
2. CLASSICAL LINEAR MODEL
2.1 Introduction l

As discussed in the first chapter, there are different
methods of analysing the numerical data. One such method is
fitting an appropriate model to the data and then using fitted
model for predicting future values. Classical linear model *
<CLM) is one such model. This is the oldest and simplest model.
This model is useful in the situations where the response
variable <Y) is thought to be linearly related to one or more
covariates X. (j=l,2,...,k). The purpose of fitting classical 

Jlinear model is to use data for estimation of the form of this 
linear relationship approximately.

Gauss and Legendre began the study of .classical linear 
model, and applied the model to astronomical data where the 
variables are continuous. In their astronomical study a

' significant part of variation in the observations is due to 
measurement errors. Gauss suggested normal distribution to 
describe the distribution of the errors. With this assumption 
Gauss developed the theory of classical linear models. This 
theory has been discussed by many authors in literature. Some of 
them are Graybill <1961), Sear Is <1971), Plackett <1972), Rao 
<1973), Draper & Smith <1981) and Stigler <1981).

In this chapter we discuss the following points.
<1) Description of a classical linear model with k independent 

variates ;
(2) fitting of classical linear model;

• <3) testing of hypotheses ;
(4) residual analysis ;
<5) limitations of the theory of classical linear model.
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2.2 Classical linear model with k independent variates t
Deftnttlon-1 i Classical linear model * Let Y be the 

response variate having Ndistribution and X<j«l,2,...,k) 
be k stimulus variates. Then classical linear model can be 
written as.

or equivalently,
Y * 2L’g + * (1)

E(Y) = (2)
where

(i) &’ = <i &’> I
(ii) X! ■ <X .X ,...,X ) is the vector of stimulus variates ii i 2 K
Ciii) Q* = is the vector of parameters

associated with the model }
(iv) e is the error oomponent corresponding to Y having 

N<0,«y*> distribution.
Note 1. Classical linear model do not require any sort of 
distributional assumption for estimating parameters in the model.
It only requires the assumption of constant variance and the 
linear relationship between systematic effects and the expected 
value of response variate. However the assumption of normality 
is required for testing different hypotheses about the model 
parameters. Therefore we have included the assumption of 
normality in the definition itself.

2.The classical linear model in equation (2) can be viewed 
as a special case of 'general class of models’ given in equation 
tl.l) under the assumptions t = £•£ and the N<#j,o>*> distribution 
for the response variate Y.

Usually,.classical linear models are divided into two groups, 
based on the value of These are
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(s) Intercept classical linear model;
<b> No-intercept classical linear model.

Definition-2 * Intercept oiassical 1 inear mode 1 s A 
classical linear model with non zero, is known as ’intercept’ 
classical linear model. In other words in intercept classical 
1 Inoar model, though the values of all independent variables are 
equal to zero, value of the response variate is expected 
(theoretica1ly) to be non zero.

As an illustration, we present the following example.
Example 2.1: The example is taken from Kalbfleisch (j$853. 

Data were collected to investigate how the amo.unt of fuel oil 
required to heat a home depends upon the outdoor air temperature 
and wind velocity.Table (2.1) gives the observations for 10 
winter days.

We expect that the fuel consumption should'increase as wind 
velocity increases and it should decrease* as temperature 

o increases.
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TABLE 2.1

Day <i) Fuel Consumption Temperature Wind Velocity
< Y) (X ) (X )i 2

1 14.98 -3.0 15.3
2 14.10 -1.8 16.4
3 23.76 -10.0 41.2
4 13.20 0.7 9.7
5 16.60 -5. 1 19.3
6 16.79 -6.3 11.4
7 21.83 -15.5 5.9
8 16.25 -4.2 24.3
9 20.98 -8.8 14.7

10 16.88 -2.3 16. 1

Hera the response variate Y is fuel consumption required to heat 
home and two independent variates X* and X£ are respective.ly 
temperature and wind velocity. If we assume that effects are 
linearly related, the model becomes

Y = /* + /* X + fix. + e. , 1-1,2,... ,10. <3>i O t li 2 12 t
In this example we expect a positive fuel consumption on a day in 
the winter season when temperature and wind velocity are both 
zero. In most of the practical situations intercept classical 
linear models are appropriate.-

Definition-3 i No-interoept classical 1 inear model t A 
classical linear model with fi■ 0 is known as 'no-interoept* 
classical linear model. In other words in no-interoept classical 
linear model, if the values of a 1,1 stimulus variates are equal to 
zero, then the value of response variate is expected
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(theoretically) to be zero. For example let Y be the income of a 
person and the independent variate X be the age of that person. 
If we assume that effects are linearly related, the model becomes

Y. /)X. + e. ,111 L <4)

In this example if the age of a person is zero, his income is 
naturally zero.

In classical linear models over parameterisation occurs many 
times. In other words, number of parameters (p, say) exceeds the 
number of independent equations in E(Y.) * X (9. Thus the matrix X 
has rank less than p. Hence (X’X) becomes singular.

