
3. GENERALISED LINEAR MODELS
3.1 Introduction I

In classical linsar nodal, least square theory has been 
used to analyse the data, where the responses are assumed to have 
constant variance and the systematic effects are linearly related 
to the mean of response variate. Then to test different 
hypotheses about the model parameters @ normality is assumed. In 
section (2.7) it has pointed out that, classical linear models 
are not suitable in all situations. This is because, there are 
many real life situations where at least one of the assumptions 
of constant variance and linearity of systematic effects may not 
hold good. As an example consider the following real.life case. 
Example 3.1 i An experiment was carried out on the group of 20 
students, ,to compare three teaching methods. The students are 
divided into three groups and different teaching methods are 
applied to the various groups. At. the end of the course, a 
test is conducted to check the performahce of these students. 
The marks (out of 20) obtained by th'ejm are given below.

TABLE-3.1
Teaching
method 1 2 3 ,4 '«ll

. ■ * i <
6 7

I 19 0 5 A i 17 13
11 6 12 11 : 9

t i
•10 ■'i 13 12

11 1 9 8 9 ‘ 7 8 7 *

Below the graph of marks against teaching methods
•it.1 ■ if

I * i * . <i m

is plotted.
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The graph In Flg(3.1) shows that, the variance is not 
constant. Hence some variance stabilising transformation is 
required. Thus the first assumption of constant variance 
required by least square method falls.1 Therefore least square 
method can not be used to the untransformed data. In other 
words, classical linear model is not proper to this data. Hence 
it becomes necessary to search for some other models appropriate 
for such type of data. Alternative techniques have been 
developed to analyse such type of data. They are probit analysis 
(see e.g. Finney (1947), Prentice (1976)), logistic regression 
analysis (see e.g. Prentice (1976),,Hosmer & Lemeshow (1969), 
Collett (1991)) for Binomial data; fitting log-linear models 
(e.g. Bishop & others (1975), Good & Kurskal (1964), Gokhale & 
Ku11 back (1978)) for the data in the form of contingency tables.

By studying similarities of many model1 fitting methods 
involving linear combinations of the parameters Nelder and 
Uedderburn (1972) developed the new class of models, namely,
* generalised linear mode 1s*(GLHs). ( This clash of generalised 
linear models includes all the above types of models. HcCullagh 
& Nelder (1983), Dobson (1989) have, discujssed the theory 
associated with generalised linear model. Breslow & Day (1980)
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with k

described the applications of generalised linear models in 
'cancer research’. In this chapter we discuss explicitly the 
theory associated with generalised linear model and the 
illustrations are given in the subsequent chaptersr. . ,

Here discussion is'made in the following direction.
(1) Description of a generalised linear model 

explanatory variates,
(2) link function,
(3) fitting of generalised linear model,
(4) measures of adequacy of the fitted model,
(5) analysis of deviance (ANODEV),
(6) model checking for generalised linear model,
(7) method of obtaining ’robust* estimates of 

parameters in generalised linear model,
(8) generalised linear model with varying dispersion,
(9) fitting of generalised linear model with varying 

dispersion.
3.2s Generalised linear model with k explanatory variates s

The definition of generalised linear 'model requires the 
term ’one parameter natural exponential family’. But before

l ; ‘ 1 *describing this family of distributions, 
explain in brief, the meaning of ’One 
family’. For this suppose,

(i) S <S R) is the range of response variate 
positive p.d.f.,

the mode 1

it i.s essential to 
parameter exponential

Y, giving

(ii) 9 is parameter of the distribution of Y,
and

(ill) © CS R) is the parameter; space;1 !o!f 9 
Peflnjtlon-1 • i i- i j ■■One parameter exponent tail' family sA class of

I , 1 .....p.d.f.sCor p.m.f.s) depending on a real valued' parameter 0 of
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the following form
f <y ;0*,^i =exp|o»<4fr;i[ a(y)b<0*)-g<b<0*) »+h<yJ] *K <^iy>

e *0« ©t
or euivalently.
f(y ;©,<£> = exp ^a(*)[a<y)0 - g<0> +h.<y)] +*<*iy) Jls<y>, < 1 ^

0*e ©~|

ie known as one parameter exponential family, if S does not 
depend on 0*.
Here

(i) IS<Y> f 1; if Y « s 
Oj otherwise ’

(it) 0 = b<0*) is a function of 0* only, 
(Hi) cn(<p) is the function of ^ alone and having positive

value,
(lv) a<Y) and h(Y) are the functions of Y only,
(v) g (0) is the function of 0 o*nly,
<vi) fff^;Y) is the function free from 0.

Note ! (i) If 0* S Rfc, distribution of Y is said to be a member
• lof k-parameter exponential family.

(2) If the distribution of response variate Y, belongs to 
one parameter exponential family, the log likelihood of 0 is 
given by,

£<0,^;y) = {oK^)[a<y)0 - g<0) + h<y)J + ?(^iyJ }. <21

Now, we give few illustrations for understanding purpose.
11 lustration 1 : Normal distribution s

Let the response variate Y has normal distribution )
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ifjt m tR, a g R+), Then the p.d.f. of Y is given by, 
f<yi*i,*2> -<2n<r*l"**y'“>oxp <<y-#i)*/(2<y* )|,

y « R.
which gives the log likelihood function based on single

• ft

observation as
ftju.o^jy) ■ -Cln(2no*)3/2 - <y2 - 2*iy + <4)

The equation (4) can be rewritten as
Hiu,<r*’,y) = Cw - <#J*/2> -(y*/2> I/O'* - ln(2no'*>/2. <6)

On comparing the equation (S) with the equation (2) the 
following findings can be obtained.

aCy) = y, h(y) = -y*/2, *(*»y) * -CLn<2n/a<^)>]/2. f
Since the' range of Y does not depend on the distribution 
parameter, the NCjLifC2) distribution belongs to one parameter1 
exponential family. Here o'2 is the nuisance parameter.
111ustration 2. Beta distribution of first kind i

Suppose the response variate Y has beta distribution of 
first kind with parameters C£i,v>0). Therefore, the p.d.f. of Y is 
given by.

where
o i if y « co,n
1 ; otherwise

Hence, the log likelihood of Q is
HG,#ty) * intc) + <ju-rl) ln(y) + Cv-1) ln< 1-y), <7)
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whore,

>}

c = {rfjLijr<v)/r</Li+v)}.
From the equations (7) and <2), it can be seen that,

4> = ai<p) = 1, 0 ■ C<p-1) (v-1)]', g<0) = o 
a(y) = tlnfy) ln<I-y)J*, h(y) = *<*jy) « 0 }

%

(8)

As the range of Y is free from parameters of the distribution, 
equation (8) indicate that, beta distribution of first kind 
belongs to two parameter exponential family.
Remark : If a(y) = y, the p.d.f. of Y given in equation (1) is 
said to be in the canonical form, and *0* is known as canonical 
parameter. • r

Moris (1982), has named the class of distributions, having 
p.d.f. in>the canonical form, as natural exponential family. 
Therefore, 'One parameter natural exponential family* can be 
defined as below.

Definition-2 s One parameter natural exnonentla1 family :A 
class of p.d.f.s(or p.m.f.s) depending on a real valued parameter
9 of the following form ^

f(yj©,^) * exp { <*<4>)ly9 -.g<9) +h<y)] +{;<^fyJ }
9 b (9 J and

Is(y)
9~m ©*j

<9)

is known as one parameter natural exponential family, if S* does 
not depend on 0*. The parameter 9 is called as ’natural 
parameter.
Note I If the distribution of response variate Y belongs to one 
parameter natural exponential family, the log likelihood of 0 is 
given by, V- ■
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f(0,*;y) = {cx(<p)[ye - gf9) + h<y)] + Z <4>iy) * (10)

Note that the natural exponential family is a sub class of
2exponential family. Further, It can be seen that )

distribution is a member of one parameter natural exponential 
family. On the other hand beta distribution of first kind is not 
a member of this class.

