2CLASSICAL LINEAR MODEL

2.1 Introduction @

As discussed in the first chapter, there are different
methods of analysing the numerical 'data. One such method is
fitting an appropriate model to the data and then using fitted
model for predicting future values. T'classical linear modeli’
(CLM) is one such model. This is the oldest and simplest model.
This model s useful In the situations where the response
variable (Y) is thought to be linearl& related to one or more
covariates Xj (3j=1,2,.+4,k?. The purpose :of fitting classical
linear model is to use data for estimation of the form of this
[inear relationship approximately.

Gauss and Legendre began the study of .oclassical linear
model, and applied the model to astronomical data where the
variables are continuous. In their astronomical study a
significant part of variation in the observations is due to
measurement errors. Gauss suggested normal distribution to
describe the digstribution of the errors. With this assumption
Gauss developed the theory of classical linear models. This
theory has been discussed by many authors in literature. Some of
them are Graybill (1961), Searle (1971), Plackett (1872), Rao
(1973), Draper & Smith (1981) and Stigler (1881).

In this chapter we discuss the following points.

(1) Description of a classical linear model! with k independent
variates ; )
(2) fitting of classical linear model:s
- (3) testing of hypotheses
(4) residual analysis 3
(5) limitations of the theory of classical linear model.



2.2 Classical linear model with k independent variates 13

Definition-1 : Clagsgsfcal Jlinear model ¢ Let Y ba the
response variate having N(p.a’) distribution and xj(jal,z,....k)
be k stimulus variates. Then olassiocal Llinear model ocan be
written as,

Y=&'e+e (L
or equivalently,

ECY) = X'@ 2)

where
(i) X' = (1 X;) $
(11) 1; = <x‘.xz,....xx> is the vector of stimulus variates g
(iii) g'= (ﬁ;,ﬁ‘, ....ﬁ%l is the vector of parameters
associated with the model 3
(iv) @ is the error component corresponding to Y having
N(0,o%) distribution.
Note :- 1. Classical linear model do not require any sort of
distributional assumption for estimat}ng parameters in the model.
It only requires the assumption of constant variance and the
l[inear relationship between systematic effects and the expscted
value of response variate. However the assumption of normality
is required for testing different hypotheses about the model
parameters. Therefore we have included the assumption of
normality in the definition itself.
2.The classical linear model in equation (2) can be viewsd
as a special case of ’"general class of models’ given in equation
t1.1) under the assumptions v = X'/3 and the NCu,0%) distribution
for the response variate Y.
Usually.classical linear models are divided into two groups,
based on the value of no‘ These are
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(a3) Intercept classical linear model;
(b) No-intercept classical linsar model.

Definition-2 : Intercept olagsjical linear model t A
classiocal linear model with ﬁo non zero, i{s known as 'intercept’
classical linsar model. In other words in 1intercept classical
linear model, though the values of all independent variables are
aqual to 2zero, value of the response variate is expected
(theoretically) to be non zero. .

As an illustration, we present the following sxample.

Example 2.1: The example is taken from Kalbfleisch ({g85).
Data were collected to Iinvestigate how the amount of fuel oil
roequired to heat a home depends upon the outdoor air temperature
and wind velocity.Table (2.1) gives the observations for 10
winter days. '

We expect that the fuel consumption should increase as wind
velocity increases and it should decrease: as temperature

increases.



TABLE 2.1

Day (i) Fuel Consumption Temperaturse Wind Velocity

Y) (x‘) (xzy

1 14.98 -3.0 16.3
2 14.10 -1.8 16.4
3 23.76 -10.0 41.2
4 13.20 0.7 9.7
5 18.60 ~5.1 18.3
6 16.79 -6.3 11.4
7 21.83 -15.56 5.8
8 16.25 ~4,2 24.3
9 20.98 -8.8 14.7
10 16.88 -2.3 16.1

Here the response varfiate Y is fuel consumption required to heat
home and two independent variates xi and Xz are recpectively
temperature and wind velocity. If we assume that effects are
linearly related, the model becomes
Y:. = ﬂo+ ﬁ‘xu-l ﬁaxi; @, i=1,2,.,..,10. I

In this example we expect a positive fuel consumption on a day in
the winter season when temperature and wind velocity are both
zero. In most of the practical situastions intercept c¢lassical
linear models are appropriate.

Dafinition-3 :+ No-intercept g¢lagsical linear model : A
classical linear model with ﬁ°= 0 is known as 'no-intercept’
classical linear model. In other words in no-intercept classical
finear model, if the values of all stimulus variates are equal to
zero, then the value of response variate is expacted



(theoretically) to be zero. For example let Y be the income of a
person and the independent variate X be the age of that person.
I[f we assume that effects are linearly related, the model bscomes

Yi- = ﬁ‘xi‘* Ei_ [ i=11210-‘|“- (4)

In this example if the age of a person is zero, his income |is
naturally zero.