Once the model for analysing the data is decided, the next 
step is to fit a selected model to the data. Fitting a model to 
the data means to estimate unknown parameters in the model. Two 
well known methods of fitting the classical linear model are 
discussed in the next section.
2.3 Fitting of classical linear model I

Consider an intercept classical linear model with k stimulus 
variates X. cj=l,2,...,k) and response variete Y. Suppose there 
are n observations on each variate. Then the model is given by

Y = X 0 + e , (1)
where

(i) Y = (Y ,Y ,...,Y )’ is .the vector of observations on the“ A 2 n
response variate Y ;

(li) X = (( X .{ j=0, 1.....k), i >1,2, . . . , n) is the matrix of«■ i
observations on the stimulus variates X. (j=l,2,...,k)<2
with X =1 for i»l,2,...,n ;to

(iii) e = .....b^)' is the vector of error components,
with et is the error component corresponding to Yt«
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Here we discuss two methods of fitting olassical linear 
model. These ere

(a) least square method!
and

(b) maximum likelihood method.
2.3.1 :beast square method t

Before discussing the least square method, we present below 
the historical developement of this technique.

This method is very important and useful even in modern 
statistical analysis. But there has been some confussion about 
the discovery of this famous method. Legendre published this 
method in 1805, Adrain published it in 1808 and Gauss published 
the same in 1809. Hence it looks as Legendre discovered this 
method in 1805, but in 1809 Gauss had claimed that he was using 
this method since 1799. Therefore, there seems to be a little 
confussion about to whom the credit should go?

As Legendre published this method first time in 1805, his 
claim about the discovery is straightforward. On the other hand 
Gauss had not published the method till 1809. His claim is based 
on indirect evidence. Plackett (1972) presented some evidence to 
decide the unique discoverer of this method. One of the Gauss’s 
claim was discussed by Plackett (1972) that Gauss told other 
astronomers about this method before 1805. Some of them are 
Olbers, Lendenau and Von Zooh. Stigler (1981) gave two new 
evidence and tried to see the .truth behind Gauss’s claim. These 
two new evidences are discussed below.

During the period 1800-1813, Von Zoch was the editor of an 
astronomical periodical, which generally consisted of reviews and 
letters. Lindenau assisted his work. Stigler (1981) found the 
new evidence in a review artiole in geodesy, dated August 1806.
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This article contains detailed reference of the method of least 
squares. Though this artical described the method as Legendre's 
method, it is not the sufficient evidence to argue that Legendre 
was the first.

Another important evidence was the results of Gauss's 
oalculations using ’Meine methods*. These results were published 
in 1793. The question is whether Gauss .derived these results by 
using the. method, of least squares. Stigler (19.81) goes for it, 
but unfortunately Gauss’s results differs significantly from the 
results obtained by using least square Method. This gives rise 
to two possibilities. One is Gauss applied the least square 
method and made error either due to rounding off or in arithmetic 
calculations. Seoond possibility is Gauss applied the method 
other than least square method. As Gauss was ver^ much perfect

r

in his calculations, the first possibility should not be 
considered. Stigler (1981) also verified that the required 
accuracy is attainable with the help of Valaoq’s 1794 table of 
logarithms, which Gauss might have used. Hence the difference 
between Gauss’s results and those obtained from least square 
method can not be assigned completely to rouding off error. Thus 
only the last possibility is remaining.

According to Stigler (1981), since the first order 
approximation in computation of meredian quadrant not giving 
results with desired accuracy, Gauss might have gone for second 
order approximation. This approximation was used later by 
Bowditch (1832) and by Bessel (1837). Stigler (1981) showed that 
with Bessel’s approch, non linear least square results are 
coinsiding with Gauss’s results. This suports Gauss’s claim 
about the discovery of method of least squares. With this 
background, now we describe below the method of least squares.
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L&ast square Method i To fit a classical linear model by
this method, assumption about the distribution of response
variate <YI is not required. Consider a classical linear model
given in equation <i). In least square method of estimation,
estimates of the unknown parameters are obtained so as to
minimise the error sum of squares (E, say) under the assumption

* *

that error components are independently distributed with mean
2zero and variance; a (, say). ^

Here we have,

E * ft,' ft

■ ri - 2g*X'Y + 0* <X»X)g. <2)
Taking partial differentiation w.r.t. ft on, both the sides of the 
equation (2) and equating the differential to zero, we get

X'i - <X’X)g » Q. <3)

This gives least square estimator of ft as,

ft * - (4)
(X'X)" X'i * if (X'X) is non-singular,
<X'X)“X’i I if (X'X) is singular, 

where, (X’X)" is a generalised inverse (g-inverse) of (X'X). 
Note that g-inverse is not unique. Hence in the over 
parameterisation case there is no unique solution of the normal 
equations (3). In this case Q is not estimable or identifiable. 
In order to obtain a particular solution, more equations are to 
be used so that (3 is the solution of the equations

CX’X>£ + X'I a
and
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C Q * O.
As in over parameterisation case, extra equations are 

needed, generally classical linear model itself includes the 
constraint equations. A major advantage of least square method 
is that calculations are simple and straightforward as compared 
to the other methods of estimation. Further, following are some 
important properties of least square estimates. These methods 
are explicitly covered by Birkes (1993)'.

