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CHAPTER-I

INTRODUCTION AND SUMMARY

Introduction:

This chapter is introductory. In section (1.1) the 

motivation to the problem is given, in brief, with definition and 

concept of confidence interval. Section (1.2) contains concept of 

fixed sample size procedure, its limitations, and the need for 

sequential procedure. Some preliminary definitions and results 

that are frequently used in the subsequent chapters of 

dissertation are also reported. The last section includes the 

literature survey of fixed-width confidence interval and 

chapter-wise summary.

1.1. Motivation to the problem:

In the problems of statistical inference, sometimes we are 

not interested in deriving the point estimator for parameters, or 

obtaining test of’tfie hypothesis, but like to establish a lower 

and upper bound for the real valued parameter. For example, if T 

is time of survival of an equipment, we are interested in 

obtaining a lower bound for the probability that the equipment
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will survive beyond some specified time, that is a reliability

function. If X denotes the nicotine content of a particular brand 

of cigeratte, one may interested in obtaining a lower and an 

upper bound to the average nicotine content. In other words, 

experimenter is interested in constructing the family of sets 

that contains true value of parameter with specified (usually 

high) probability. The problem of this kind is called the problem 

of confidence estimation or interval estimation. The method of 

interval estimation consist of determining a subset of parameter 

space that contains the true value of the parameter with certain 

specified probability. The theory of confidence intervals was 

first introduced by Neyman during (1941) and further developed by 

many people.

Now, in the following we give general definition of 

confidence interval.

Definition (1.1.1) : Confidence Intervals

family of distribution functions

(d.f.) of a random variable, where 0 is an interval on real line. 

Consider a subinterval of 0. say S(X) = (L(X) , U(X)) where 

limits depends on observed random variable X. Let a 6 (0,1). Then 

S(X) is called a (1-a) level confidence interval for 0, if for
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all e € 0,

(
p ^ stx) & e \ > (i-a)

& K >
..-(t. 1.1)

The (1-a) on right hand side of (1.1.1) is called confidence 

level, L(X) and U(X) are called lower and upper confidence limits 

respectively.

Note that, S(X) is random interval in 9- The quantity

f
Sup P \ S(X) ^ e \ 

0G0 9 t J
...(1.1.2)

is called confidence coefficient of S(X).

Generally the precision of a family of interval estimators 

is measured in terms of length of confidence interval and their 

coverage probability. In many situations, we are interested in 

constructing a confidence interval of specified width and having 

a specified coverage probability. Such a confidence interval is 

called as fixed-width confidence interval. Now we define the 

fixed-width confidence interval.

Definition (1.1.2) : Fixed-width confidence interval:

A family of confidence interval S(X) is called (1-a) level 

fixed-width confidence interval if for pre-specified d (d>0), S(X) 

has a fixed length d and

1
S(X) s 0 } > (1-a), for all 9 e 9. ...(1.1.3)

}
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Generally $ is a real parameter or some real functional on 

family IF of distribution functions. The problem of fixed-width 

confidence interval is that of determining whether such family 

exists and providing the sampling scheme, if required, which will 

gaurantee that a proper statistic T(X) which satisfies the 

definition (1.1.2).

1.2. Fixed sample size procedure t is limitaiions and__Concept of

Sequential procedure, Some Preliminary definitions and 

Results:

In Statistical inference problems (point estimation, testing 

of hypothesis and interval estimation) the decision is usually 

based on the assumption that sample size ’n’, fixed in advance, 

is available. This type of decision procedure is known as fixed 

samp!e size procedure. The fixed sample size procedure doesnot 

take into account the cost of sampling. Thus, the problem is to 

determine the minimum sample size, such that the decision should 

be taken with prefixed desired accuracy.