Below some illustrations are given to have the idea of 
natural exponential family more clear.
11 lustration 1 t Gamma distribution‘t

Let the response variate Y has gamma distribution with 
parameters (vffj >0) p.d.f.

= Ui/r<i>n<v/julv}exp<-vy/*ilyV“1F (y), <11)
KO | Ow

where

(1 i if Y€ CO,00)
*

0 ; otherwise.
Thus the log likelihood function based on single observation is 

*<M,vjy) ■ - lnr<v) - (i»y/*j) + (v-l)ln(y) + vtn(»/*i). (12)Rearrangement of the terms in equations (12) gives
jy) = v C- (y//j) - ln(fi) 3 - ln(T(v)) + vin(x») + (v-l)ln(y).

(13)
Comparison of the equations (13) and (10) gives

4> = (1/v), «(*) = l/£, 9 = -1/#j, g<0) = ln(-l/0),
a<y) = y, h(y) ■ 0, ?(*,y) * -ln(r(*))+0Ln(*) + (^-l) ln(y)

d

(14)
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Since the range of Y is free from the parameters (jli,v), the 
distribution of Y Is a member of one parameter natural 
exponential family.
111ustratton 2 : Poisson distribution ! '

Let Y be the response variate having Poisson distribution 
with parameter (X >0) Then the p.m.f.of Y is given by

{
exp(-X)Xy/y!; y » 0,1,...

Hence the log likelihood function based on single observation y 
becomes

f(Xjy) = -X + y In (X) - in(y!> (16)

Comparing the equation (16) with the equation (10) we have,
*

<(> = a<&) = 1, 9 = in(X), g (0) ■ exp(d),
a(y) = y, h(y) = 0, ?(^;y) = -ln(y!)

«

(17)

Therefore, it can be observed that, Poisson distribution belongs 
to one parameter natural exponential family.
11 lustration 3 s Binary distribution for grouped data t

a aLet response variate Y be such that Y =m Y has Binomial 
distribution B(m*,p>. Let fJ denote the mean. Note that for 
grouped binary distribution jj * p. Then the p.m.f. of Y is given 
by

f (yjm tfj) ■ m { m m y <1-Ml Cm * %■m y) 1. <y)
Where

} (18)

(i) e (0,1/m*..... II
and
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(ii) lA <y) A.
1} y € Aa,
0; otherwise.

Thus, log-likelihood function based on single observation 
f *f(m*, jUfy) = in| 8 C 

The rearrangment of the terns in equation (19) gives
* m*[yln Cp/d-^)) + ln(l-#i)>] + Inj" m Cm*y T +

m y + n yin(ju) +n d- y)ln(l-*i) + in(n

is

(19)

ln(n ) 

(20)
On comparing the equations (10) and (20), we get,

4>-i/m ,«(^) = 1/^, & * In4*/(1-#J))
a<y)=y, h(y) * 0, <f(^,y) = ln[ /C *

g(0) = in(l+exp(0)), 
] + 1 n < m* ) *

(21)
Thus we conclude that this distribution belongs to one parameter 
natural exponential family.

Results of the above given distributions belonging to one 
parameter natural exponential family can be summarised as in the 
following table. * *
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TABLE 3.2

Distribution 
of Y

Norma 1 Gamma Poisson ’ Grouped 
binary

Range of Y (-00,00) CO,oo) 0 y 1> p m • • 0,i/m*,...,1

* 2
a t/v 1 * ’1/m

ot(^) l/<fi i/if 1 i/i

0 A* -l/H In ln(ju/<l-/iU

g<0) 0*/2 tn(-l/0) exp(0) ln(l-»exp<0))

h<y) -y*/2 0 0 0 i

t ”ln[lx*>] -ln(r(*))
+<frln(^)
+<^-l)ln(y)

-ln(y!)
ln{"C .%}

+ l n ( m* )
2

A very Important result which holds for one parameter 
natural exponential family Is proved below.

Result-11 If the dependent variate Y comes form one 
parameter natural exponential family with natural parameter *0* 
and nuisance parameter , then

E(Y)‘ = g * (0)
Var ( Y) = g»»<©)/«(*)

(22)

Proof i Suppose Y is the single observation on the response
#variate with mean fj. Assume that Y comes from one parameter 

natural exponential family. Hence, the log likelihood of 9 can 
be written as,

l = H,9,4>\y) = {<x(^)[y0 - g(0) + h(y)] + ?(*sy)]}. <23)
It is well known that (See e.g. Kendall & Stuart (1968),
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E (dt( 99) = 0 (24)

and
E<at/d9iz = -Eiazz/aez y, (25)

Differentiating equation (23) w.r.t. 9 twice, we get,

at/99 = a(£)Cy-g» (©) 3 (26)

and

9*t/99* • ot(^) C-g’ '(©)]. (27)

The equations (24) and (26) combinedly imply

fj = g» (0); (28)
and hence

9t/99 = «(^)Cy-#i3. (29)

From equations (25), (27) and (29), it can be seen that

g»f(0) = a(<£> C var (Y) 1 = V. (30)

This result is useful in developing algorithm for fitting 
generalised linear model (GLM), whose definition is given below.

Definition-3 s Generalised 1 inear moddl t
Let Y be a response variate with p.d.f. (or p.m.f.) f(,;0 ) 

which belongs to the one parameter natural exponential family 
with 9 as a natural parameter.
Suppose Y <i= 1,2,...,n) are n independent observations on the
response variate Y. Let .. ., 2^ be the vectors of known
values of the covariates X. (j=l,2,...,k). Let

•I

T. * fi + £ x'.fi.i for i»lt2,...,n, (31)1 ° j )
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where
e =

and
(ft^,ft ^...., ft^)* is the vector unknown model parameters

T = <T ,T ,...,T )' is4 2 n the 1 lnear predictor. . i
Then a class of models of the form. ■

T = mCE<Y))i <32?
where m(.) is a strictly monotoic differentiable function is 
called the class of 'Generalised Linear Models'' CGLMs).

Since 'T* is a linear sum of the effects of explanatory 
variates, it is called as 'linear predictor*. Further, since, the 
function m(.) gives the relationship between E(Y| X = xj and 
Nelder & Uedderburn (1972) named this function as 'link 
function*.

We now show that classical linear model is a particular case 
of generalised linear model. In classical linear model we assume 
normal distribution for responses. It is already shown that 
normal distribution is a member of one parameter natural 
exponential family. Further, for classical linear model, we have

E(Y) ■ XQ - T.

From the definition of generalised linear model, it is clear 
that, classical linear model is a special case of generalised 
linear model with 'identity* link function. By the 'identity* 
link function we mean the link, X 3 Thus the generalised
linear model allows two extensions, namely, distribution of the 
response variate may be any distribution from natural exponential 
family, and the link function m(.) may be any strictly monotonlo 
differtiabie function.

As we have seen earlier, the functional relationship between
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Y and X, la known as link funotlon. Along with tha likelihood 
function, this function is also required for fitting generalised 
linear node! to the data. Thus, link function plays a vital role 
in the theory of generalised linear model. Hence, it is- 
discussed explicitly in the next section.
3. 3 t Link function

Generalised linear nodel* is fitted toother' .data ' through*! 
reparameterisation process. It should be done in such a way 
that the new parameters gives linear relationship between 
E(Y|X=x_) and The function which relates the covariates
(X , X . ...,X. )’ and the new parameters /3 with E(Y) is known as 
link function. In other words, it is a function which gives 
relationship between linear predictor T and expected value p of 
the response variate Y. Since /u completely depends on the 
behaviour of the responses, and values of the stimulus variates 
are fixed, the function m(.) gives link between random component 
and systematic components.