1. least square-estimates afe best; linear unbiased estimates 
iBLUEs).

2. As the distribution of poipulation errors is normal, then 
least square estimates are uniformaly minimum variance 
unbiased estimates (UMVUEs), and are same as maximum 
likelihood estimates (MLEs).

Now we discuss below the second well known method, namely, 
method of maximum likelihood.

e
2.3.2 i Maximum 1 ike 1ihood method of estimation *

From the definition of classical linear model, we have 
e <i=l,2,...,n) as unobservable independently and identically 
distributed normal variates having N(0,o>2) distributidn, so 'that 
we can write the log likelihood L(£tg.) based on n observations as

i

i <£}§.) = - {(n/2) lnf2TIH - {<n/2Hn<o>*1|- - {(Y-XQ)9 (fc-Xg)/<2o>2)}.
(5)

Taking partial derivatives of both the sides of equation (5) 
w.r.t. Q and equating it to zero we get the normal equations as

-(X’X)g + X’l » 0. <6)

This implies
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<X,X)"*X’I I if (X’X) is non-singular* 

(X’XTX’I i if (X'X) is singular.
(7)

From the equations (4) and (7) it is observed that the maximum 
likelihood estimates and' least square estimators of £ are same.

For the sake of completeness and to update the list of the 
methods of fitting regression models* some of the important 
alternative methods of regression are mentioned below.

1. Weighted least squares .(WLSi) method.
2. Generalised least squares i.GLS) method.
3. Least absolute deviations .(LAD) method.
4. Bayesian regression.
5. Non parametric regression.
6. Ridge regression.
7. Principal component method.
Methods of obtaining M-estimates, R-estiraates, L-estimates, 

Shrinkage estimates and High breakdown point estimates are also 
useful to estimate the model parameters. t

Of the above mentioned methods, least absolute deviation 
method is,the oldest method of regression. This method was 
introduced by Boscovich in 1757. In ‘the recent literature this 
method is receiving great attention from the researchers due to 
the availability of the computational facilities. In this
method, estimates of the model parameters £ are obtained so as to 
minimise the sum of absolute values of the residuals; i.e. to 
minimise the sum.

with for all i«l,2,...,n.
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Due to the complexity in calculations and limitations of 
computation facilities available, this method oould not become 
popular. Today, vast computation facilities are available, so 
that one can estimates the model parameters by using any of the 
above method. Later, in the chapter on quasi • likelihood, we 
discuss in detail, least absolute deviation method for estimating 
model parameters in quasi likelihood model.

Below we summarise the situations where the alternative 
methods performs better than least square method.

Main disadvantage of using tieast square method is that, when i 
population errors are having some! non normal distribution, least j 
square estimates are less efficient. In suoh situations least.«j 
absolute deviation method, M-regressifm and non parametric 
regression gives more efficient estimates. These three methods 
give more accurate estimates as compared to least square
estimates when some outliers are present in the data set. This 
is because, these three methods resist in much better way to the 
influence of outliers, as compared*to least square method.

When we have the previous knowledge about the type of data 
to be analysed, Bayesian method gives better estimates than least 
square estimates. Further, when the population errors are having 
normal distribution, ridge estimates are more accurate than least 
square estimates.

Here, more discussion on the alternative regression methods 
may be a divertion from the purpose of the chapter. Hence we 
stop this discussion. One can refer Birkes <1993) for further 
detaiIs.

Below we illustrate with the help of numerical example, how 
the model parameters Q in case of classical linear model can be 
estimated.
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Example 2.1 Ccent,. 5*- In this example we have,

11111111
-3.0 -1.0 -10.0 0.7
15.3 16.4 41.2 9.7

U96 14.10 23.78 13.20

0.5794 0.0250
0.0250 0.0050
0.0050 0.0002

1
2.3

-0.0194 
0.0002 
0.0012

Hence
Q = <X’X)“*X*Y * <11.9339 -0.8285 0.1298*’ (8)

In further discussion we assume that (X*X3 is non singular. 
Now to obtain the estimator of intercept ft and the parameters
K ®

Q - (ft^,ft^,...tft^\ * separately, we state the following lemma, 
(.see e.g.Searle (1971).
Lemma 2.1 i If M is a non-singular matrix of order n (say), such 
that

M X*
Z*

[ X’ Z’]
X’X X’Z
Z’X Z’Z

A B 
B’ D

(say).

Then the inverse of the matrix N can be written as
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A"S A“*B R B’A1-4 
-R’B'A"4

A“*B R 
R (9)

provided the matrices A and R = <D - B'A_1B>”4 are non singular.
Theorem 2.2 i In classical linear ' node Is the. least square ■ ** >1 estimators Q of Q can be given in the following-form.