But in some situations,if we fix sample size in advance, we 

may not able to achieve the desired goal. To illustrate the same 

we consider in the following the problem of fixed-width 

confidence interval for mean p of normal distribution with
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Z 2variance ct , when both ^ and a are unknown-

Examplet1.2.1):Let X ,X...........X be a random sample of size n---------------------------1 2 n
2

from Nl/j.o' ), where n is fixed in advance. Then (1-a) level 

confidence interval for /j is given by

( — i /? — tS¥
X - S/in) t , X + S/(n) * t

^ r> n-t, Ct/2 n n-t, 0/2 J

. . - ( 1 .2.1 )

n
where SZ=(n-1) 1 V (X - X )*” and t is IOO(a/2)£ point of

>. n n-t,0(/2
i. =i

Student's t-distribution with (n-li degrees of freedom.

The length of this confidence interval is 2S/{n) ''' t
v^.-t .-V '■>

« : » l <* cv t-

which is a random variable. In this case, we have no control on 

the width of the confidence interval. If a" is known, a (1-a) 

level confidence interval for is given by

fx - a/in)%/Z 2 , X + <?/{n)X/i 2 {...(1.2.2)
n rts'l r. 2 J

l/ZThis confidence interval has length 2o7(n)' Z . This length
(X/Z

will be atmost 2d, where ld>0) fixed in advance, provided we 

choose the sample size 'n' such that

. ^ , ~t/2d > o^nl Z

That is,
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...(1.2.3)
d

Thus, if we take a random sample of size n . rL then

the confidence interval has width 2d and. confidence coefficient

atleast (1-cx), where [x) stands for the largest integer smaller
2 ,than x. However, if o' is unknown we cannot Find this sample size

’n’. Thus, in fixed sample size procedure it is not always 

possible to minimise the number of observations that are required 

to arrive at the decision that is optimum in some sense.

An alternative procedure suggests itself why not take the 

observations sequentially, that is, one at a time and use 

information provided by observations to date to determine whether 

the further observation is necessary or not. In such case sample 

size is random variable. The procedure of taking a decision by 

above method is called as sequential decision procedure.

Now we consider some basic notions of sequential decision 

procedure. Given an infinite sequence of random variables, say, 

X^,X ,. -., the statistician faces the problem of providing a set 

of rules that tells experimenter when to stop the sampling; once 

a sampling is terminated after taking, say n observations, the 

decision problem is treated as a fixed sample size problem.
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Let 0 be a parameter space and !P is the set of decisions

available,that is decision space, to the statistician. We assume 

that the random variables X ,X that are observedt 2
sequentially are independent and identically distributed 

(i.i.d.) and let f{x;£?)j 8 e 6, be the common probability density

function(p.d.f.) of X ,i>1,2,. .. .i

Definitiont!.2.1):Components of sequential decision procedure:

A sequential decision procedure has two components.

(a) Sampling plan or Stopping rule;

One component of sequential decision procedure is called 

sampling plan or stopping rule. The statistician first specifies 

whether decision in ID should be chosen without any observation or 

whether atleast one observation should be taken. If atleast one 

observation is taken, the statistician specifies for every

possible set of observed values X =x ,....X =x (nil) whether„ it n n•L.
sampling should be stopped and ^decision in iD is chosen without

further observation or whether another observation X should ben+l
taken.

(b) Decision rule:

The second component of the sequential decision procedure is
i 5called decision rule. If no observation a/e taken , the
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statistician specifies decision d e II> that is to be chosen. If
o

atleast one observation is taken, the statistician specifies 

decision d (x ,x , ...,x ) <2 II> that is to be chosen for eachn 1 2 n
possible set of observed values X =x ,X =x ,...,X =x after which112 2 n n
sampling might be terminated.

In the following we give some more definitions, useful in 

due course of discussion.

Definitioni1.2.1):Stopping Region:

{ f«U, * tV* Let R c iK , n=1,2,...? be a sequence of Boral-measurable 
***** n n

sets such that sampling is terminated after observing

X =x ,...,X “X if (x ,.. ., x ) <5 R . If (x ,.. ., x ) e R another1 1 n n 1 nr, t n r,
observation X is taken. The set CR , n=1,2,... } are calledn+t n
stopping regions. Here R is n-dimensional euclidean space.n

Definitiont1.2.2):Stopping Rule;

With every sequential stopping rule we associate a' stopping 

random variable N, which takes on values 1,2, ... is the

(random) total number of observations taken before sampling is 

terminated.