In classical linear models over parameterisation occurs many
times. In other words, number of parameters (p, say) exceeds the
number of independent equations in E(Y) = X 3. Thus the matrix X
has rank less than p. Hence (X'X) becomes singular.

Once the model for analysing the data is decided, the next
step is to fit a selected model to the data. Fitting a model ¢to
the data means to estimate unknown parameters in the model. Two
well known methods of fitting the classical Iinear model are
discussed in the next section.

2.3 Fitting of classical linear modei ]

‘ Consider an intercept classical linear model with k stimulus
variates xi (j=1,2,...+k) and response variate Yi Suppose there
are n observations on each variate. Then the model is given by

Y=Xp3+g, (1)
where
(i) Y = (Yi,Yz,...,Yn)' is .the vector of observations on the
response variate Y
(ii) X = (( xti; j=0,1,...,k), £=1,2,...,n) is the matrix of
observations on the stimulus variates xj (§=1,2,...,k)

With x"o = 1 for i=1.2.---;n H
({ii) g = (e‘,ez.....en)' is the vector of error components,

with e is the error component corresponding to Yt'
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Heore we discuss two methods of fitting olassical linear

model., These are

(a) least square method;
and

(b) maximum likelihood method.
2.3.1 :Least square method :

Before discussing the least square method, we present below
the historical developement of this technigue.

This method is very important and useful even in modern
statistical analysis. But there has been some confussion about
the discovery of this famous method. Legendre published this
method in 1805, Adrain pyblished it in 1808 and Gauss published
the same in 1809. Hence it looks as Legendre discovered this
method in 1805, but in 1809 Gauss had claimed that he was using
this method since 1789, Therefore, there seems to be a little
confussion about to whom the credit should go?

As Legendre published this method first time iIin 1805, his
claim about the discovery is straigh%forward. On the other hand
Gauss had not published the method tili 1809. His claim {s baged
on indirect evidence. Plackett (1972) presented some evidence to
decide the unique discoverer of this method. One of the Gauss’s
olaim was disocussed by Plackett (1872) that Gauss told other
astronomers about this method before 180S5. Some of them are
Oibers, Lendenau and Von Zoch. Stigler (1981) gave two new
evidance and tried to see the truth behind Gauss’s claim. These
two new evidences are discussed below.

During the period 1800-16813, Von Zoch was the editor of an
astronamical periodical, which generally consisted of reviews and
letters. Lindenau assisted his work. Stigler (1981) found the
new evidence in a review article in geodesy, dated August 1808,

11



This article contains detailed ref;rence of the method of least
squares. Though this artical described the method as Legendre’s
method, it is not the sufficient evidence to argue that Legendre
was the first. '

Another {mportant evidence was the rééults of Gauss'’s
calculations usin} 'Meine methode’. Thesé resuits were published
in 1798. The question is whether Gauss.dérived these results by
using the method of least squares. Stiglér (1951) goes for |it,
but unfortunately Gauss’s results diffegs signffléantly from the
results obtained by using least square method. This gives rise
to two possibilities. One is Gauss applied :thq ieast square
method and made error either due to rounding off or in arithmetic
calculations. Second possibility is Gauss épﬁiied the method
other than least square method. As Gauss was very muoh perfect
in his calculations, the first posnibilitJ should not be
considered. Stigler (1981) also verified ﬁhat the required
accuracy is attainable with the help of Valacq's' 1794 table of
logarithms, which Gauss might have used. Hence the differencs
between Gauss’'s results and those obtained from least square
method can not be assigned completely to rouding off error. Thus
only the last possibility is remaining.

According to Stigler (1981), since the first order
approximation in computation of meredlan"quadrant not giving
results with desired accuracy, Gauss might have gons for secopd
order approximation. This approximation was wused 1later by
Bowditch (1832) and by Bessael 11837). Stigler (1981) showed that
with Bessel’s approch, non linear least square results are
coinsiding with Gauss’g results. This suports Gausg’'s claim
about the discovery of method of least squares. With this
background, now we describe below the method of least squares.
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Least square Method 3 To fit a classical linear model by
this method, assumption about ¢the disgtribution of response
variate (Y! is not required. Consider a classical linear model
given in equation (1). In least square method of estimation,
estimates of the unknown parameters are obtained so0 as to
minimise the error sum of squares (E, say) under the assumption
that error components are indepsndeﬁtty distributed with mean
zero and variance;az(. say). '

}
Haere we have,

E=9'9

= Y'Y - 28°’X’Y + g XX'x)8. (2)
Taking partial differentiation w.r.t. 8 on both the sides of the
equation (2) and equating the differential to zero, we get

X'Y - (X008 =20 (3)
This gives least square estimator of 3 as,

R (X"XO7*X’Y 5 if ¢(X°X) is non-singular,

(4)
(X*X)°X’Y ; if (X'X) is singular.

where, (X’X)” is a generalised inverse (g-inverse) of (X'X).
Note that g-inverse 1is not unique. Hence in the over
parameterisation case there is no unique solution of the normal
equations (3). In this case 8 is not estimable or identifiable.
In order to obtain a partlcufar solution, more equations are to
be used so that é is the solution of the equations

—X'X)3 + X'Y = Q,

and
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cg = Q.