4%
t - r/r

**#a oc,JO:-1Ar,£
, . ■ ■

where
<i) i* * <X4,Xt,...

<ii) X. * .<l/n)£ <X.J,J t VJ

( i i i ) Y * <l/n)£ (Y^,i
(iv) y. m Y.- Y,i i
<v) X = X -E X"1 n±—

<vi) E is the matrix of order (m X n) having allmn
elements equal to unity.

Proof t We know that,

Q * <X»X)"*Xil,
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6
*

E, E,in
x;

I En* X. 1 4 n
X'4

• i . ■ . «

L

- -4 -
n ni nY
n£’

m

X'X*4*4 X’x.

Now, substitute A * n, B ■ nX* and D ■ X*X in lemma. (2.1i twe compute different matrices in the.expression of Mf*.

R-1= D -

Therefore,
Y'X - 44 n 1

R = (X’X±- .n £ £* )'4.

Consider,

A~4B R B’A-1 = [ £’ <X’X4- n X. £’ )_4£ ] “4,

* 3L*R £ >
and

A"4B R ■ 2L’R.

Hence by using lemma (2.1) and the equations (12), (13),
the equation (11) can be written as

(1H

). Now

(12)

(13)

(14) 
(14),
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A (1/n) +X/R jj. -E.’r
a a

nY
Q * -r i R x;i

Note that,

Y - £*R(X'X. - n & Y) *
RCXri - n | Y)

X’y. = (X’t - n | Y)

Thus the equation (15) can be written as

(15)

a a
0%

- - - * *o. r - ££
- ae <X'X)~*X'£

m m a * a

(16)

Remarks- The form of {? as in equation (16) does not apply for the 
no-intercept classical linear model, because in that case Q can 
not be partloned as above. Hence in Cass' of np-intercept model, 
we should use the equation (7) to estimate the parameters in the 
model. Again we continue with the example (2.1) to illustrate 
how the above computations can be carried out.
Example 2.1 Ccont.5*- For the example (2.1) we have

-3.0 -1.8 
15.3 16.4

-10.0 0.7
41.2 9.7

-5.1 -6.3
19.3 11.4

-15.5 -4.2
5.9 24.3

—8.8 —2.3
14.7 16.1

and

20
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(JCX i4« 0.0050
0.0002

0.0002
0.0012

By applying theorem (2.2) we have

and

Hence

= <-0.6285 0.1298)’,

<?„ - i - *•<?'
* 17.735 - [-5.63 17.43] -0.6285 

0.1298 '

= 11.9339.

(17)

< 16)

Q - <11.9339 -0.6285 0.1298)'. (19)
Now before going to the node! checking, we discuss the 

important properties of the estimators of model parameters.
2.3.3 E,rgpfl,.rtifjg. si thg. estimators i

Following are some important properties of the estimators. 
These properties can be verified easily.

A

<i) (3 is an unbiased estimator of Qi

<il) Q is the best linear unbiased estimator <BLUE) as well 
as m.I.e.of Q\

<iii) Q is also least square estimator of £, and due to first 
property it is minimum variance unbiased estimator 
<MVUE) of

*
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(iv) variance of Q is

Var <0) * (X’X)'Vi
(v) In case of no-intercept classical linear model variance of f_ 

can be written in the form

Var <£>
<l/n)4X’R | 

-R X

t

<vi) Cov C/9o, Q* J = - < Var <(J*)

Further we know,
<i) the residual sum of squares is given by

S* = SSE = I'X. " tf’X’I i

(ii) the residual mean sum of*squares <■*) is given by

s* * <SSE)/(n-k-i)and is an unbiasedB

estimator of the error variance <r .
After fitting olassical linear model to the data, we try to 

get a simpler classical linear model by deleting those covariates 
in the fitted model indicating insignificant effect on the 
response variate. For this purpose it is necessary to test 
different hypotheses about the parameters 0 in the model.
3* 4 Testing of hypotheses i

For testing different hypotheses about the parameters' (3 or 
about the linear combinations of (3, it is necessary to break up 
total sum of squares (TSS) into the sum of -squares CSS) due to
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different components of the systematic effects and the SS due to 
the random effects. Then by comparing separately the effect due 

to each component of the systematic effects with the random 
effects one can test the different hypotheses.

2.4.1 Partitioning of the TSS i 
The raw TSS is defined as

i
TSS ■< Y’Y, ' (1)

I
, 4

and the SSE is given by

SSE » I’Y - g’X'Y. (2)
~ I

The quantity £’X’Y is known as regression sum of squares (SSR).

Suppose that the model has no independent variate. This 
model can be written as ’■

i
i

Y * (3 E + e . ■ (3)

Then (3^- £. and SSR < S* ) = n Y*. The SSR when there is no 

stimulus variate is known as the correction factor (c.f.). Let 

TSS and SSR be the corrected TSS and the corrected SSR
<m> <m>

respectively. Therefore,

TSS = TSS - c.f. (4)<m>

and '

SSR * SSR - c.f. (5)<m>
2.4.2 Distributional properties of the mode 1 components :

Following are some important distributional properties of 
various quantities related to the classical linear model.

