3.6) becomes

n _
X AUi ~ A-i) = axxx + a2x2 +.....+
i=i

=X^,
i=l

n n  
Therefore X aixi = X A (xi ~ xi-1) •

i=i i-i
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Theorem 3.1: Let $ 'i-wV £«<♦(*)
1=1

... (3.7)
i-l

for all star-shaped $ on [a, b) and all 0<xl<x2£.~^xn<b for

which 0 < < b, if and only if there exist k (l < k ^ n) such
i=i

that

0£ A, ^.....£ Ak ^1 and when k<n, At+1 =......= A„ = 0.

Proof: Sufficiency Part:

Assume 0 £ A, £.....£ Ak £ 1 and when

k <n, Ak+1 = = A„ = 0.

Then

a, £ 0 for i = 1,2,....k -1,0 < ak < 1 and when

k < n, dj ^ 0 for i = k +1 

Using the above Lemma 3.5, we have

n n  
Xaixi = X A(xi ~xi-1)’ where x0 =0.
1=1 1=1

We conclude that

Thus

xk X,
, for i = 1,2, k-1 and
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0 (**)
0
(k \ 

i=l

*k 'Lw
/=!

Hence,

t-1 n ^ |
U(**)

(=1 i=l J ^ X(_a<-) 0 (•*/)+0 (X a‘xi)
i=!

A:-l £-1 nX (-a,-)*,• + ak xk + X aixi+ X aixi
(=1 1=1 i=k+1

0(**)

**

^ X(-^)0U,) + 0(Xa*x<) >
i=i

since a{= 0fori = k+l,..ji,

k-l
ak (f>(xk) £ £ (~ai) 0 (*/)+0 X (ai ■*/)

i=i

k-l

=> 0 X (#/ */) ^ 0 (**) + x a'-0 (*/)
i=i

/ * \
</> 2>, *!<»,♦(*,)

i=i i-i

/ « \
Therefore 0

i=i
X«,*, <X"<0fc).

1-1

since o, = 0, /or r = k +1 ,...n.

Necessity part:
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Let

0(x) = x2, 0 = xy - x2 =.....= xf_, and x,- =......= xn =b'<b

Then from sufficiency part, we have

( n V
z,aixi - 2jaix>

V 1=1

fi-l n V
'Laixi +'LaJx,
M j=i

(i-1 „ A

y M j=i

( \2 f

j-i
0 + - 0 + Xfl./^ '2

/" n \
- Xfl/ » so that 0 < A, < 1, /or i = 1,2,.... .

V'8*' ; j=>

Next we shall show that A, > 0, implies A;_, < Ay.

To see this let,

0 = Xj =.....= Xj_2 < x7_, < Xy = x ;+1 =......= x„ < b.

Then Lemma 3.5, we write

i=i

2-2
: X A< (•*/ ~ *<-l) + AJ-1 (*y-l “ Xj~2 ) + Aj (Xj - Xj-\)+ XA‘ " X'- 

i=l i=/+l

Therefore
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n _ _
Y,aixi= Aj-\xj-\+ AMj ~ xj-1) ■
i=1

Fix Xj and choose Xj_x and z sufficiently small so that

Xj.i <z<Xj and >z
i=i

Let,

0, *< z 

jc, jc> z
a star-shaped function.

From inequality (3.7), we get

/ « ^

V '=» /
= Aj_1*i_1+Ay

AHXH +Aixj ~AJXJ-l - Ajxi

Aj—\ - Aj -

If each A~i is zero, the proof is complete. If not, let k denote the 

largest subscript i such that A, > 0, Assume 

thatAi+l=0 for j<k-1. We shall show that this

implies A, = 0, for i< j.

Let Xj < xj+l and xk be so large that,

n k  
Yja>xt = SAifc-^w)>z.
i=l i=l
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Then,

( n \
T"l

haixi
i=1

n

«*y+i

This implies,

i;=1
^i-l ) ~ Aj+1 (-£y+i

Therefore

i=i m

This implies,

At = 0 /or i = 1,2,......,/ since AJ+1 = 0 one? 0 < A; < 1.