In classical linear models we .have an identity link, T = fj.
This type of link is suitable in classical linear models, because
both T and fj can take any value on real line. Here it should be 
noted that such type of link is not always: suitable.' Now1 we 
illustrate this by considering two situations and Suggest
appropriate links in each case.

Suppose response variate Y has Poisson distribution with 
parameter fj. Here Identity link is not appropriate, since the 
linear predictor T may be' negative, whjereas /i is strictly
positive. So the link function m(.) must be such that 
m(.) :(0,oo) -> (-00,00). One such function iis LnCju). Thus one 
appropriate link in this situation is log ijink given by T=in<fj).

Secondly, assume that the response varjiaie Y is such that
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HIV * 11Y 1ms binomial distribution Bin.M1* Hors also identity link 
is not proper, as value of the parameter p is in between <0,1). 
Hence the link function m(.) should map from (0,1) to (-oo, co). 
Three important functions of this type are mentioned below.

(I) Logit function, T ■ ;
(ii) complementary log-log function, T = ln(-Ln( 1-/j) ) ;
<iil) probit function, T * $-4£/li)j where K.J is the normal 

cumulative distribution' function.
Remark : The link T * 0, is known as canonical link. Thus, 
’identity link* for normal distribution, ’log link’ for Poisson 
responses and ’logistic link’ for binomial distribution are some 
illustrations of canonical links.

After discussing the link function explicitly, we are in a 
position to fit generalised linear model to the data.
3.4 t Fitting of GLM

Fitting the model means estimating unknown parameters in the 
model. Parameters in the model can be estimated by using 
different methods. Some of the important methods of fitting 
generalised linear model to the data are

(I) weighted least square method;
(II) method of maximum likelihood;

and
(III) method of obtaining robust estimates. vThe third method we discuss at later stage of the chapter in 

section (3.9). Below we discuss the first two methods 
explicitly.
3.4.1 t Weighted least square method :

In least square method of estimation, estimates of the model 
parameters are obtained under the following two assumptions.

(!) Error components in the model are independently
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distributed with mean zero and constant varianoe ct

(ii) The Identity link holds.
In case of generalised linear models, other than classical 

linear model, the identity link does not hold. In other words, 
the systematic effects are not linearly related with the means of 
original responses Y^ial.2,...,n). To. overcome this problem, 
Nelder & Wedderburn (1972) defined ■ the, new variates 
Z (i*!, 2,... ,ni as.

(1)

so that E<2.) = X£. This implies that, if the new dependent 
variable Z is considered instead of Y-, the, identity link is 
suitable for Z. Hence the generalised linear model in terms of Z 
can be written as,

Z. - X0 ♦ a (2)
with

E<e) = -0,
and

Var(e) = diag(var(e >, var<e),...,vsr<e )>1 2 n <31
Consider

<dT. /d#j. )* var(Y.)
I i l

(«<0)WiL)"* (sey)

where
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Define W
Premultiplying by W4^*

» dlagCW , W.......W >.11 22 nn

to the node I 12), we have 

S. = x (3 + e ,
with

= *“X2>s.

and
= w‘:i/».

fi. =
Hu/»W s..

(5»

(6)

Since ot(^) is assumed to be constant, for the model (6), one can 
obtain least square estimates of the model parameters Q by using 
well known normal equations, . t

(X*’X*l<? X*'g*,
I

or equivaletly,

<X»W X)(3 ■ X’W (7)
Since in generalised linear model, the newly defined variate 

Z and the weight matrix V both depend on the estimates of model 
parameters (3, it is necessary to use the weighted least square 
method iteratively. Here it is essential to note that, as the 
newly defined dependent variate Z is unobservable, it is not 
possible to obtain weighted least square estimates of Q without 
making any assumption about the distribution of response variate. 
Hence, for fitting generalised linear model, this method can be 
used only after making a valid distributional assumption for the 
response variate Y. Once we assume a particular distribution
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from one parameter natural exponential family, this method can be 
used.

Note In case of classical linear model we have
E(Y) = ju and V(/u) = 1.

Therefore we have from equations (1) and (4)
Z = Y and W = 1

Hence for n observations equations' (7) reduces to
(X’X)£ ■ X»I,

which are the normal aquations given in equation (2.3-6). 
in case of classical linear model, weighted l[east square 
is equivalent to the usual least square method.

Now we discuss the second method. ,
3.4.2 : Method of maximum 1 ike 1ihood :

In the class of generalised linear models, distribution of 
the response variate is a member of one parameter natural 
exponential family. Hence, the method of maximum likelihood can 
be used to estimate the model parameters Q.

Suppose Y. ( i«l, 2,..., n) are n* independent responses with 
p.d.f. (or. p.m.f.) of Yt is given by,

f(yi?0i»^> = exp{«(^)[ y.B^ - g(0t) + hfy^J + yt>3 f-

Therefore, the log likelihood of 9 based on n observations is 
given by,

f(0,^;Y> « £ - g^) + h(yt)] + (11)
t

In order to obtain maximum likelihood estimates of Q, we 
differentiate the expression (11) and set the results equal to 
zero. Differentiation of expression (11) can be obtained by 
using chain rule. According to this rule, we can write

(8)

(9)

(10) 
Thus

method

1
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(12)at/aft, = £ <aX/86. ) (d©. /dfJ. > (dp. /dT. ) («T. /«/?.),j . », l l l L i |

From equation (11) it can be observed that,

<at/ae. i = «(<*-)[/. - g- )]

Further, from the result (3.2-22) we have,

g' 

g’

(13)

[* ’ (©. ) = V. . (p. )J■ i « • •
(14)

u i
Also, we have

T. = £ x. .p. , 
j «■ a j

iB1,2,«•,n;
x, * 1; for all i.iO

Hence,

/ afi j = x i j *0 ,l,i>.,k. (15)

Using equations (13) to (15), in (12) we get the estimating 
equations as

f «(*>[ y. - p.* * E J- - - - - - - - - L___L
1 it v. . (p. >' L l L

]
dT.

”wj ■ 0 (16)

J *0,1...,k.

Alternatively, the above equations (16) can be written in 
the matrix form as.

1D’C (JL-y) (17)
where

(1) D = (D. ,), with D. . = <dp. /d/3.) for every i and j value,11 i i i j -
(ii) C is the variance covariance matrix of Y.
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After solving equations (17) we obtain estimates’ of 
ft <JaO,l,...,k).

Since Y^’s (i=l,2,...,n> are independent!

C = diagCvar(Y4),var(Y2),...,varCYn>>. (18)

It can be observed that in case of classical linear model, the 
estimating equations (17) reduces to the normal equations given 
in (2.3-6). This can be justified as follows.
Justificatin s For'classical linear model, we have.

and.
I * y *

2 1 'C = aI p
*n

where T = Xft and ft * E(3L>»
Equation (19) implies, D - X , and ft -Xft, -Hence for 
linear model, the estimating equations (17) become,

(19)

classical

1. e
X» (£-X0) = 0.

<X’X)£ = X’n, (20)

which are the normal equations as given in equations (2.3-6).
>

Since the normal equations In (20) are linear equations in ft, the 
estimates of ft can be obtained by solving them.

For non normal distributions, the equations (17) are non 
linear eqations in ft. Therefore, it may not be possible to 
obtain the maximum likelihood estimates explicitly. However by 
using appropriate numerical technique, the estimates of ft can be 
obtained.

For the class of generalised linear models defined by Nelder 
& Wedderburn (1972), the approach of Newton-Raphson method is
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used to compute maximum likelihood estimates. Nelder & Wedderburn 
(1972) introduced this method. Later McCullagh & Nelder (1983) 
reproduced the same with more explanation. We also use the 
Newton-Raphson method as a numerical technique to solve, the 
equations (17). According to this method mlh approximation of 
the estimates of (3 is given by

a
2 •• j|,< m > i(»-l > I p St "|■ e " LT • V 'WMl (21)

where

f | |"4

1 is the matrix of second order derivatives of i,
9ftS(3l J

Hence to solve the equations; (21) it is essential to obtain the 
expressions for I -ss-jLs** I* For this consider,[ 'W.ipl ]

9 Tst al I- E ‘ipj J
_ • s rst i- s -»nl l«T" •xiiJ

St ST.
ST: -w,

a “ ST.