(I) the vector of estimators (3 has <X'X)~A<y2)

distribution t
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(ii) £ = (£ - E Y) has N < 0,e*I ) distribution s
*fi n n

fiii) the estimators Q and a are independently distributed;

<iv) (SSE/o- ) has central chi-square distribution with 
(n-k-1) degrees of freedom (d.f.) j 

(v the statistics SSR , SSR , o.f. have non-oentral chi
(m>

square distribution, and each: of them is independent of 
SSE.

Proofs of the first two properties are obvious. Now we give 
detailed proofs of the last three properties., Results needed for 
proving the last three properties are quoted in the following 
lemmas (refer e.g. Searle (1971)1.

Lemma 2.3 t If £ has N^f y,V ) distribution, then £’A X and B £ 
are independently distributed iff BVA ■ 0, provided £*A X is non 
central chi square variate and AVB is defined.
Lemma 2.4 i If & has N^ly.V) distribution, ; then the quadratic 
forms £*A £ and £'B £ are independently distributed iff BVA a 0 
and AVB - 0. .
Lemma 2.S t If £ has N (y, V) distribution, then £*A X has nonn
central chi square distribution with r d.f. and non centrality 
parameter { (1/2) (y’A y) } iff AV is idsmpotent. Here r is the 
rank of'the matrix A.

i

Theorem 2.6 i The estimators Q and a are independently 
distributed.
Proof i We Know,

Q * (X’Xl^X’I, (6)

and note that o'* can be written as

a* * I’{(I - XiX’Xl'V )/(n-k-1 )}£• (7)
As £ has N ( X/3,a*I ) distribution, by lemma (2.3), the

n n
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2Eiestimators Q and a are independently distributed iff

C CX'Xl'V] [ <1 - X(X’X)’V)] * O. <5)

Consider

[ <X*X)_1X’] C <1 - X<X’X)“4X’ )] = CX’X)"^’ - CX’X)"^’

= o.
This shows that condition (6) is valid. This completes the proof 
of the theorem.
Theorem 2.7 * <SSE/<y2) has a central chi squqre distribution with 
<n-k-l) d.f.
Proof i We know,

SSE = Y’{<I - XCX’XTV )H. <91

Since <1 - X^'X^X*) is idempotent matrix and Y has N^iXg,0*1^1 

distribution, by lemma (2.5),<SSE/a2) has a non central chi square
e

distribution with {a/2a2)^rx, <1 - XCX’XTV >X0f as a non

centrality parameter and (n-k-1)* d.f.
Further since (I - XCX’X)"’4** )X » O the non centrality 

parameter becomes zero. Thus (SSE/o2) has central chi squqre 
distribution with (n-k-1) d.f.
Theorem 2.8 t (SSR/o2) and SSI are independently distributed and 
<SSR/a2) has non central chi square distribution.
Proof t We know,

SSR » g’X'I , CIO)

-I’Xcx'xrVi, (11)
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I

Note that the matrix XiX’Xl^X* is idempotent matrix and ]£, has 
N < X0,o-*I ) distribution. Hsncs by l&rrma (2.5). (SSR/o**) has non 
central chi square distribution with (k+1) d.f. and non 
centrality parameter ■{< l/Ze^lg'X*)^,

Further, from equations (9), (11) and lemma (2.4) it is 
clear that SSR and SSE are independently distributed.
Remarks t As in theorem (2.8) it can be shown that,

(i) <SSM/«y2) has non central chi squqre distribution with 1
d.f. and'[ (E, X0)*/2no’*] as non centrality parameter, and it is

in —

independent of SSE. 1
(it) (SSR, /&*) has non central chi squqre distribution

(vm
with k d.f. and [ (0*’ (Xw X)ft*)/2&z] as non centrality parameter, 
and it is independent of SSE.

(iii) (TSS, /o’2) has non central chi squqre distribution
\fn>

with (n-1) d.f. and [ (0* <X*X)0) /Zo**^ as non centrality parameter, 
and it is independent of SSE.

The theorems (2.7), (2.8) and the remarks are useful in,i
developing test statistics for testing hypotheses about the

*parameters 0 or 0 .
In classical linear models, some of the interesting 

hypothesis testing problems are, 1
(i) H * 0 = 0 against H i 0 *f Q. ,

04 . AA |

(ii) H i 0 = a. (specified) against @ H 1 i
• I

(iii) Hoai X*0 = o (specified) against HAl|i X*0 jk c
(iv) i ft * 0 against i ft jSQ^.iq < (k+1)).

04 '-q ° A4 uq —IifThough the test stastics for these hypothesis testing

(12)
(13)

, (14)
(15)

problems
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are different, all these are special oases of the general 

hypothesis testing problem.