Theorem 3.2: (Barlow and Proschan, (1966)) Let G~lF be star-shaped 

on the support of F, F(0) = 0 = G(G). If there exists k (1 ^ k £ n) 

such that

0 £ A, £..... £ A* £ 1, and when k < n, Ak+l =......- An-0.

Then

( n \ ( n \

2>,*, G
Vi=1 V '=> /

... (3.8)
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Proof: Let G~'F be star-shaped, then by Theorem 3.1,

(n \ ( n

G~'F X, < '£a,G-'F(Xl)
vi=1 ) v,=1

Let G-1F(Xi) = Yi

Therefore

(n \
G-'F ^a,X, <
V) \1=1 )

( n \

f n \
=*>F

1=1

( n \
2a,X, £ G 2“X

Hence F
f n \2“,x,

i=i

v;=i

( „ \
< G

V,=l )

The Theorem 3.2 is used to obtain conservative lower tolerance 

limits for F.

Theorem 3.3: If F is IFR F{0) = 0, F(^q) = q, then 

Mi-Wi-a.,.,,. T(X)]>l-9}si- a ... (3.9)

or equivalently,

M^2C,-«,,.„:r(2D>i-4}>i-a,

where= min (B^a<q>n, 1).

.. (3.10)

Proof: Since (3.9) and (3.10) are equivalent, to show (3.9), we have 

Lemma 3.5,

'£a,X,='ZA(X,-X>-l)< ^ere A,=2a:-
1=1 1=1 j=1
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By Theorem 3.2, we have

(=i

When 0 < A, <1 for i = 1,2,......,r.

Choosing A,- = - 2 log(l - q)(n -i+l)//,_a2 (2n) • 

We get

-21og(l-g)
X,-a2<2")

2>
i=l

i + l)(X,-Xw) •st

G
-2\og(l-q) 

Xl—a (.2 tl) l=i

When -2nlog(l-q)/Xl^2(2n)<l.

It follows that in this case

PF{l-F ^ T(XJ] >l-q\*l-a. ...(3.11)

If -2nlog(l-q)/Xl_a2(2n)>l. Then let A,. =(n-i + l)/n.

So that

r A (n-i + 1)
f=i n

(X, - *„))*« ofX  •—•O’, -I’m)

Similarly,

1 -G
f£("-i+1)awM>]

>1 -q
*—1 ^k'-1 J

apc[i-G[r(y)]>i-«]=i-a

...(3.12)
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So that

Ml-f [Ci-0,,,„7'(X)]al-9}a 1-a, 

where =min(51_a q>n,l).

Thus above Theorem 3.3 gives us (i-a) level, (l-^) 

content lower tolerance limit for an IFR distribution F. In the 

following we obtain lower tolerance limits for two IFR distributions 

namely Weibull and Exponentiated exponential distribution.

3.4 Application:

Weibull Distribution:

Let Xt,X2,.....Xn be a random sample from Weibull

distribution with parameter A and 5. We know that Weibull 

distribution belongs to IFR class. Now (l-a) level(l-^) content 

lower tolerance limits are given by /, =(L(X_), <*>). In the following 

we obtain the tolerance limits and compute the same with 

different values of n and a .

Let

\X$xs~l exp (-Ax5), x > 0, A,<5>0
/(*) = 0, o.w.

The distribution function is given by,

Fx (x) = 1 - exp(- A x5).
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The Hazard rate is

r(/) = m
m

= Xdts~' tin t,HS>\, that is F is IFR.

Following graph shows the IFR distribution for different values of 

&, taking A = i.

Fig. (3.1): IFR distribution for <5 = 2 and 5.

Let u = l-exp(-/lf<5)

Hence t~ X

1 is
log(l-u)

Now

83



Hence

7’(X.) = X("-<' + l)n''(X1-Xw), 
1=1

L(X)=2n y q-
Xi-a (2n)

T(X).

Let n- 25, a = 0.05, # = 0.05. 

