6.DATA ANALYSIS

6.1 Introduction 2

In the previous chapters, theory associated with various
models and the different techniques of model checking are
discugsed. The initiative of this chapter is to {llustrate some
of these techniques with the help of two numerical examples. The
major problem which occures at the initial stage of data analysis
through model fitting is how to select ' a model from the general
clasa of models defined In chapter 1, so that oconclusion drawn

after analysing the data are'not far away from the truth. This .

problem oocures because, as demonstrated at the end of chapter 2,
classical linear models are not appropriate in many situations.
Hence., though it is easy to fit clagsical Ilinear model +to the
data, It is not a good technique to fit {t blindly. Thus
selecting a suitable model becomes a very crucial part of
analysing the data through model fitting.

This chapter may help the reader to set a guideline to
analyse the by fitting a model to it. Here we demonstrate a part
of the mode! checking procedure with the help of some real Ilife
data sets and one artificial data set. . ;
6.2 Analysis corresponding to the data set-I @

Consider example (3.1) discussed 1{in chapter 3. From fig
(3.1) it is clear that given data requires some type of variance
stabilising transformation. Thus before fitting the !model
itself, we can conclude that classical linear model {s not
sultable for untransformed data.

If one fits blindly the clagssical linear model

E(Y) = f;o{ AX (1)
to the data, the scatter plots given below {n the fig (1) and fig
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(2) indicate that variance of the response variate is hot‘gtaﬁle.
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Hence,

ghg mode 1 r:t3634?§ not su?igZ%gl inis"f an

seen using usual pearson’s chi ;quare gtatistic. If the value lis .
computed by fitting model (1), the value turns out to be 348.3545
with 18 degrees of freedom. This indicates that the fit not
1f we check the assumption of normality by using the well
known chi square test of goodness of fit, it also will indicate

good.
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“+ that’ the data’ mayﬁnot ba'from norual~popu!a;iﬁnﬁnghus_5élassioal]
linear model {g not propef for this data. {3\ '
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lf we observe the’ data carefully,it can bp seen that B(2Q,p)
distribution may rit well “to the-data. .So uet try; for, binomial*
fitting. If the Iinear logistio modei.is!- fltted tﬁe”va!ue~”6f
Pearson’s chi square statlstic comes out to 3 4213 " with 18“
degrees of freedom. ' This indicates ‘that! ufitting 162 © 1inear

logistic model is far meaningful and suitable for the given data

than classical 1linear model. One can also check for
complementory log-log model, log-log nodél‘-as well as probit
model. Once the model ({8 selected conclusions c¢an be drawn
easily by fitting the selected model.

6.3 Analy=is corresponding to the data set-II 1@

Consider example (2.2) discusgsed at the end of second
chapter. In chapter 2, it has been demonstrated that, to this
data classical linear model ig not suitable. This fact might
have been observed before fitting the model by drawing a scatter
plot of number of deaths (say, Y) against the dose of gerum (say,
X). This plot is givwn below in figure (3).
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Hence 1t i{s clear from the table (2.3) thatt elther the quadratic

term {n dose {s needed or some transrofmation on the response,
variate {s needed. The graph {itself "Iin fig (3) shows that;
exponential trangformation may be suitable. By considering
that:?nsformation W = exp(Y), the scatter plot of W agsainat Y 4¢!
= 16 +. as shown bélow. Fiju're—-_éy i
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“Thig rigure points out that the first data may be outliier, but we
should test {t. McCullagh & Nelder (1989), Collett (1981) and
many others the techniques for identifying outliers {in the data
set, As we have not studied those methods one ‘may propose the
classical linear model,

E(W) = ﬁ°+ ﬂ‘x (2)
after checking the assumption of normality. it can be seen that
the normality agssumption is invalid classical linear model is not
suitable. Again by looking the data carefully, {t oan be

obgserved that B(40,p) distribution is appropriate for the data.

In this way one can proceed to select the model.
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