As in over parameterisation case, extra equations are
needed, generally classical Iinear model itself includes the
constraint equations. A major advantage of least square method
is that calculations are simple and strhightforuard as compared
to the other methods of estimation. Further, following are somé
important properties of least square estimates. These methods
are explicitly covered by Birkes (1993).

1. lepast square ‘estimates are best linear unbiased estimates

(BLUEs).

2. As the distribution of podpulation errors is normal, then
least square estimates are uniformaly aminimum variance
unbiasod estimates (UMVUEs), and are same as maximum
likelihood estimates (MLEs). '

Now we discuss below the second well known method, namely,

method of maximum likelihood. .
2.3.2 ¢+ Maximum likelihood method of egtimation ¢

From the definition of classical tinear model, we have
e‘ti=1.2,....n) as unobservable indapsndént!y and identically
distributed normal variates having N(O.qz) distributidn, so 'that
we can write the log likelihood L(@33e) based on n observations as

1(g:e) = - {(n/2)Inc2IH)} - {(aniln(oﬁl} - {(erE)’(IrX@)/<Za?)}.

(8)
Taking partial derivatives of both the gides of equation (5}
w.r.t. 8 and equating it to zero we get the normal equations as

—(X*X0@ + X'Y = Q. (6)

This implies
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- OX7'X'Y 5 if (X'X) is non-singular,

(X’X)"X’Y 5 if (X'X) is singular. ¢«
From the equations (4) and (7) it is observed that the maximum
likelihood estimates and least square estimators of 3 are same.

For the sake of completeness and to update the list of the
methods of fitting regression models, some of +the Iimportant
alternative methods of regressibn are mentioned below.

1. Weighted least squares (WLS) method.

2. Generalised least squares (GLS) method.

3. Least absolute deviations .(LAD) method.

4, Bayesian regression.

5. Non parametric regression.

6. Ridge regression.

7. Principal component method.

Methods of obtaining M-estimates, R-estimates, L-estimates,
Shrinkage estimates and High breaKdown point estimates are also
useful to estimate the model! parameters. .

Of the above mentioned methods, least absolute deviation
method is the oldest method of regéession. This method was
introduced by Boscovich in 1757. In the recent literature this
method is receiving great attention from the researchers due to
the availability of the computati&nal facilities.  In this
method, estimates of the model parameters J are obtained so as to
minimise the sum of absolute values of the residuals; i.e. to
minimise the sum,

Llv-Ex 6.1

3
F S |

with xi°=1, for all i=1,2,...,0.
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Due to the complexity in calculations and limitations of
computation facilities available, this method oould not become
popular. Today, vast computation facilities are available, so
that one can estimates the model parameters by using sany of the
above method. Later, in the chapter on quasi - likelihood, we
‘discuss in detail, least absolute deviation method for estimating
model parameters in quasi likelihood model.

Below we summarise the situations where 'the alternative
methods performs better than least square method.

Main disadvantage of using least square method is that, when |

population errors are having some hop nprgal digtribution, least
square estimates are less offleiént. In such situations least
absolute deviation method, H-regrosslén and non parametric
regression gives more efficient estimates. These three methods
give more accurate estimates as compared to least square
estimates when some outliers are present in the data set. This
is8 because, these three methods resist in much better way to the
influence of outliers, as compared to least square method.

When we have the previous knowledge about the type of data
to be analysed, Bayesian method gives better estimates than least
square estimates. Further, when the population errors are having
normal distribution, ridge estimates are more accurate than least
square estimates.

Here, more discussion on the alternative regression methods
may be a divertion from the purpose of the chapter. Hence we
stop this discusgion. One can refer Birkes (1883) for further
details.

Below we illustrate with the help of numerical example, how
the model parameters 3 in case of classical linear model can be

estimated.
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Example 2.1 Ccont.ds~ In this example we have,

1 1 1 1 1 1 1 1 1 1
x. = -3-0 _1-8 -10-0 007 _5-1 -603 -15.5 -402 _8.8 "'2-3 '}
16.3 16.4 41.2 8.7 18.3 11.4 5.8 24.3 14.7 16.!

Y=[ 14.88 14.10 23.76 13.20 18.60 16.79 21.83 16.25 20.98 18.86]}°,

0.6794  0.0250  -0.0194,
X’x>)7™*= | 0.,0250 0.0050 0.0002 | .
0.0050  0.0002 0.0012 - : *

Hence

@ = XX7IX'Y = (11.9339 -0.8285 0.1298)°.  (8)

In further discussion we assume that (X’XO is non singular.
Now to obtain the estimator of intercept ﬁo and the parameters
@*= (ﬁ‘,ﬁz.---.ﬁ&)' separately, we state the following lemma,
{see e.g.Searle (1871).
Lemma 2.1 ¢ If M is a non-singular matrix of order n (say), such
that

x’ X'X X2
M= [ X 2'}] =
A4 rAS ¢ Adr 4
A
= » (say),
B’ D

Then the inverse of the matrix M can be written as

17



(8)

provided the matrices A and R = (D - B’A"*®M™ are non gingular,

Theorem 2.2 : In olassical linear ' models the least

estimators é of @ can be given in the kollowingnform.