Therefore

UX) =
-50 log(0.95) 

Xl,s (50)
TOO.

Simulation study has been carried out to estimate L(X). 

We obtain L(X) for selected values of a, S, n and q based on 

1000 simulated samples. Average of these limits is computed and 

denoted by E (L(X)}.
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Lower Tolerance Limits:

Table 3.1: Tolerance limits for different values of n and ^.

a 8 n E (LQD) Coverage
2 10 0.083024 0.99966
2 25 0.065743 0.99978
2 50 0.058413 0.99983

0.05 2 100 0.053965 0.99985
5 10 0.086986 1
5 25 0.067798 1
5 50 0.060336 1
5 100 0.055912 1
2 10 0.110945 0.99988
2 25 0.076642 0.99994
2 50 0.064919 0.99996

0.01 2 100 0.058073 0.99997
5 10 0.114537 1
5 25 0.07917 1
5 50 0.067269 1
5 100 0.060226 1

In the following we find tolerance limits for different values 

of 9 and 5 of Exponentiated exponential model introduced by 

Gupta (1998).

Exponentiated exponential model:

fix) =
£ 

« 0

0, o.w.

x>0, 3,0 > 0

The distribution function is given by,
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Fx(x) = {\~e-Xlt'f.

Hence F is IFR for 5 > 1.

Following graph shows the IFR distribution for different values of 

$, taking # = 1.

Fig. (3.2): IFR distribution for 8 = 1,2,3 and 5.

Simulation study has been carried out to estimate ZQf). 

The result obtained by different values of 9 and 8 are given 

below.
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Lower Tolerance Limits: {a- 0.05)

Table 3.2: Coverage for different values of 0 and ^.

0=1 0=2

8 n E(L(20) Coverage 8 n E(IQD) Coverage
1 10' 0.094211 0.910091 1 10 0.191055 0.908893
1 25 0.073779 0.928877 1 25 0.146894 0.929185
1 50 0.066118 0.93602 1 50 0.131916 0.93617
1 100 0.061062 0.940765 1 100 0.122256 0.940703
2 10 0.142797 0.982292 2 10 0.283959 0.982481
2 25 0.110759 0.989007 2 25 0.219503 0.989196
2 50 0.098959 0.991123 2 50 0.198444 0.991078
2 100 0.090955 0.992441 2 100 0.18218 0.99242
3 10 0.173794 0.99594 3 10 0.347339 0.995948
3 25 0.135288 0.997974 3 25 0.270461 0.997976
3 50 0.120809 0.998526 3 50 0.241643 0.998526
3 100 0.111884 0.998814 3 100 0.223497 0.998818
5 id 0.216378 0.999721 5 10 0.431059 0.999726
5 25 0.168524 0.99991 5 25 0.337606 0.99991
5 50 0.150554 0.999947 5 50 0.299775 0.999948
5 100 0.139432 0.999963 5 100 0.278067 0.999963
id 10 0.275386 0.999999 10 10 0.553165 0.999999
10 25 0.21554 1 10 25 0.433855 1
10 50 0.19293 1 10 50 0.385358 1
10 100 0.178407 1 10 100 0.356625 1
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0 =25e = 5

8 n E(t(X)) Coverage 8 n E(i-QD) Coverage
'1 10 0.47497 0.909378 1 10 2.339031 0.910682
1 25 0.370331 0.92861 1 25 1.82684 0.929532
1 50 0.328015 0.936503 1 50 1.625841 0.937036
1 100 0.306675 0.940508 1 100 1.527368 0.940734
2.. 10 ' 0.703803 0.98276 2 10 3.53772 0.982589
2 25 0.555553 0.988941 2 25 2.77243 0.988981
2 50 0.49489 0.991119 2 50 2.459582 0.991221
2 100 0.45581 0.992408 2 100 2.286905 0.992358
$ 10 0.868203 0.99595 3 10 4.3125392 0.99599
3 25 0.67934 0.99795 3 25 3.405534 0.997935
3 50 0.603457 0.99853 3 50 3.013377 0.998536
3 100 0.559731 0.998812 3 100 2.790355 0.998822
5' " 10 1.075857 0.999728 5 10' 5.427977 0.999717
5 25 0.843108 0.99991 5 25 4.221202 0.999909
5 50 0.74719 0.999948 5 50 3.74667 0.999948
5 100 0.696601 0.999963 5 100 3.474102 0.999963
10 io" 1.382087 0.999999 10 10' 6.932767 0.999999
10 25 1.077171 1 10 25 5.424854 1
10 50 0.963917 1 10 50 4.826886 1
10 100 0.894425 1 10 100 4.464567 1
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Tolerance Limits: ((X = 0.01)