* ^ . (X. .X.. ) .r st2 ij tl
V

K. .

Consider,
St 
STfL

S
‘W.

st dd.L
se. *“df

M d'SL .

&

L
dd i s r st I 5f“ -sell *tJ

(22)
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9t
60

\

at
90.

d*©.

dT“
.ald 0.

dT.

d©
dT

i © r ©< "i]
. • 60~I ©©. * ©T. I

\m'
(23)

Since the response variate is assumed to have a distribution 
from one parameter natural exponential family, we get from the 
equations <3.2-27) and (3.2-28),

©*■£/©©?
%

-«<*)Vu<m.> 

d#i. /d©. ■ V. . <#i.) ',

(24)

(25)«. I ti l

Using equations (3.2-28) and (24), equation (23) can be rewritten 
as,

.2

<26,)a2/ f d9 r 1 1
©T* 1 - - dT* 11 1 [ d*\ dTi J J

Sometimes, Fisher*s scoring method is simpler than 
Newton-Raphson method. In Fisher’fe method of scoring, matrix of 
second order derivatives in equation (21) 1$ replaced by its
expectation. Now taking expected value equation (26) can be 
written as - j

E [ c {">}■ ’3tj- ] Vu
-E <x. .x., J -, M. II LlL

(27)

Hence by proper changes in equation (21), and using equation (27) 
we get,
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10<m' = gCm-i> 4
i >

4— ♦ [e }. (dPi /dT. l
\Q*Q,(ib-1>

H’F ( m- i >

Qlrn> - £<"»”*> + {X., i^.} . [<*•. x.- ]

Equation (28) Is same as

[<x*w xjI „ n<m> = [<x*w X)1 „ ft1{ m- t >

(?=<?

fx»W F-^jr-y)}l J(3=(3{,<m-±»

where

1. e.
th

= x»w s

£ ■ *(? ♦ { p“<x. - «?>}

I ♦ { - «>}•Z *

Thus m approximation of estimate of (3 can be obtained from the 
equation

<X*W X>0 * X»W (29)
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where the matrix W is obtained from current estimate of /?.
Remark : From equations (7) and (29) it is observed that for 
generalised linear model with density (or mass) function as in 
equation (3.2-9), solution of the-maximum likelihood equations is 
equivalent to an iterative weighted least squares procedure with 
a weight function . \

W = V~*F*, (30)
*

and a modified dependent variate

2 = T + (Y - y)F“*| (31)

where
(i) y = E(Y)
Ul> V =.

and
(ill) F = diag(f , f...... f >,' li ft nn' .

with
f.. = (dy. /dT. ) I
“■ 1 t > , for 1*1,2,...,n.
v„ = var(Yt )/a(0)J

In fitting generalised linear model, we have used Fisher’s 
scoring method as a numerical technique to obtain parameter 
estimates. This method was introduced by Fisher(1935), in the 
appendix of a paper by Bliss (1935). Green(1984), Jorgenson
(1984), Finney (1987) and HcCullagh & Nelder (1989) used the same 
method to fit generalised linear model. Below we give an 
algorithm of the same method to compute the maximum likelihood 
estimates of Q.
3.4.3 s Algorithm to obtain maximum likelihood estimates of (? :

While fitting generalised linear model, approximate values
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of maximum likelihood estimates of Q can be obtained by using 
weighted least square method as a numerical teohnlque. As stated 
earlier, since the new dependent variable Z and V both depend on 
the fitted values, the procedure is iterative. Hence estimates

• f
should be obtained iteratively by using N-R-method or Fisher's 
method of scoring. To obtain estimates of £, equation (29) can 
be used. This method has the following steps.

(I) Write the incidence matrix X ;
(II) fix a small positive number s (say, ) to get estimate 

of Q with desired accuracy {
(III) find expressions for <du./dT.) and V.. ;L 1 LI
(IV) take averages of different samples in the data as 

initial estimates #j*0> of , ( 1 = 1,2,...,n) j

(V) obtain Tf0> = m(p‘0>) j
i i

(VI) compute

and

l.<0>
11 . (d*J. /dT. Vi i <o>

L i

"(ft) lOiz = T + i i
<yi‘V

. (d(i. /dT. )l V co>
■* l L

(VII) compute 0> as

g‘°* = (X' W*0>x) "*x*w‘0>£‘0> s

(VIII) obtain T*** * X0<o>, and pj4* = m"*(T[*>) j 

(IX) repeat steps similar to the steps (VI) to (VIII) until
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| /?‘l> - | < s , for all J ■ 0,1,...,k; (32)

(X) ftipi, (j = 0,1,..., k) are the final estimates of (3. it
conditions (32) are satisfied for /3*p>, but are not

J

satisfied for , for atleast one value of j.
$

Remarks t (i) When any of the ju*0> takes extreme value, some 
adjustment should be done by adding or subtracting proper 
positive number, so that the corrected initial- estimate will not 
be an extreme value.

(ii) Another important‘fact to be noted here is about 
existence of inverse of the matrix (X’W X). Wedderburn (1976) 
has proved that (XfW X)"1 exists for log concave link functions.

After fitting generalised 1 inear 'mode 1 to the data, one may 
be interestd in testing different hypotheses about the model 
parameters Q, For this purpose it is necessary to obtain 
sampling distribution of maximum likelihood estimates of {?.
3.4.4 ;Samp!ins dustrlbutlon of maximum 1ikelihood estimates s

Suppose (X’W X) Is non-singular, so that there are unique 
maximum likelihood estimates of the parameters (?■ and are close to 
the true value Q. Suppose I is the information matrix. Then 
using Taylor’s first order approximation about Q' for T (g), we 
get,

T*<g) = T*<£) ♦ H(g)(g - g). (33)

For simplicity, let

U ■ 9t/9Q, (34)
and H is the matrix whose tj,l)lh component is tJ3^t/9(3.9(3 >.

<1 ■

Then result similar to (3.2-25) gives
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I = E<u. u.*
= -ECH). (35)

As H Is asymptotically equal to Its expected value and • *■since X = 0. for large samples equation (33) becomes.
T*(g) * -Kg - g),

which implies.
(g - g) = I.“*4T*<glJ. (36)

If I Is the matrix of constants. taking expectation of the 
equation (36). we have.

E(g - g) ■ Q., (37)
and

E[ <g - g).(g - g)f] * E{I-1T*(g). T*r (g)I-*)'. (38)
Hence by using equation (36) and since it is assumed that I is 
the matrix of constants.equation (36) can be rewritten as

E[ (£ - <? g)’l = I~A. (39)

Thus for large samples.
(g - g) has N<fc+i)(0 , I"1) distribution.

This shows that for large samples,
g has » I"4) distribution.

A A • |

i.e. <g - g)*I(g - g) has A;* distribution with (k+1) d.f.
*

3.5 i Measures of adequacy of the fitted model s
Once the model is proposed, the next part is to see whether
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it fits ’well’ to the data; l.e. to check how 'good’ fitted 
model describes the data.

A 'good* model has to balance two requirements.
1. The model should be as complex enough to approximate the

real world phenomenon it describes.
2. The model should be as simple as possible for the reason

that, simpler it is,- the more comprehensible it is.
Thus if there are two models that give approximately the 

same degree of agreement with reality, we should prefer the 
’simpler* model. A model is simpler, if it contains fewer number 
of parameters. The ’full’ model describes the data in the ’best’ 
possible way, but it does not reduces the data as it hast the 
number of parameters equal to the number of observations. This 
model describes the data in the best possible way because, it 
assigns complete variation in values of the response variate to 
the systematic components. On the other hand, ’null’ model is 
the simplest model containing a single parameter. Thus it 
considers all the variation between values of Y due to the random 
component. Hence it describes the data in the ’worst’ manner. 
This shows that model should be intermediate model containing p 
(1 < p < n) parameters, and describing the data in sufficiently 
better way. Some well known techniques used to check the 
adequacy of the fitted model are as follows.