. |4, v - xp"
e = ~% = - »
e (X’3%) "%y,

where
(i) X' = dc‘,iz,....ix).

(ii) X
X, = :(linJ;‘: (X2,

(i) ¥ = (/mg (Y,
t

(iv) yi = Yi.- Y,

(vi) Em“ is the matrix of order (m X n) having
elements equal to unity.
Proof ¢ We know that,

g = xXx)"x'y,

18
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= in an
e o | B %1 T
1 1
-4
n nx_ n? :
= - . , (i
nX' x‘x‘ x‘l ‘

Now, substitute A = n, B = nz' and D = X;X‘ in lemra (2.1). Now
we compute different matrices in the .expression of M*,

R i=p - B’A™%B,

= x;x‘—n-i .

Therefore,
R = QUX-a XX (12)
Consider,
A'BRBA = [RaCX- 0 EEOTRITY
= X_’R i ’ {(13)
and
AT'B R = X'R. (14)

Henco by using lemma (2.1) and the equations (12}, (13), (14),
the equation (11) can be written as

18



n (a/m)+X’'R X -X’R nY

8 = - ’
R X R XY
- Y - X_'ncx"x_ -nk ¥
g = . . (15)

RX}Y - n XN

Note that,
X'y = (X)Y - n kY.

Thus the equation (15) can be written as

-~ ﬁo Y = x.’é' .

e=|31-= s . (16)
8 (X"x%) "X’y

Remark:~ The form of é as in equation (16) does not apply for the
no-intercept classical linear model, because in that case {# can
not be partioned as above. Hence in case of no-intercept model,
we should use the e&uation (7) to estimate the parameters in the
model. Again we continue with the example (2.1) to {llustrate
how the above computations can be carried out.

Example 2.1 Ccont.)t - For the example (2.1) we have

xv_ -3.0 _108 "'10.0 007 ‘5.1 -6.3 “1505 "4'.2 —808 "2.3
= - ]

1 15.3 16.4 41.2 9.7 18.3 11.4 5.8 24.3 14.7 16.1
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0.00580 0.0002 .

-4
(XX 1= 0.0002 0.0012

By applying theorem (2.2) we have

g" = romtxty

= (-0.6285 0.1208)', $%4)
and
”~ - _A*
g, = L- X8
-0.6285
= 17.735 - [-5.63 17.43] [.o.xzas ]. <18)
= 11.9339.
Hence
@ = (11.9338 -0.8285 0.1208)°, (19)

Now before going to the wmodel checking, we discuss the
important properties of the estimators of mﬁdel parameters,
2.3.3 Properties of the estimators :

Following are some important properties of the estimators.
These properties can be verified easily.

i é is an unbiased estimator of 83

(11) é is the best linear unbiased estimator (BLUE) as well

as m.l.e.0f 33
(i1{) @ is also least square estimator of 3, and due to first
property it is minimum variance unbiased estimator

(MVUE) of {3
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(iv) variance of {3 is
Var (@) = (X’X)7%%;

(v) In case of no-intercept classical linear model variance of |

can be written in the form

. (1/m)+X'R X -X'R .
Var (@) = | R
_R R B f

|pst

-

~ -~ -~ 4
(i) Cov (@, @) = - { Var (g% }.

Further we knoﬁ,

-

(1) the residual sum of squares is given by

ST = SSE = Y'Y - a'xX'y

(ii) the residual mean sum of- squares (-:) is given by

s, = (SSE)/(n-k-1)and {s an unbiased
estimator of the error variance o, _

After fitting classical linear quel to the data, we try to
got a simplier classical linear model by deiéting those covariates
in the fitted model indicating insignificant effect on the
response variate. For this purpose it 1Is necessary to test
different hypotheses about the parameters @ in the model.

2.4 Testing of hypotheses 3

For testing different hypotheses about the parameters é or
about the linear combinations of @, it is necessary to break up
total sum of squareg (TS8S) into the sum of ‘squares (88S) due to
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different components of the systematic effeots and the SS due to
the random effects. Then by comparing separately the effect due
to each component of the systematic effects with the random
effects one can test the different hypoiheses.

2.4.1 Partitioning of %he TSS :
The raw TSS is defined as

TSS = Y'Y, (1)
and the SSE is given by ",

SSE = Y'Y - @8'X"Y. (2)
The quantity @’X’'Y is known as regression sum of squares (SSR).
Suppose that the model has no independent variate. This

model can be written as "
|

Y=pBE +e. - (3)

Then ﬁ°= i and SSR ( S: }) = n ?2. The SSR when there is no

stimulus variate is known as the correction factor (c.f.). Let
TSS and SSR be the corrected TSS and the corrected SSR

{m {m)
respectively. Therefore,

TSS = TS8 - o.f., (41
{m)

and

. SSR = §S5R ~ o.f. (5)
m

2.4.2 Distributional properties of the mode]l components :

Following are some important distributional properties of
various quantities related to the classical linear model.