Let CN = n } denotes the event that sampling is stopped

after observing n values x ,x , — ,x and not before. Thus1 2 n
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{ N * 1 } = R and

£ N = n } = £(x ,x ,...,x )stR :sampling is stopped after12 n n

observing x and not before 3
Y

= (R U R U ... U R ) fi R i 2 r,-t n
ft t

= r n R n ... fi R n r .1 2 n-t n
n

Note that £N = nl, and the event £N < n] = U £N = kj depends only
k=l

on observations X ,X , ..., X and not on X ,X ,.....12 n n+1 n+2

Definitioni1-2.3)sClosed sequential procedures

A sequential procedure for which sampling eventually 

terminates with probability one is called closed sequential 

procedure. That is,

P [ N < (B 1 = I0
or P { N = 05 } = I - PC N < CD) = 0.e> a /

Definitiont1.2.4)sSequential procedures

It is assumed that, we may record as many observations as we

like. Suppose that n-observat ions are recorded and let

T =T(X *X ,— ,X ) be a statistic. Let d (d>0) be a givenn 12 n
positive number and Let

I = f T -d,T +d] ...(1.2.4)
n ^ n n J
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A sequential procedure S, 

confidence interval, is a pair 

rule and when N*n ,the interval 

confidence interval.

for constructing a

(I ,N), where N=N(d)
N

I is to be used as
N

fixed-width 

is stopping 

fixed-width

In following, we introduce the definitions of asymptotic 

consistency, asymptotic efficiency, asymptotic relative 

efficiency for fixed—width sequential confidence intervals. These 

definitions are due to Chow and Robbinst1965).

Assume that F e F, the class of d.f. having a finite

2
second moment and Let u(F)=E (X) and a (F) = Var (X). Then

F F

, , f n1/2(X - F ))
l-tm. „ nP------------------------------

A + oo
<y(F)

* §(x)» all F s F, ..n.2.5) —

where X is the sample mean based on X ,X ,...,X and $(.) isn l z n

d.f. of standard normal variate.

Definition (1.2.5) : Exact Consistencys

Given a preassigned number a, <.t <s (0,1), we have to 

construct a confidence interval for any parametric function g(F) 

such that,

Pp| 9(F) € In } > (»-«). ...(1.2.6)

The property (1.2.6) is reffered as consistency or exact
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consistency.

Definition!1-2.6):Asymptotic consistency:

A fixed-width confidence interval

I = f T - d , T + d 1 
N ^ N N j

based on stopping random variable N is said to be asymptotically

consistent if,

lim. ( 1 P \ g(F) « I V > d -+o f| n j
(1-<x), for all F <s IF,

for some ct, « e (0,1)

Definitiont1.2.7):Asymptotic efficiency:

An asymptotically consistent sequential procedure S, for 

constructing confidence interval for p(F), when <yZ(F) is unknown, 

is said to be asymptotically efficient if,

, , E f N Inn f! < d>
d * 0 ( 2 ln d, cr (F) J

= 1, for all F e IF,

2 2
where n Cd»o'2CF > J = —----- and c^tF) is known and a=§ ^Ka/z)o .2 ----------

Definition!1.2.8):Asymptotic relative efficiency:
hJ*Let and ape two closed sequential procedures, then

asymptotic relative efficiency(ARE) of S with respect to S isi z
defined as



e(S ,S ) 
1 z

L im. 
d ■+ o

> l 
- I
> J

and procedure S is asymptotically more efficient than that of S
i ?.

if e(S ,S ) < I. If equality hold* then both procedures
t z

are equally efficient.

s
In asymptotic theory of sequential procedure^ we have to 

obtain asymptotic distribution of the randomly indexed random 

variables. Anscombei1952) has introduced the conditions of 

uniform continuity in probability. These conditions are stated as

follow^.