1. usual chi-square statistic for testing goodness of fit,
2. Pearson’s chi-square statistic (X2),
3. Deviance (D).

3.5.1 ; Chl-souare statistic for goodness of fit s The usual 
%2-test of goodness of fit can be used to test the goodness fit 
of the model. This test uses the %2 statistic given by,
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which has chi square distribution with (n-t-1) d.f.
Here

(1) t = number of d.f. lost in pooling;
t h(ii) 0^= observed frequency of i -class;

(iii) E,= expected frequency of class.
3.5.2 s Pearson* s X* statistic : Other important measure of 
goodness of fit is * generaliqed Pearson X statistic*. jThis 
statistic is obtained by using the formula,

x-. E /jw: l‘ 1 J (2)

Formulae for generalised Pearson X statistic for distributions
in table (3.2) are summarised in table (3.3) given below. These 
formulae can be obtained easily.

TABLE 3.3

Distribution Pearson X2 statistic
Normal

'i
Gamma

i
Exponential E Cy. - ju.>2/ju2

i
Poisson E

Grouped binary

66



3.5.3 : Deviance : To assess the goodness of fit of a generalised 
lin^sr model, the following statistic namely, ’deviance' CD,say) 
Is suggested by Nelder & Wedderburn '<1972), which is based on 
likelihood ratio statistic. Bishop & others (1975) named the 
same statistic as Gz statistic. The full model is useful in 
defining this test statistic.

Let and be the maximised log likelihoods
corresponding to the model under study and the full model 
respectively. Then the deviance (D) is given by

D<1L (3)
in generalised linear models deviance plays a role similar 

to the role of residual sum of squares in classical linear 
models.

To make meaning of the term deviance more clear, below 
formulae for deviance corresponding to the distributions in 
table(3.3) are obtained by assuming that there are n observations 
on Y.
11 lustration 1 {Norma 1 distribution { Let observations (Y^ on 
the response variate Y are independently Normally distributed 
random variables with parameters <pi,e'2). Then from equation
(3.2-4) we have

= <-n/ZHn<2n«y*) - < l/Zo^E Cyt ■ <4)
i

Similarly we obtain the formula for £(y.,^S£). Hence from 
equation (3),deviance becomes

D<£,y) = e Cyt<5)
- i

Remark : As already pointed in chapter 2, the goodness of fit of 
classical linear model with error components distributed as
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normal, is based on residual sum of squares. It can be seen that
the deviance (D) in equation (5) Is nothing but residual sum of
squares <E), given in equation (2.4-2).
Itlustration 2 s Gamma distribution s Suppose we have n
observations (Y.^ on the response variate Y having gamma
distribution with p.d.f. as in equation (3.2-11). Then equation 
(3.2-13) gives

A A£</j,i>;y.) = [ -y /fjt. - in(ju. )] -ntn(r(v)+nvin(v) +(i»-l )E in<y. )
- . i t i , ii i

(S3)
Hence after getting f<y.,^iy.), f rom equation (3) we have,

‘ Ddfjy) = 2{E [-in(y./£. ) + (y^.l/^.H (7)
i

Nelder & Wedderburn (1972) have shown that the second term in 
equation (7) is Identically equal to zero. Proof is made 
available in Appendlx-1. Thus equation (7) is equivalent to

D(yjy) = -2 E Ln(y. /£. >. <6)
t

1 1 1 ustratlon 3 Exponential distribution s
Suppose Y. (1=1,2,...,n) are n independent observations on Y

the log

(9)

(10)

be seen 
equation

having exponential distribution with mean fi. Then
likelihood of Y can be written as

f(y;y.) * ~E C ln(Mt> + (y ■_/**..)] •
L

Hence from equation (3), we obtain 
D(y.jy) = -2{E [ ln(y

L

According to the theorem proved in Appendlx-1, it oan 
that the second term in equation (10) is zero. Hence,
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D(y.;y) ■ -2 {£ InCy^^) f. (11)
i

I I 1ugtratton 4 : Poisson distribution s
If we assume Poisson distribution with parameter fj, then from 

equation (3.2-16) it can be seen that

/(y • = E [ ~fJi * In (#it) ‘ - ln<y\!)]. (12)
L f

This,lmplles,
D<y.?y) = 2<E [ ) + (y^^ll*. (13)

L .►i
As per theorem given in Appendix-1, it can be seen that the» i
second term in equation (13) is identically equal to zero. Thus 
equation (13) Is. same as

D(£;y) « 2 E y.J-n(yj/Z-O. (14)
i

II lustration 5s Binary distribution for grouped data t
Considering Binomial distribution with parameters (m. ,fj )
* * th 1 1for Y =ra. Y., where Y. is the i observation on Y. Then assumingIII l

independence, we have,
/(y,m*j£) * E m*-^ ln(Ar ) + (1-y t) in( l-#Jt H + c(m*,y.>, (15)

» /swhere c(m ,y_) is a function free from Thus from equation (3),
deviance is

D(y.,y) = 2E n*[y.ln(y./i.) + (l-yt) in( l-yfc ) / (l-it) ] . (16)

Deviances discussed In this section, for different distributions, 
are summarised In table 3.2|.
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TAB*/: *. 4

Distribution Defiance i

Normal fa j —ii A?t % L «*l
Gamma -2 £ [ Infy- /p »3

L
Exponential i -2 E •{ ln(y./ju. *

l
Poissqn 2 E U y^iniy^/^in

Grouped binary
----- .--- :--- r-r-

2E «r* Uyi^y./H. JJ +(l-yl)int Cl-y^ J/a-^13 *

3.5.4 : Advantages-oft;the deviance <P> gt.atia.tlo- *
% < I) Er sia*. i&Hc ' is _ appropria.t• ./or maximum UtoUhood .

€fk t imates. '*•••-
, A jExplanation s From'equation <1), it is* clear1 that since £<y» <£,¥.>

is maximised log likelihood function fpr intermediate model, and
«•» ^since D Is non negative, maximum likelihood estimates give the 

minimum value of D.'Thus D is appropriate for maximum likelihood
estimates.

Cil) Conditional brook down of D is possible.
Exp 1anation : When there are two models, model (1) and model 
(2).they are said to be nested if one of them (say e.g. model 
(2)) contains only a„subset of terms contained in other model

i *«

(i.e. model (1)). F.or nested models conditional break down of D 
is possible. In simplest conditional break down of . D statistic 
D(2) corresponding to model (2) can be broken down' into two 
parts;

: (i) a measure of distance of the estimates of parameters in
V

the model (2) from those obtained under model (i);i
(ii) a D statistic D(i) for model (i).



For this,rewrite equation (1) as,
sy> = 4> 4-2CE ~ >*

= D [ <ZJ |<1>] + D (D, <171
•hwhere denotes the maximised log likelihood under model

<1) and D[ <2){<1J] is the conditional D statistic for model <21 
given model (1). If model <i) is a full model then D[(2)|<i>)]' 
is equal to D(2). Such type of conditional break down does not 
exist for £ statistic given in equation (16).

(iii) Structural breakdown of D is possible.
The structural break down which is possible with D, is not 
possible with x statistic in equation (16).

.To use the deviance(D) as a test statistic for testing 
g’oodness of fit of the fitted model, the distribution of *D’ must 
be known. In classical linear models, as normal distribution is 
assumed for error components, exact distribution of the deviance 
can be computed easily. But when we depart from normal 
distribution and from linearity of’different effects, generally 
exact distribution of the deviance is not obtainable. In some 
situations like exponential distriutlon, exact sampling 
distribution can be achieved. When exact distribution can not be 
obtained, a chi-square distribution is a better approximation for 
the difference in deviances.