(i) the vector of estimators é has N (X' X17%0%)
distribution

d:ﬂ.)(e'
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¢if) y = (Y. - E_¥) has N ¢ 0,6°T ) distribution ;
(iii) the estimators é and ;F are independently distributed:

(iv) (SSE/¢®) has ocentral chi-square distribution with
(n-k~1) degrees of freadom (d.f.) P

(v the statistios SSR , SSRm» y ©.f. have non-central! chi
square distribution, and each of them {s indepsendent of
SSE.

Proofs of the first two properties are 6pvious. Now we give
detailed proofs of the last three proparties; Results needed for
proving the last three properties arg' quotéd in the following
lemmas (refer e.g. Searle (1871)). )

Lemma 2.3 ¢ (f X has,N;( @V ) distribution, then XA X and B X
are independently distributed iff BVA = O, provided X'A X is8 non

central chi square variate and AVB is defined.

Lemma 2.4 ¢t [f X has Nn(g,V) diltribution..:then the gquadratic
forms XA X and X'B X are independently distributed iff BVA = O
and AVB = O. . '

Lemma 2.5 ¢ [f X has N"(E,V) distribution, then XA X has non

central chi square distribution with r d.f. and non centrality
parameéer { <1r2) (@A u) } iff AV is idempotent. Here r |is the
rank of ‘the matrix A. !

‘Theorem 2.6 3 The estimators é and ' o* are independently
distributed. -
Proof 3 We Know,
g = x"0™x'y, (8)
and note that ;F can be written as
0% = YT - XX'X)7EX' )/ Cn-k-1)}Y. <73

As Y has N ¢ X3,0°I) distribution, by Llemma (2.3), the
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estimators g and o° are independently distributed iff
[OUXI ™ML - XX)™*x"1] = o, (8)
Consider

[OUXIIX I - XAXX*X0™*%7)1] = x*X07%%" - o x’

= 0.
This shows that condition (8) is valid. This completes the proof
of the theorem. '
Theorem 2.7 3 (SSE/0”) has a central éhi squqgre distribution with
(n-k-1) d.f.
Proof : We know,

SSE = Y'{(I - XCX'X)7*X")}y. (9

Since (I - X(X’X)™*X’) is idempotent matrix and Y has 'Nncxe.é»’xn:

distribution, by lemma (2.5),(SSE/?3) has a non central chi sqguare
distribution with {(1/20%51@"°X°¢X - XX°X)™'X"i1Xp} as a  non

centrality parameter and (n-k-1)-d.f.

Further since (I - XAX*X)™X")X = 0  the non ocentrality
parameter becomes zero. Thus (SSE/0®) has ocentral ohi squqgre
distribution with (n-k-1) d.f.

Theorem 2.8 1 (SSR/0%) and SSE are independently distributed and
(SSR/¢®) has non central ohi square distribution,
Proof * We know,

SSR = @'X’Y , €10)

=YX X X)X Y, (11)
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Note that the matrix XOUX)™X’ is idempotent matrix and Y has
N ¢ X3,0°I ) distribution. Hence by lemma (2.5), (SSR/0®) has mon
central chi square distribution with (k+1) d.f. and non
centrality parameter {(1/2a?)@'x'x@}.

Further, from equations (8), (11) and lemma (2.4) it |is
clear that SSR and SSE are independently distributed.
Remarks ¢t As in theorem (2.8) it can be ghoﬁn that,

(i) (SSMso®) has non central chi squqre distribution with 1
d.f. and'[(EMJQ?‘z/ZnaF] as non centrality parameter, and it is

independent of SSE. . '
(if) (SSR“m/a’) has non central ochi squgre distribution

with k d.f. and [c@*'(x'x)@*)/za’] as non centrality parameter,
and it is independent of SSE. )

(iii) (TSS“MIOPI has non central chi squqgre distribution

with (n-1) d.f. and [ (@’ (X"X)3)/26"] as non centrality parameter,
and it is independent of SSE. '

The theorems (2.7), (2.8) and the Jremarks are useful in
developing test statistics for testing hypotheses about the
parameters {3 or @*. ;

In classical linear models, somé of the interesting
hypothesis testing problems are, E

(i H,8 @ = Qagainst H, 1 @ =0, (12)

: !
(i) Hogx 38 = n (specified) against ?a&‘ g=un, (13)

(i11) H 1t MA@ = o (specified) agaiqft Hat A" =c, (14)
(1v) H .+ @ = 0 against H, .« g = (_)_';!.(q < (k+1)). (15)

Though the test stastics for these hypoéhgsis testing problems
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are different, all these are special ocases of the general
hypothesis testing problem,

Hox D'3 = m against HA: D'g = m, 16

where

(i) D is a matrix of order [(k+i) X (8)] with full column
rank 3
(ii) m is a column vector of known congtants of order s 3!
Hence first we obtain the test statistic for the gensral
hypothesis testing problem described in equation (16) and then we
show that the hypothesis testing problems fn the equations <(12)
to (15) are special cases of the general hypothesis testing

problam.