Table 3.3: Coverage for different values of 0 and ^.

0=1 0=2

8 n E(iQD) Coverage 8 n E(L(2D) Coverage
1 10 0.124221 0.883185 1 10 0.245414 0.884523
1 25 0.08564 0.917925 1 25 0.175403 0.916034
1 50 0.073687 0.928962 1 50 0.146212 0.929502
1 100 0.065247 0.936836 1 100 0.131736 0.936254
2 10 0.186392 0.971082 2 10 0.37623 0.970594
2 25 0.129581 0.985229 2 25 0.259555 0.985187
2 50 0.110347 0.989085 2 50 0.218702 0.98927
2 100 0.098382 0.991221 2 100 0.195463 0.991331
3' 10 0.229286 0.991398 3 10 0.449613 0.991839
3 25 0.158462 0.996853 3 25 0.318829 0.9968
3 50 0.134238 0.998018 3 50 0.268837 0.99801
3 100 0.120254 0.998545 3 100 0.240279 0.998549
5 10 0.281907 0.999105 5 io 0.561758 0.999119
5 25 0.196615 0.999819 5 25 0.393291 0.999819
5 50 0.167088 0.999914 5 50 0.333263 0.999915
5 100 0.149831 0.999948 5 100 0.300526 0.999947
10 10 0.364243 0.999993 10 10 0.728722 0.999993
10 25 0.252142 1 10 25 0.505039 1
10 50 0.214244 1 10 50 0.428952 1
10 100 0.192165 1 10 100 0.38337 1
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6 =25

8 n E(L(2Q) Coverage 8 n E(L(2Q) Coverage
T 10 0.623201 0.882814 1 10 3.154387 0.88146
1 25 0.433705 0.916915 1 25 2.154815 0.917418
1 50 0.367653 0.929108 1 50 1.834157 0.92926
1 100 0.327075 0.936679 1 100 1.641816 0.936437
2 10 0.923869 0.971538 2 10 4.698876 0.97064
2 25 0.648581 0.9852 2 25 3.215739 0.985431
2 50 0.549567 0.989166 2 50 2.750967 0.989142
2 100 0.490906 0.991255 2 100 2.457846 0.991232
3 10 1.143256 0.991461 3 10 5.722683 0.991435
3 25 0.785354 0.996929 3 25 3.961175 0.996854
3 50 0.669615 0.998031 3 50 3.345733 0.998035
3 100 0.601213 0.998546 3 100 2.995126 0.998561
5 10 1.412857 0.999096 5 10 7.071211 0.999092
5 25 0.991942 0.999811 5 25 4.879539 0.999825
5 50 0.837999 0.999913 5 50 4.184859 0.999913
5 100 0.747247 0.999948 5 100 3.752178 0.999947
10 10 1.822117 0.999993 10 10 9.123084 0.999993
10 25 1.260024 1 10 25 6.316585 1
10 50 1.07115 1 10 50 5.351944 1
10 100 0.958727 1 10 100 4.792191 1

Conclusion: a) As sample size increases lower tolerance limit 

approaches to the actual limit.

b) As (X increases lower tolerance limit decreases, which results 

in increase in the coverage probability for the fixed value of oc.

c) Coverage probability decreases as 9 increases.

d) Coverage probability increases as 8 increases.

Thus tolerance limits using stochastic relation of IFR with 

exponential distribution perform satisfactory.
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