H0* . = m against Ha: D'Q *r el, <16)

where

(i) D is a matrix of order C(k+1) X (s)J with full column 

rank ;

(ii) m is a column vector of known constants of order s 5* 

Hence first we obtain the test statistic for the general 

hypothesis testing problem described in equation (16) and then we 

show that the hypothesis testing problems in the equations (12) 

to (15) are special cases of the general hypothesis testing 

problem.

2.4.3.s The general hypothesis testing problem *

Here we develops a test for the hypothesis testing problem 

defined in (16).

As @ has N <£, (X'X)-4*?*) distribution, it is clear
(k+i>

that

<D *Q -m) has N^CCD’g -&) QC’X)'*D»2 J (17)

Let

(18)

Since O has full column rank,, from t'emm. (2.5) it is olear
that(S/<y2) has non central chi square distribution with s d.f.

, *

and non centrality parameter (D'^-el) ' CD,,1(X/X)"1D]"1(D,^~el) l/Z®1*.
~ :«! i]

By substituting the expression for Q from'equation (6), S-oan be 

written as
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S * CI-XD<D'D)~ftil'K CI-XDCDrD)"Aal, <19)

where

Now since

and

K * {X(X*X)-4D[D' (X^X)-*©)-^’ (X’X)"^,

x»<i - x<xfxrV) * Of 

a - xcx’xrV jx» = o.

(20)

(21)

(22)

the SSE given in equation (9) can be written as

SSE - CI-XD<D»D)"4!a.IM<I - XfX*X)“4X* )HI“XD<Df D) "*0.1. (23)

The expressions (19) and (23) gives S and SSSE as the quadratic 
forms in the same vector C3£-XD(D*D)“‘fnl. Note that,

e

VarCY-XDiD’DrVl = Var(Y) = «y*I f (24)
n

and

K<«**I )CI-X(X,X)_1XM » CI-X(X*X)“4fc*3(<y*I )K * O. (25)
r» n

Hence according to lemma (2.4) S and SSE are independently

distributed. Now by definition of non central F statistic we have 
the following result.

(<S/s).
—

CSSE/(n-p(X))3 

distribution.

} has F* Cs, n-p(X), < 1/2) <D*(J -e.)'<D»0 -m) 3
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Under as defined in equation (16), the non centrality 
parameter becomes zero. Hence for the hypothesis testing problem 
(16), test statistic F(H) has central F distribution with 
(s,n-p(X)) d.f. The test procedure is same as in the usual F 
test.

The tests for four hypothesis testing problems can be 
derived by using the test obtained for the general hypothesis 
testing problem. These tests are as mentioned in' the following 
tab 1e.

TABLE 2.2

Hypothesis
testing problem

Replacement
for D & a

Expression
for S

\

d.f.
(S/<**>

12 D « I , S s =<k+l)< k + A >
m * 0

i t

13 D = I , S
i

s =(k+l)< k+1> . 2 2

14 D = \ s *.* i.
s provided

X * 0

15 D’» Cl 01 s s a q*
m = 0

4 4

where,
(i) S4 * YMXfX’XJ^X’lY,

(ID S2 * CI-Xel]’{X(X’X)"4X’ )KI-Xbl1.
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As in the general hypothesis testing problem* test 
statistics for testing Hoi against HAi defined in the equations- 
02) to 05) are

F. (H)t

(S./s. )i i
<SSE/Cn-p<X) 1)

,i=l,2,3,4,

and has central F distribution with. (s.,n-p(X)) d.f. The test 
procedure is same as in usual F test.

Sometimes it may happen that the model fits well to the 
data, but the assumptions made, turn out, to be invalid. Hence thei*final stage in analysing data by fitting:, the model is to check
appropriateness of the fitted model. We>discuss below the part1of model checking based on the residual analysis.i ‘2.5 t Residual analysis t

The residual analysis is necessary in every model fitting
problem. While fitting the model different assumptions are made
about error components in the model. for1 example, in classical
linear models the assumption is that the error components are

2independently identically distributed N<0,o^ ) variates. If the 
particular model fits well to the data, residuals must indicate
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. kthat the assumptions made are not invalid. Hence after examining 
residuals we must be able to conclude that the assumptions made 
are either invalid or not necessarily invalid.

Draper & Smith (1981) explained different methods of 
residual analysis for checking appropriateness of the fitted 
model, some of them are,

<I) graphical metod;
(II) statistical method;
(III) by studing correlation among the residuals;
<IV) outliers;
(V) serial correlation in residuals.

2.5.1 t Graphical method »
This is the easiest method and if the fitted model is not 

proper, it wilt reveal invalidity of the assumptions. Different 
way|’ of plotting the residuals are

(i) overall,
(ii) in time sequence (if the order is known),
(Hi) against the fitted values (Y^,
(iv) against the values of stimulus variates.
Overall plot i This graph is plotted with residuals on the 

horizontal axis. In classical linear model if the fitted model is 
perfect, values of the residuals should make the impression that 
they have come from N(0,o»*) distribution. To see this the normal 
density curve is plotted and is partitioned into n equal parts, 
[f each partition has one plotted point, the fitting is perfect.