2.4.3.: The general hypothesis testing problem :
Here we develope a test for the hypothesis tgstlng problem

defined in (16).

As # has N(‘"”(@,(x'xf‘az) distribution, it Iis clear
that; |

(D’@ -w) has N _ (D' -m)3P” X*X) Do’ 1. L)

Let ' r
2 . v -1 "ll: = 2
(§/07) = (D'@ -p)"(D’X’X) "DI' "D’3 ~m)1/0". (18)

Since D has full column rank, from ibﬁha (2.5) It 1is olsar
that(S/0%) has non central chi square distribution with s d.f,.

and non centrality parameter (D'é-ﬂ)'[Dﬂﬁ%‘!)"DJ-I(D'@-g)]/20’.
ot i '

~ Lo
By substituting the expression for 3 fros equation (6), S.can be

written as . !
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S = (Y-XD(D'D) " 'ml1’K CY-XD(D'D) *gl, (19)

where
K = {X¢X*X) " DrD (X" X0 " *D1" %D’ (X' X0 " *D. (20)
Now since
X' (I - X<X*X)7*x") = o0, : (21)
and
(I - XXX = 0, (22)

the SSE given in equation (8) can be written as
SSE = tx;XD<D'D)"mJ’{(I - th’X)"x’)}E!:XD(D'D)"‘EI. (23)

The expressions (18) and (23) gives S and SSE as the quadratic
forms in the same vector (Y-XD(D'D) *pl. Note that,

Var(Y-XD(D'D) " *ml = Var(Y) = %I , (24)

n

and
K(o®I 1 II-X(X"X)7*X*] = t:-x<x'x)”‘x'3<a’znn< = 0. (25)

Hence according to lemma (2.4) S and SSE are independently

distributed. ﬁoﬁ by definition of non central F statistic we have
the following result. .

(s78). .
F(H) = {~mmmememcnrm=m has F'(s,n-p(X),(1/72)(D’g -mw)’'(D'g -m)1
{SSE/(n-p(X)) ] !

distribution.



Under H° as defined in equation (16), ¢the non centrality
parameter becomes zero. Hence for the hypothesis testing problem
(16), test statistic F(H) has central F distribution with
(s,n-o(X)) d.f. The test procedure is same as In the usual F
test.

The tests for four hypothesis testing problems can be
derived by using the test obtained for the general hypothesis
testing problem. These tests are as mentioned in: the following
table.

TABLE 2.2 : t
Hypothesis Replacement Expression d.f.
testing problem for D& m for S (s/70*)
12 D = I‘k+‘, S‘ s‘=(k+1)
m=20
13 D = ) 8 =(k+1)
tk+s)d o 2 2
14 D=2 S, 5s= Ls
provided
A=Q
15 D’= (I Ol s s = q
q 4 4
m=9

where,
(1) 5, = Y X’ x4y,

(1) s = CY-Xm]*{XX"X) *X" 1} cy-Xpl,
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As in the general hypothesis testing probiem, tast
statistics for testing Hoi against Hai defined in the agquations:
(12) to (15) are

(SSE/n-p(X) 1)

and has central F distribution with. (si.n-p(X)) d.f, The test
procedure is same as in usual F test.

Sometimes it may happen that the model fits well ¢to the
data, but the assumptions made, turn out to be invalid. Hence the
final stage in analysing data by fittinggthe model is +to check
appropriateness of the fitted model. Heé?iscuss below the part
of model checking based on the residual ;palysis.

2.5 ¢t Residual analysis : L

The residual analysis i necessary in every model fitting
problem., While fitting the model different assumptions' are &ade
about error components in the model. for: examp}e. in classical
linear models the assumption is that thé error components are
independently identically distributed N(Oio’? variates. If the
particular model fits well to the data, residuals must iIndicate
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that the assumptions made are not invalid. Hence after 'axamingng
residuals we must be able to conclude that the assumptions made
are either invalid or not necessarily invalid.

Draper & Smith (1981) explained different methods of
residual analysis for checking appropriateness of the fitted
mode!l, some of them are,

(I) graphical metod;

(II) statistical methods;

(ill) By studing correlation among the residualss;
(1V) outliers;

(V) serial correlation in residuals.
2.5.1 : Graphical method

This is the easiest method and if the fitted model {3 mnot
proper, it will reveal invalidity of the assumptions. Different
waﬁg‘or plotting the residuals are

(i) overall,

(i1) in time sequence (if the o;d-p is known),

(i{ii) against the fitted values (Yi),

(iv) against the values of stimulus variates.