Let CY } be an infinite sequence of random variables and
i t

suppose that there exist a real number Q, a sequence of positive

numbers [w } and a d-f. F(x), such that the following conditions 
n

are satisfied.

(C-I)Convergence in law of Y :
_______  ___ n

For any continuity point x of F(x),

( 1 L
Y - 9 < xw } ~v F(x), as n ^ ffi.

I n n J
(C-II)Uniform continuity in probability of Y :

n

Given any s>0 and r}>0, there exists a large v and small 

positive c such that for any n>t>.
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pi IY - Y (<a?w simultaneously for all integers n'such that 
^1 n n1 n

|n’-n|<cn| > 1 —r)-

Theorem(1.2.1): CAnscombe >

Let tn^} be increasing sequence of integers tending to ® and 

( 1
let } be a sequence of positive integer valued proper random

l {t))

N(t)
variables such that -------  t 1 in probability as n * on then, if then

t

sequence of random variables Y satisfies the conditions (C-I)

and (C-II),

P^ Y
N(t>

i L
& < xw | ---- ► Fix) as t «>-ni. »}

Theoremt1-2.2):

Let (X , Y }, n=1,2,...,be a sequence of pairs of random
n n

L Pvariables. Let X —* X and Y —> C, where C be a constant. Then
n n

(a) X y —► X + C. 
n — n —

(b) X Y — -> CX, if C * 0 and X Y 0, if C = 0
n n n n

C*»

, , n L X „ , _(c) ———  > , if C * 0.

Theorem(1.2.3):CLebesgue Dominated Convergence)

Let {X J be a sequence of random variables. If (X I < Y
n 1 n1

M*-
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a.s., Y integrable, then if

X X ^ E(X ) ---- ► E (X).
n n

Theoremt1-2.4)iCWald)

If [X } be a sequence of

like X* satisfying E|X|<cd. 
wf (k

'yielding E(NXai,

i.i.d. random variables distributed 

For any sequential stopping rule

E 1 „
J

E(X)E(N).

1.3 l-iieralttre survey on fixed w.idth coni 1 dent:e interval and 

Chapter wise stnnmary:

The problem of construction of fixed-width confidence 

interval is first considered in case of normal distribution.

Let X ,X , ... be a sequence of i.i.d. random variables from
1 2 a

2 *',normal distribution with mean (j and variance v , that is

Given a preassigned number a, «e(0.1), we have to construct a

confidence interval for (j such that,

p0( * -- P ) = pJ K. - e\ < d } > (1-a). ...(1.3.1)

DantzigC 1940) proves that, for fixed sample size n, no 

fixed—width confidence interval of type (1.2.4) satisfying 

(1.3.1) can be constructed for mean fj. That is no fixed sample
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size procedure exists.

Stein(1945) proposed a two-stage procedure to construct a 

fixed-width confidence interval of type (1.2.4) satisfying 

(1.3.1). The procedure due to Stein can be described in brief as 

follow 5*

At a first stage a random sample of size n, (n>2), is
n nrecorded and let X = n 1 r X , S2 = (n-1)lr(X-X )**.

n ». n , nut t. =i
2Compute S based on the first sample and define the sample sizen

f N * by

r
N = maxj^ n,

2a Sn~ t ~ ]+1 i, . . . ( 1.3.2)

where a is 100(es/2)S point of Student’s t-distribution with
t i i.

(n-1) degrees of freedom, and propose an interval.

IN
f X — d , X + d\ 
In n J (1.3.3)

for jj. The interval (1.3.3) satisfies (1.3.1). Note that, in 

above procedure the sample size at second stage 1s random 

variable. When N-n = 0 the sampling is terminated after the first 

stage.