In the remaining three plots residuals are taken along 
vertical axis, and the other factor along horizontal axis. Then 
plotting of residuals outputs different types of bands. These 
bands along with the conclusions to be drawn are tabulated below.
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TABLE 2.3

Sr
No

Band Time sequence 
plot

Plot against 
fitted values

Plot against 
values of 

stimulus variate

1-

Time effect is 
not affecting the 
data and fitted 
model may be 
correct.

Fitted model
may be correct.

Fitted model
may be correct.

2- Ov

Linearfc quadratic 
terms in time 
should have been 
included in the 
model.

The fitted 
model is inade
quate & either 
extra term is 
needed in the 
model or some 
transformation) 
on the response 
variate is 
needed.

Either the extra
quadratic term
in X. is needed j
or transformat
ion on Y is 
needed.-

*

Variance changes 
with time. The 
weighted least 
square analysis 
must be used.

The variance 
changes. Hence 
weighted least 
square method- 
or variance 
stabi 1 ising. ■' 
transformation■ 
is necessary.

The variance is 
not constant Si 
hence weighted 
least square 
method or 
variance s tabi1 - 
ising transform
ation is needed.
i

4.
."^<7

The linear term 
in time required 
in the model.

The systematic, 
effects are not 
completely 
removed.

t

The linear
effect of X. has j
not removed 
copletely.

i t 1
Remark: We can have bands which arejl jthe combinations of

above types of bands. The interpretation ' can be given
. '

accordingly. ‘ I !
2.5.2 Statistical methods * '

Graphical method is the visual technique for checking
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validity of the assumptions. Consider the plot against the fitted 
values. There are three types of descripanoies (2) to (4) as in 
table (2.3). Each of these descipancies oan be measured by a 
proper statistic as follows. Define,

T* « £ e p Y.q . (1)
P<* s *• «■1*

Then, measures for descipancies of the types (2), (3) and <4) are 
respectively T , T and TJt 2 St & A A
2.5.3 Correlation among the residuals t

While fitting the intercept classical linear model with k 
stimulus variates, we are estimating (k+l> parameters from n 
observations so that the residuals can not be independent. If the 
model is as given in the equation (2.3-2) -then we have,

8. * I-i * I -X0

= a - xcx’xrV )i,
and,

Var<s.) = &Z<1 - X(XrX)_1X’),

Thus correlation coefficient between eL-and s^ depends only on X.
The important question is *do these correlations indicate 

the failure of the assumption of independence ?’ Ancombe & Tukey 
(1963) stated that' with four or more rows and columns the effect 
of correlation between residuals on the graphical method is 
negligible. In general situation this effect should not be 
considered if C(n-k-l)/nl is quite smalil'.
2.5.4 Out 1iers s

An outlier among the residuals is ifar away from the rest, it 
is a peculiarity and indicates a data point which is not
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'similar* to the remaining data. If there are outliers, then a 
careful examination should be carried out to find the cause for 
its peculiarity.

Rules have been proposed for rejecting the outliers. It is 
not a good technique to reject the outliers always, because 
sometimes the outlier is providing information which the other 
data points can not, due to the fact that it arises from unusual 
combination of circumstances which may be of vital interest. In 
.such situations further investigation is necessary. As a general 
rule, outlier should be rejected only if it has been found that 
it has occured due to error in recording the observation or in 
carrying out the experiment.
2.5.5 Sertal correlation in residuals1 *

In classical linear models it is assumed that the residuals 
are pairwise independent, but it is not at All true. There are 
many ways in which the errors may be correlated. A common way is 
they may be serially correlated, i.e. the residuals which are

a

apart by s steps are having same value of correlation 
coefficient. This type of serial correlation may be used for 
residual analysis.

! v i.ta 1
lit in

part of 
short.

the model 
(For more

As the residual analysis is a 
fitting problem, we have discussed 
details one can refer Draper & Smith (^981)),. We illustrate the 
residual analysis in the concluding chapter of the dissertation. 

Until now we have discussed theory. ‘ 'related to classical
I ' » *'

linear models. Due to the avai iabi I i ty.j of the I software packages
1 . ns !| 1 i‘

many times classical linear models a reJ.j. flitted ,]■ to the different
1 [11 ■ ! 1 , * r . i

types of data. The question that may airi'se is ,* l:s the fitting of
1 11IJ ' >|

classical linear model appropriate in, the' situations ?’ Answer to
' '|:3:

this question is no. Thfs is because tclaLs’sfca»■ 'linear model is
• 1 M i »». I . ii
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not proper to the data with non constant variance. Below is the
discussion explaining why classical linear model is not
applicable to such type of data, followed by illustration.
2.6 Limitations of the theory of fitting classical linear models*

When the response variate is having some distribution with
non constant variance, there are number of drawbacks of fitting a
classical linear model to the data.'