Sampling distribution of the difference between deviances 
can be obtained by using that for maximum likelihood estimates of 
the model parameters Q. We have already shown that, for large 
samples,

<£ - Q)rT.(Q - Q) has £■* distribution with <k+l) d.f.
Now, on expanding log likelihood function HQjjr) about the

*maximum likelihood estimates Q of Q, we get,
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= f(0i*O + <0 - 0) ' y.<0) + <1/2X0 - 0)'H<0)<0 - 0), (18)
A A ^where U<0) and H<0) are values of U and H evaluated at 0.

ASince 0 are maximum likelihood estimates of 0, these are the 
solutions of the equations U<0) = 0. Hence,

UL<0> s.Q.. < 19)
aUsing equation (19) and approximating H(0) by E(H), equation <18) 

becomes
ZlUQix) - f(0ijrl] = C0 - 0X1(0 - 0).

ATherefore, from the distribution of 0, it is clear that for large 
n, the distribution of 2[f(0!jr.) - *<0l£)l has £* distribution 
with (k+1) d.f. Thus the distribution of deviance is x 
distribution with <k+l) d.f.

Though this chi-square approximation is not adequate in all 
the cases, a better approximation is yet to be suggested. The
table of deviance differences has its importance to select the 
terms showing significant effect on value of the response 
variate.
3.6 t Analysis of deviance

For orthogonal data with normal errors, analysis of variance 
(ANOVA) is a very useful statistical tool for separating the 
effects due to systematic components from those ' due to random 
components. Nelder b Uedderburn (1972) suggested a
generalisation needed, so that it is applicable for analysing 
generalised linear models. While making generalisation, two 
problems should be considered. First is,' terms in the model are
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generally non orthogonal and the other is, for non normal 
distributions, different sums of squares (SS) are not measuring 
properly the effects due to different components.

Before going to the generalisation, we look towards the 
usual ANOVA table from different angle. ANOVA can be . considered 
as the first difference of the measures of descripancy for a 
sequence of models each including one term more than the previous 
model; e.g. in factorial model with .two factors A and B (say), 
we have ANOVA with three terms namely main effects A and B, and 
the interaction effect A.B. SS for these factors are the first 
differences of the SSEs corresponding to the sequence of four 
models 1, A, A+B and A+B+A.B respectively.Note that measure of 
descripancy for model i is just TSS, and that for full model 
A+B+A.B is 0. It is also clear that for the.full model d.f.are,
equal to 0.

Now the generalisation is very much clear. Nelder & - 
Wedderburn (1972) have used D statistic as a measure of 
descripancy for a given sequence of nested generalised linear 
models, and taking the first differences formed the analysis of 
deviance (ANODEV) table. Since in generalised linear ,model, 
mostly the data is non orthogonal, the interpretation is a bit 
complicated. Each number in the AN0DEV| table represents
variation due to that after eliminating e.ffacts of the terms 
above it and ignoring effects of the terms below it.

In model fitting problem interpretation of the fitted model 
is also a very important part. In the next section this part is^ 
introduced In brief.
3.7 t Interpretation of the fitted model t

Interpretation of the fitted model is also a part and pareel
of the model fitting procedure. In other words a model should be

,

i '
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such that the practical conclusions can be drawn from estimated 
parameters of the model. Thus the question is 'what do the 
estimated coefficients of the i^odel tells us about research 
qestion that motivated the study ?’ Many times coefficients 
associated with the explanatory variates are of interest. Very 
rarely intercept is of interest. Estimated coefficients of 
the stimulus variates represents rate of change In the value of ai i 5 '
function of the response variate-corresponding to per unit change 
in the value of stimulus yariate. Thus interpretation of data 
involves two parts.

(1) Determining functional relationship between the response 
variate and the stimulus variates ,£ = (X^,X^,...,Xfc) *.

(2) Defining appropriately, unit of change for the 
Independent variables.

As we have seen earlier, the functional relationship between 
Y and X is known as link function. Along with the likelihood 
function, this function is also required for fitting generalised 
linear model to the data.

Another important segment of the model building is model 
checking. When some proposed model is fitted to the data, it is 
necessary to check whether the fitted model is appropriate. This 
checking is needed, because some times model fits well to the 
data, though the assumptions made while fitting are invalid. In 
the next section, discussion is made on model checking for 
generalised linear models. Model checking lnoludes checking
goodness of fit of the fitted model and checking for validity of 
the assumptions made while formulating the model.
3.8 i Model checking for generalised linear models t

The main problem in data analysis through fitting a model is 
to select a proper class of the models, so that conclusions drawn
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from the analysis are not far away from the truth. A
statistician can choose the model class carefully by taking Into 
account the type and structure of the data. Many times it may 
happen that, though the class is selected carefully, the data 
themselves indicate that the model selected is unappropriate. 
This situation occurs because of two reasons. First, f the 
complete data indicates departure from the fitted model, and 
secondly, there may be few data pbints away from the rest which

i

are known as outliers. Below we club the various methods of 
model checking into three groups, namely,

<I) visual display;
(II) tests of. deviations in particular direction;
(III) searching for influential points (outliers).

The methods in the group (I) are similar to the methods of 
drawing residual plots as described in section (2.5). First we 
discuss these methods.

As in classical linear models, here also the raw- material
mfor model checking is, fitted values of the linear predictor T, 

new adjusted dependent variable Z and the projection matrix H. 
The residuals can also be used as a raw material for model 
checking. The various types of residuals in generalised linear 
model are discussed below.
3.8.1 : Residuals : As stated in section (2.5), the residual 
analysis is essential to test adequaoy of the fitted model. 
Residuals are useful to examine thoroughly the appropriateness of 
the fitted model. These are also useful to oheok whether the 
outliers are present. Hence in the next Rari we study the 
residuals related to generalised linear models.

In case of generalised linear models, the generalisation of 
residuals is to be done so that it is useful for non Normal
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distributions also. Below we discuss three different residuals, 
suitable for generalised linear models.
Definition-4 : Pearson residual t- It is defined as the signed 
square-root of the component of the Pearson’s chi square 
statistic of goodness of fit. Thus it is given by, - t

rp - Cy-jul/CVCfi) l“*. (1)
i

An important disadvantage of Pearson residual is that its 
distribution for non-Normal distribution is skewed. So the 
properties of Normal distribution turns out to be invalid. Hence 
this residual is not much useful. The residual which is more 
appropriate is Anscombe residual. This residual was Introduced 
by Anscombe <19531.
Deflnition-5 :Anscombe residual>- Anscombe defined the residual 
by replacing y in Pearson residual by the function A<y) and ju by

A
Mfj). This function A(.) is selected such that the distribution 
of A(y) is very close to the Normal distribution. Wedderburn

a

proved that, for generalised linear model, the function A(.) is 
given by,

dfj
-------------  . <21[ V4i>3 *4Xlli

This replacement normalises the probability function, but to 
stabilize the variance it is necessary to scale it by estimated 
standard deviation of A<Y). .Since it is not easy to compute 
exact.varlance of A(Y), we take its first order approximated
value,

Thus Anscombe residual becomes,
[ <3>
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( A(y) - A(/u)>
f _ ~~ ~ ~~~^~~ ~~~~~~~~~~~ v (4)iA'^)nv«/ur *

Below we obtain expression for ’Anscombe residual* 
corresponding to Poisson distribution..
I 1 lustration 1. Poisson distribution

Let the single observation Y be'having, Poisson distribution 
with mean fj. .From table (3.2) we habe,

'V(jU) = fJtr

which gives,

AC/j)
d/Li
t i/i >

* <3/2(5)
and

A* (/Lt){V(p)}- = ju . CS)
Using equations (5) and (6) in (4), the Anscombe residual for 
Poisson distribution becomes,

rA = (3/2) <y-/ii) /{/li* ) (7)

Similarly, we can easily obtain formulae for Anscombe residual 
corresponding to normal, gamma and exponential distributions. To 
obtain an expression for Anscombe residual corresponding to 
binomial responses is complicated. Cox fa Snell (1966) obtained 
this expression.