Overall plot 1 This graph is plotted with residuals on the
horizontal axis. In classical linear model if the fitted model is
perfect, values of the residuals should make the impression that
they have come from NCO,o%) distribution. To see this the normal
dengity curve is plotted and is partitioned into n equal parts.
[f each partition has one plotted point, the fitting is perfect.

In the remaining three plots residuals are taken along
vertical axis, and the other factor along horizontal axis. Then
plotting of residuals ocutputs diffarsnt- types of bands. These
bands along with the concliusions to be drawn are tabulated below.
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TABLE 2.3

Sr] Band Time sequence Plot against Plot against
No plot fitted values] values of
stimulus variate
Time effect is Fitted model Fitted model
—= :::aaizgczigge:he may be correct. jmay be correct,
Il = model may be
correot.

Linear& quadratio The fitted Either the extra
gy terms in time model is inade-jquadratic term
2= |should have been |quate & either |in xj is needed

2. 7 V' Jincluded in the extra term is or transformat-
or¥ model. needed in the fon on Y is
model or some neaded.-
Nz transformation, )
L on the response
variate is
needed.
. Variance changes The variance The variance is
- with time. The changes. Hence |not constant &
. weighted least weighted least |hence weighted
3. “j;~\; square analysis square method: least square
~\;:\; must be used. or variance !. method or
" = stabilising / variance stabil-
,«;”’ transformatibn. Jising transform-
is necessary, 'lation is needed.
7. |The linear term |The systematic.|The linear
/ e in time required |effects are notjleffect of xj has
r. “Etim in the model. :::g::;ely { not removed
-~ ~ ‘ ' copletely.

) . b
Remark: We can have bands which are ,the combinations of
above types of bands. The interpratakﬁoﬁ " can be given

accordingly. ’ ‘:.;
2.5.2 Statistical methods 1@ . ;

Graphical method 1is the wvisual technique for checking
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validity of the assumptions. Consider the plot against the fitted
values. There are three types of descripancies (2) to (4) as in
table (2.3), Each of these descipancies can be measured by a
proper statigtic as follows. Define,

P
Then, measures for descipancies of the types (2), (3) and (4) are

T =fpefyY. (1)
T

respectively Taz' th and T‘*.

2.5.3 Correjation among the residuals

While fitting the intercept classical linear model with k
stimulus variates, we are estimating (k+i) parameters from n
observations so that the residuals can not be independent. If the
model is as given in the equation (2.3-2) then we have,

1=x—i=1—xé

(I - XX’x7*'x")y,

and,
2 » -1 )
Var(g) = o (I - X<¢(X'X) "X’),

Thus correiation coefficient between ei.énd 9, depends only on X.
The important question is 'do these correlations indicate
the failure of the assumption of independence 7’ Ancombe & Tukey
(1963) stated that with four or more rows and columns the effect
of correlation between residuals on the graphical method |is
negligible. In general situation this effect should not be
considered if [(n-k-1)/n] is quite smalil.
2.5.4 Qutliers :
An outlier among the residuals is far éway from the rest. It
is a peculiarity and indicates é data point which is not
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'similar® to the remaining data. If there are outliers, then a
careful examination should be carried out to find the cause for
its pecuiiarity.

Rules have been proposed for rejecting the outliers. [t is
not a good technique to reject the outliers always, because
sometimes the outlier is providing information which the other
data points can not, due to the fact that it arises from uﬁusual
combination of circumstances which may be of vital interest. In
such situations further investigation is’ necessary. Ag 3 general
rule, outllar should be rejected only if it has been found ¢that
it has occured due to error in recording the observation or |in
carrying out the experiment.

2.5.5 Serial correlation in residuais

) In classical linear models it is assumed that the residuals
are pairwise independent, but it is nét ailéil true. There are
many ways in which the errors may be corralated. A common way 1is
they may be serially correlated, {. -9, the rqsiduals which are
apart by s steps are having same . value of correlation
coefficient. This type of serial correlétioh: may be wused for
raesidual analysis.

+

As the residual analysis |is vital éart of the model

fitting problem, we have discussed it- tl "&hort. (For more
details one can refer Draper & Smith (;981)).' We illustrate the
residual analysis in the concluding ohapter of the disgsertation.
Until now we have discussed theory relatad to classical
linear models. Due to the availabil!?xﬁgf thei software packages
many times classical linaar models arqﬁ?tﬁtedl toe the different
types of data. The question that may arisa i?: I's the fitting of
classical linear model appropriate in tbe situatxons 7' Answer to

this question is no. Thms is because;cidgsica 1inear model is
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not proper to the data with non constant variance. Below {g the
digscussion explaining why olassical linear model is not
applicable to such type of data, followed by illustration.

2.6 Limitations of the theory of fitting classical linear models:

When the response variate is having some distribution with
non constant variance, there are number of drawbacks of fitting a
classical linear model to the data.’