First is about variance of the response variate Y. For
example, if we are dealing with binary date with the ith
observation Y on the response variate Y has distribution such 

e e ^ S'that Y:=m.Y has binomial distribution B(m.tp.) so that varianceLit r i t

of Y. is p (i-p. )/n . Thus variance depends . on the number ofi i i i

successes in the ith sample, though we assume sample sizes are
ftequal. If m ’ s are approximately equal, the variance stabilising 

transformation Sin C<p.) 1 can be,used. This transformation isi
known as angular transformation.

Secondly, since the response tvariate is not normal, the 
distribution theory associated with fitting of classical linear 
model is not valid. For large sample sizes as most of the 
distributions tends to the normal distribution. This drawback is 
not much serious.

The final drawback is more serious and is about the fitted
values of response variate. For example when Y. has the

e a edistribution such that Y. =m. Y, has binomial distribution B(m.,p.)i ii t t
then it is about the fitted values p^. In classical linear tyodel 
there are no restrictions on the estimated values of the 
parameters* Hence estimated values of the response variate 
corresponding to different combinations •of the values of 
explanatory variates lie any where in the range (-00,00). As the

a
fitted values p^ of p^ are obtained from the!express ion p = X£,
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thorp is no gurantee that they should take values in (0,1). Thi^
• t

tact can be illustrated with the help of example in better way.
Example 2.2 s This example is taken from Collett (1991). 

Smith (1932) studied the protective effect of a particular serum 
on pneumococcus. Pneumococcus is the bacterium causing the 
disease pneumonia. Each of forty mice was injected with a 
combination of infecting dose of pneum.oooccus, and one of the 
five doses of anti-pneumococcus serum. For all the mice which

i

died during the seven day period after injection, a blood smear 
taken from the heart was examined. Thus the variate Y1 is the 
death from pneumonia, within seven d^ays after injuction. The 
following table gives the number of deaths from pneumonia, among 
the different samples of forty mice each, exposed to the five 
different doses of serum.

TABLE 2.4

Dose of 0.0028 0.0056 0.0112 6.0225 0.0450
Serum •

Number of deaths 
out of 40 mice 35 21 9 6 1

One may be interested in finding; relationship between, the 
probability of death pt and dose of .serum <(;dl, say). Fitting 
classical linear model to the data with response variate Y gives

p. = 0.64 - 16.. 08 d. .
V V

The equatin (1) gives the fitted, probability for
injucted 0.045 cc of the serum is -0u0836. Thus, the 

' * ! ■ .1 
linear model is not acceptable. So ]>it necessary to

• i !'
other type of model to the response variate {having non

* i * !. *

variance. • '

(1)
a mouse 

classical 
fit some 
constant
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In the above example it is shown that classioal linear model 
is not suitable in many practical situations. This happens 
because the response variate on its original scale is not having 
constant variance and the systematic effeots are not linearly 
related with mean of the response variate.

One of the possible way of analysing such type of data is to 
make transformations on the response variable. Box & Cox (1964) 
discussed an analysis based on transformations. By the 
term ’data transformation*, we mean to change the original data 
set X. to the new data set yfiJJ (, say) through the functional 
form of yK.). Now we discuss how to make a data transformation.

Suppose the response variate ' Y is not having normal 
distribution. Then find a mono ton io function y(.) such that yt(Y) 
is approximately normally distributed with mean ju =£’£? and 
constant variance & . If such type of function exists, the 
required data transformation is from,1 Y to yr(Y). Hence the 
approximate density function of Y becomes

f <yf#i\«y*8) ■ |----••«*PC-1/2«’*“>I ?<*>-***] <2)
l C2na ) } ^

By using the approximate density of Y-given in the above equation 
(2), one can obtain maximum I ike 11, hood' 'estimates of Q as usual. 
0.ne such family of transformationq suggested by Box fc Cox (1964)

a 'is - Y . One can use this method of transformation, but 
oftenly it happens that the 'tmefo>rmatron .giving normality do not 
give linearity of the systematic effects with the mean of 
response variate. Thus we require) two, transformations, one for 
’linearising’ and the other for ’ riormal ising1’. Nelder (1966) has 
discussed these types of transform'ajt ijftis.i

Nelder & Pregibon (1967) pointed but several disadvantages
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of the data transformations. Following are the major 
disadvantages of analysing data by using response variable 
transformations.

(1) When the response variate is having discrete distribution, 
the range of Y is restricted. This causes range restriction on 
V'iY). As the range of y»(Y) is restricted, normal approximation 
for ¥*<Y) is not suitable.

(2) It is very much difficult to find a monotonic function 
y(.) giving both constant variance and linearity of systematic 
effects with the mean responses.

Because of these disadvantages we will not analyse the data
imaking data transformations. An intersted person can look to Box 

b Cox (19641 for further details.
Obviously, an alternative approach is necessary and it is 

proposed by Nelder b Uedderburn (1972). They introduced a new 
class of models called 'generalised linear model*.

In the next chapter we discuss ’generalised linear models’, 
which includes the models for the responses having the 
distribution as a member of 'one parameter natural exponential 
family*.