When deviance is used as a measure of goodness of fit, then 
it is better to use deviance residual.
Definition-6 : Deviance residua I i- It is defined as the product 
of positive square root of a quantity (d^) contributed by each
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between yunit for deviance and sign of the difference 
Therefore deviance residual (r^) is given byf

r = signCy. - /u. )[d.]D B l l l

and At

i
<5>

The three residuals for some well known distributions from 
one parameter natural exponential family are tabulated below in 
table (3.5). These formulae are quite clear from expressions for 
fi^ t VLi> equations (1) to (4) and equation (8).

TABLE 3.5

Distribution Pearson
Residual <r ) p

Anscombe
Residual <r )A

Deviance
Residual (r )D

Normal cy.- V (yt- iki
At

{Sign(yL- >}•
lyt-

Gamma <yt- Ht>/

1/3 ‘"‘±✓8.3(y. - /i. )«■ 1'‘l/S**l

{Sign(yL-
{-2t in<y. / i. )]
. . .

{yi/

Exponential
A A\

(y. - ii >/ ml l 1
3<y4'a-l i

"i/a

At

{SIgn(yt- .
{-2[ in<yt / )]
- (y. / +

Poisson
, , . ''i.SZ(y.- *i. V tii

3<yfxa- ^a)i It

2<^*#)
V

{SIgn<yt- )}.
{2t y, in<y. tp. >1

V % Ip

- yt * V
Though the formulae for Anscombe residual and deviance
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residual are looking different for non-Normal distributions, 'for 
given values of y and i*., these two residuals are having very 
similar values. By using any of these residuals one can carry 
out the residual analysis. These residuals are in terms of ju. 
The replacement of fj by fj requires a standardisation factor. The 
standardisation of Pearson's residual is discussed by McCullagh & 
Nelder (1983) and that of deviance residual by Cox & Snell 
<I960*. If absolute value of the residual for some data point is 

- greater than ’2’, the corresponding data point should be checked 
for outlier’s test. Ue will not discuss here the methods for 
group (HI) due to their vastness. Now we discuss the methods in 
group (II) briefly.

(II) Tests of deviations in particular directions t

After fitting the generalised linear model, the most 
important question comes in the mind is that oan the value of 
deviance function decrease significantly by

(a) including an extra stimulus variate,
(b) changing scale of the stimulus variates,
(c) changing link function in a particular direction,
(d) changing the variance function,

with the help of available information about the stimulus 
variates, link function and variance function.

(a) Selection of covariates t Generally the experiment 
contains information on large number of stimulus variates, but a 
model should contain less number of parameters and should fit 
sufficiently well to the data. So it is necessary to select a 
set of useful covarlates. Then sequence of nested generalised 
linear models is fitted and using the deviance function it is 
decided, which covariate shows significant effect on the response 
variate. Covariates showing significant effect will be included
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In the mode 1.
(b) Checking sea 1e of stimulus variate : Method of checking 

scale of the stimulus variate has following steps.
(I) Suppose X and ft denotes respectively the covariate whose 

scale Is to be checked and coefficient of the covariate.
(II) Rep 1 ace X by

<S!X) . f 9 ' O'
l Ln|(X)} otherwise.' (9)

(III) Fix c > 0, a small positive number, to obtain estimate 
of 0 with desired accuracy.

(IV) To start calculations take initial value (0<o>) of 9 as 
unity.

ft(V) As Taylor series expansion for g (0,X), with first order 
approximation gives

g*(0,X) = g* (0<o>, X) + (0-0(O>)[0gV00]e=e<o> ,

Kreplace ftg (0,X) by two linear terms ftU + yV; 
where,

UIO> = g*<0<O>{X),

,<o> 9g (0; X) 
99 9=9<o>

and

ylo> = ftl9-9loy).

(VI) Fit generalised linear model with U and V as covariates.
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14)<VI I> Compute 9 , an improved estimate of 9 by

elt> = ©to>4 rto>/(3to>.

(VIII) Repeat steps similar to the steps (V) to (VII) until

I a<“- e"-" | < ,.

(IX) Final estimate of 0 is 9*\
Remarks s (1) If the initial estimate' 9to> is far away from the 
true value of 9, convergence of the process is not sura.

(2) Though this process is very useful, it is not a 
good technique to include more non linear parameters in the 
model, when other covariates are highly correlated. This is so 
because, generally estimates of the non linear parameters have 
large sampling error and are highly correlated with each other 
and with corresponding linear parameters. * *

(c) Checking Link Functions s While fitting generalised
ilinear model, link functions are aisumed to be known. Instead of 

this, it is useful to assume that, link functions come from a 
class of link functions and particular value of one or more 
parameters describes elements of that class. Most of the times a 
class of one parameter link functions is either taken as

T = f P 1 It 9 * 0, <i0)
l ln(ju); otherwise;

or
T = f9\,

Pregibon (1680) proposed linearising technique to get 
optimum estimate of 9. The procedure described by him has
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following stops

"i

*(I) Suppose T = m (0,ju) Is the link function, as defined in 
equation (10).

(II) Fix « > 0, a small number, to estimate 9 with desired 
accuracy.

(III) To start calculations take initiat value (0<o>) of 9 
as unity.

* i(IV) As Taylor series expansion for m with firshiorder approximation gives **

m*(0,y) »

m (9,ju) = 

Equation (11)

m*(0<o’,y) + (9-9lo> /&9] ,

T«» * (e-e“»> m8,°V(k>.Ican be rewritten as,

= m (0,ju) - <0-e<o>) y in(y).

(11)

t

which is equivalent to,

where,
T<0> = T?X H + vlo>](“■ j «• )' ) r vtk+l> ’

e‘°» : I

(12)

(13)

(V) Fit generalised linear model with linear predictor T<0> 
as given in equation (12).

(VI) Also fit generalised linear model with linear predictor
I = E X. .ft.,

7 «• i j«I
(VII) If difference between deviances of. the two fitted
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models at steps (V) and (VI) is significant,
conclusion is 0<o* is appropriate value of 9,

(VIII) Take different values of 9 in plaoe of 0<o> and 
repeat the steps (IV) to (VII). The value of 9 for 
which deviance is minimum, is the maximum likelihood 
estimate of 9.

(d) Checking Varianoe Function : Nelder & Pregibon (1987) 
suggested a method of comparing variance functions for continuous 
data by using the idea of 'extended quasi likelihood function*. 
For the distributions discussed in the table (3.2), it can be 
shown that the log likelihood (£) is close,to, an extended quasi 
likelihood discussed in chapter 5. This fact can be used for 
checking variance function.
3.9 Method*of obtaining robust estimates t

As discussed in seation (2.3), least absolute deviations 
approach to estimate the parameters was introduced by Boscovlch 
in the year 1757, about 40 years back to the introduction of 
least square approach due to Garuss in 1797. Hence it is 
naturally quite intersesting to see whether least absolute 
deviations approach can be used in generalised linear models, 
instead of usual weighted least square approach, to estimate the

’ imodel parameters. Morgenthaler(1992) has explained haw least 
absolute deviations principle can be used' to find robust 
estimates of the model parameters in case of generalised linear 
mode 1s.

During the last decade or more, several statisticians worked 
on robust estimation of the model parameters for generalised 
linear models. Some of them are Preglbon(1982), Stephanski & 
others(1986), and Kunsch & others(1989). . All the above 
statisticians cocentrated particularly on logistic model (model
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is discussed in chapter 4). Morgenthaier(1992) described robust 
estimation in case of generalised linear models. Below the 
method of obtaining robust estimates is given explicitly.