The problem of construction of fixed-width confidence

interval, for mean of the normal distribution, has been also
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studied by Ray(1957), Starr(1966) etc. The analogous problem for

variance of normal distribution has been studied by Graybill and 

Connel(1964) by using two stage sampling. However, in some cases, 

no sampling scheme exists with predetermined number of stages, 

that can give fixed-width confidence interval. In such cases, the 

purely sequential procedures are required. The results of this 

kind were published by Blum and Rosenblatt{1966), Farrel(!966) 

and others. Chow and RobbinsC1965) proposed a method to construct 

fixed-width confidence interval for mean of population with 

unknown variance. Khantl969) proposed a general method to 

construct fixed-width confidence interval for parameter of 

distribution, when some nuisance parameter is present and 

distribution satisfies the regularity conditions. Sen(1981) and 

Sproulet1985) generalized the Chow-Robbins procedure to 

sequential confidence intervals based on U-Statistic.

This dissertation deals with construction of fixed-width 

confidence interval for the various models. It is divided into 

four chapters. In the following, we summerize in brief the 

contents of the different chapters.

In chapter-II, we study various purely sequential methods to 

construct a fixed-width confidence interval. The section (2.1) is 

introductory gives details of the various methods that are
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discussed in the subsequent sections, in brief. In section (2.2) 

the purely sequential method to construct fixed-width confidence 

interval for the population mean, when sample comes from 

population with unknown variance,is dicussed. The asymptotic 

properties of the method are also discussed. This method is due 

to Chow and Robbins(1965). In section (2.3) the general method to 

construct a fixed-width confidence interval for parameter of 

distribution (not necessarily mean of the population) is 

considered. The asymptotic properties of this method are also 

discussed. The method is illustrated with normal distribution and 

exponential distribution. This method is due to Khan(1969). In 

section (2.4), we have extended a method due to Khan(1969) to 

construct a confidence interval for parametric function g(£), a 

continuous differentiable function of 8. The method is 

illustrated by constructing a fixed-width confidence interval for 

reliability function, when sample is drawn from exponential 

distribution with mean 8. In last section we report simulation 

results for the exponential model based on proposed method in 

section (2.4).

In chaptei—III, we study two-stage sequential procedures to 

construct fixed-width confidence interval. In section (3.2), we 

discuss two-stagw procedure to construct a fixed-width confidence
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interval for mean of distribution satisfying some assumptions.

Also we discuss the asymptotic properties of this method. The

procedure is illustrated for normal distribution, negative

exponential distribution and for multivariate normal

distribution. In section (3.3), we study the modified two-stage

procedure, which is asymptotically efficient. The asymptotic

properties of these modified two-stage procedure^are also given.

In section (3.4), we review the problem of estimating the

parameters of inverse Gaussian distribution in term$ of

controlling the risk function corresponding to a suitable

zero-one loss function. In last section, some properties of
Wl^VW

two-stage procedure to construct a fixed ^confidence interval 

along the lines of Birnbaum and Healy()960), are reviewed. The 

procedures discussed in this chapter are due to 

Mukbopadhyay(1982).

In chapter-IV, we study the non-parametric method to 

construct a fixed-width confidence interval. Section (4.2) is 

devoted to general method to construct a non-parametric 

fixed-width confidence interval, in brief. The general method is 

illustrated by constructing a fixed-width confidence interval for 

reliability function, when underlying distribution is completely 

unknown.. In section (4.3), simulation results are reported* for 

the model described in the section (4.2)»when F has exponential
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distribution with mean 6. The results obtained are compared with

the results of parametric method, given in section (2.5). Some

comments, on the comparison of these method are reported. In

section (4.4), the problem of construction of fixed-width

confidece interval for correlation coefficient, when observations
<c/

are drawn from bivariate nornal distribution, is reviewed. 

The asymptotic properties of the proposed method are also 

studied. This method is proposed by Tahir(1992). We comment on 

the method and suggest possible improvement over the method.

The dissertation is concluded with list of references duly