First is about variance of the response variate Y. For
example, {f we are dealing with binary dats with the i“‘
obsarvation'ﬂpn the responsse varia{a Y has distribution such
that Y!=m:YL has binomial distribution p(m:.bl) so that wvariance

of Yi is pt(l-pi)fnt. Thus variance depends . on the number of

successas in the i“'sample. thouzh‘wa assume sample sizes are
equal. If m:'s are approximately equal, the variance stabilising
transformation SiddttpifJa] can be used. This transformation is
known as angular transformation. '

Secondly, since the response ;variéto is not normal, the
distribution theory associated with fitting of classical linear
mode!l is not valid. For large sample sizes as most of the
distributions tends to the normal distribution. This drawback is
not much serious.

The final dréwback is more sarious ané‘is about the fitted
values of response variate. For example when Yi has the
distribution such that Y:=m:\'i has binomial distribution B(m:,pil
then it is about the fitted values P, - In elassical !inear model
there are no restrictions on the estimated values of the
parameters. Hence estimated values of the response variate
corresponding to different combinations' !of the values of
explanatory variates lie any where in the }énge (-w,00). A8 the
fitted vglues P, of p, are obtained from tha%oxprassinn P = xé.
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thare is no gurantee that they should take values in (0,1). This
illustrated with the help of example in beiter wa;.

Collett (1991).
studied the protective effect of a particular serum
the

forty mice

tact can be

Fxample 2.2 ¢ This example is taken from
Smith (1932)

on  pneumococcus. Pneumococcus (s bacterium
Each of
combination of infecting dose of pneumococcus,
all

died during the saeven day period after injection,

causing the
injected with a
the
which
smear
the
The
among
five

disease pneumonia. was

and one of
the mice

a blood
taken from the heart was examined. Thpﬁ the variate Y' |is
within
following table gives the number of deaths from pneumonia,

the

five doses of anti-pneumococcus serum,.For

death from pneumonia, soven qays after injuction,

the different samples of forty mice sach, exposed to
different doses of sgerum.
TABLE 2.4

3

Dose of
Serum

0.0028

0.0056

1 0.0112

0.0225

0.0450

Number of deaths
out of 40 mice

35

21

9

6

y

One may be iInterested in findingf relationship between. the

probability of death P, and dose of ,serum %ﬂi.

classical

The equatin (1) gives the fitted. probability

1

injucted 0.045 cc of the serum is

P. = 0164 - 18.-05 di'n

"01.-'0836: '
linear model .is not acceptable. So j;t &edéssary to fit some

Thus,

Eay).

for
the

Fitting
Iinear model to the data with response variate Y gives

1

& mouse

classical

",' ! Lt
other type of modael to the response Jgria%g ??ving non c¢onstant

variance.
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In the above example it is shown that classical linear model
is not suitable in many practical situations. This happens
because the response variate on its original scale is not having
constant variance and the systematic effects are not linearly
rolated with mean of the response variate.

One of the possiblie way of analysing such type of data is to
make transformations on the response variable. Box & Cox (1984)
discussed an analysis based on transformations. By the
term ’'data transformation’, we mean to change the original data
get Y to the new data set w(Y) (, say) through the functional
form of p(.). Now we discuss how to make a data transformation.

Suppose the response variate 'Y 1is not having normal
distribution. Then find a monotonic function w(.) such that w(Y)
is approximately normally distributed with mean p‘=§f@ and
constant variance a’z. £ such typel of fupction exists, the
required data transformation is from: Y to w(Y). Hence the

approximate density function of Y becomses

f(y:u*,o’z) = {}E;ﬁjgii¥%£;;-}'exp(-l/Zo’,)[wKY)~p.] (2)

By using the approximate density of Y ngen in the above equation
(2), one can obtain maximum likallhood‘est!matas of 8 as usual,
One such family of transformationsg suggested|hy Box & Cox (1864)
is w(Y) = Yo. One can use this method ,of' transformation, but
oftenly {t happens that the trnsfurma@ion giving normality do not
~give linearity of the systematic effects with the mean of
response variate. Thus we requira twb transformations. one for
*linearising’ and the other for 'ﬁormalising' Nelder (1866) has
discussed these types of transforlatkﬁns" §

Nelder & Pregibon (1987) pointed 'out several disadvantages
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of the data transformations. Following are the major
disadvantages of analysing data by using response wvariable
transformations.

(1) When the response variate is having discrete distribution,
the range of Y is restricted. This causes range restriction on
w(Y). As the range of (Y) is restricted, normal approximation
for p(Y) is not suitabie.

(2) It 1s very much diffiocult to find a monotonic function
w(.) giving both constant variance and linearity of systematic
effects with the mean responses.

Because of these disadvantages we will not analyse the data
making data transformations. An interéted person can look to Box
& Cox (1964) for further details.

Obviously, an alternative approach is necessary and it |lis
proposed by Nelder & Wedderhurn (1872). _Thay introduced a new
class of models called ’generalised linear model’.,

In the next chapter we discuss 'generalised linear modeis’,
which iIincludes the models for <the responses having the
distribution as a member of 'one parameter natural exponential
family’. '

-
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