Method of obtaining robust estimates :
Since least absolute deviations resists the gross error 

significantly, it is of Interest to study haw least absolute 
deviations principle can be used to obtain robust, estimates. 
Suppose Yt<i=l,2,...,n) are n independent responses with

E<v =
Var < Y. ) = V. . (jti. ).t | k l

Then robust estimates for fitting L - norm (q > 1) can besobtained by minimising the quantity,

K<y,Y) = Z 
i

(Y. -fj. )
cv. .401IL l

< *.sz >

Therfore, iih component of the gradient corresponding to the 
quantity K<y,Y) is

q [ V. . Cju. )] "<q/"2> |Y.-iu. |<q"1> sgn(Y.-/0, <2)
1=1,2,...,n.

For q * 2, the quantity in (1) is equivalent to the ilh 
component of quasi likelihood, (quasi likelihood is introduced in 
chapter 5). Morgenthaier<1992) mentioned that for any other 
value of q, gradient in (2) non consistent estimates of Q when 
the responses are not symmetrically distributed around their 
means. To obtain symmetrically distributed responses, the 
distributional form of the response variate must be known.

Since in generalised linear models, distributional form of 
the response variate is known, correction factors for gradient

84



given in (2), to obtain consistent estimates of {3 are naturally,

l 1 1 % ' J i = l, 2.....
. thHence the i <i=l,2,...,n) component of the corrected gradient 

is,
i q-4 > sgnCYt-#Jl > - CJ .

Thus estimating equations to obtain estimates of Q, corrected for 
consistency are,

q[ V . <JLI )] I y -fjt. ■ * *1-*•> | sgn<Y j - c. ] (d#J. /dT. )X.. =0,
i - 1,2, ..., n. (4)

Hence this method can be used as an alternative method to 
estimate the model parameters Q in case of generalised linear 
models.

In all the above discussion of generalised linear models, it 
is assumed, for known distributional form of . the responses Yt 
< I = 1,2,..., n), variance of Y. is a Specific function Viju.) of thel t
mean n. of Y.. Mathematically, the variance of Y. <i = 1,2,...,n)LI L
is given by,

Var (Y. ) = <p V<*i ). (5)i i
To clearify meaning of the above statement, an illustration 

is given below.
11 lustration 1. Norma 1 distribution :

Suppose i=1,2,...,n) are n independent responses having 
N(^l,o>2) distribution. From the table (3.2) we recall that, for 
N<^,<y2) distribution,

4> - o'* and VCja) = 1.
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\.
Thus in this case, the variance of Y. <i«1,2,.. ., n) is a specific 
function of ^ upto a mul iplloativ. con.tant «•*.

On the other hand, if we assume that responses Y 
(i = l,2,... ,n) are independently distributed variables,
then

* o'? and V<*i ) = 1.
t t. t

Therefore, in this case VarfYj is not a specific function of the 
mean y t i = l,2,,., ,n), This is a case where the factor, related 
to the dispersion parameter is varying instead of being a 
constant. In such situations if ^ is unknown, ’generalised 
linear model’ can not be fitted in its original form given by 
Nelder & Wedderburn (1972). The models which are useful here are 
’generalised linear models with varying dispersion.
3.10 Generalised linear models with varying dispersion

Smyth (1989) introduced • the ’generalised linear model with 
varying dispersion’. Thus he generalised ’generalised linear 
models’, by including a ’dispersion*mode 1’ along with the usual 
'mean model’. The term ’mean model’ which occurs first time, i3 
nothing but the usual ’generalised linear model’ given in 
definition (3). Before Smyth (1989), Nelder 8c Pregibon (1987) 
introduced new class of models, namely, ’extended quasi 
likelihood models’. The model introduced by Smyth (1989) is very 
much similar to the extended quasi likelihood model. Below we 
discuss ’generalised linear model with varying dispersion’.

Generalised linear model with varying dispersion’ oan be 
defined in the following two parts.
Definition-7 s Mean mode 1 :

Let Y be a response variate with p.d.f. (or p.m.f.) f(.;©*) 
which belongs to the one parameter natural exponential family.
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Suppose Y (i=l,2,...,n> are n independent observations on the 
response variate Y such that E(Y.) = u. and VarlY.) = AV..(u ),L l l l ll l
Let )^, be the vectors of known values of the
covarlates X. <j=l,2,...,k). Suppose 

4

T = ft x J] *, .ft., for i=l,2,...,n, (1)i o y t j j
where

(3 = </? , . . . ,/? I * is the vector unknown model parameters
and

X. ■ (T |T )' is the linear prediotor.
Then a class of models of the form,

I = m(ECY))j 12)

where m(.) Is a strictly monotolc differentiable funotlon; 
Is called as the mean model.

For the ’dispersion model', deviance residuals (d^) are 
generally taken as unobservable re'sponses. Then dispersion model 
can be defined as below.
Definitlon-6 s Dispersion mode 1 s

Consider the unobservable responses d^ <i=l,2,...,n) with 
FCd.) = ^ and Varld.) = 0V (4M. Let z? (j = l, 2, . .. , k*) be the1D1 -j ^ m
vectors of known values of the covariates Z. <j=l,2,,..,k ).

JSuppose
K. ~ Y + E z* .Y.t for 1 = 1,2,. ..,n, (Q)«■ o r* 1. j j

J

where
t

Y = ly » • • • ,yfc*)* is the vector unknown model parameters
and
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c = <C «C ».-.iC )’ is the linear predictor for dispersion12 n
mode 1.
Then a class of models of the form,

£ ■ hCE<d»l <4>

where h(.) is a strictly monotoic differentiable function; 
is called as the dispersion model.
Definltlon-9 (Smyth 1989) : Generalised linear model with varying 
dispersion :

The ’generalised linear model with varying dispersion* can 
be defined in conjunction with the above definitions of mean 
model and dispersion model as the class of models of the form
n»Gy)=X£, h(£)=Z£, VarCT.>^iV..Ciu.> and VarCdt> =0.VDC^>. <5>

for i*i,2,...,n
The following theorem helps in developing the procedure of 

fitting generalised linear model with varying dispersion.
Theorem 3.1 t Mean and dispersion In the generalised linear model 
with varying dispersion are orthogonal.
Proof t Suppose Y (i=l,2,.,.,n) are n independent observations 
on the response variate. Suppose the dispersion parameters 0 
<i=l,2,...,n) are not constant for all responses. Then log
likelihood of the complete data set is given by,

ue,4>\x) 1 [ y^-gte. >+h<y. )] + (6)

Differentiating equation (6) w.r.t. and 0 (i=l,2,,..,n) we
have,

tft/idea#.) m -(y. -g’ <a. )>/<*?>. <7-)
i i i ° t i
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Taking expectation on both the sides of equation (7) and using 
the fact that g'ie^) * (for i = l,2,,..,n) we get,

EC#1/199.9$. )) * 0. <8>
i i

The equations (8) above imply that mean and dispersion parameters 
are orthogonal. *

In generalised linear models with varying dispersion since 
the mean and dispersion parameters are orthogonal, It is possible 
to estimate the parameters Q and £ one at a time. We discuss 
below the procedure of fitting generalised linear model with 
varying dispersion.
3.11 Fitting of generalised linear model with varying dispersions

Suppose g‘r> and £<r> <r*0,l«..,7 denote the jlh
approximation to the estimate of y and £ respectively. Due to
the interlinking of the two models, fitting procedure is
alternating as described below.

While fitting the mean model keep g fixed at £. Similarly,
*fit dispersion model by fixing g at fj. This method has the 

following steps. s e(1) Decide the ’independent* variates Z. <j=l,2,...,k 1 for 
the ’dispersion* model.

(2) Choose two small positive numbers and according to 
the desired accuracy for Q and £.

(3) To start the calculations take initial estimates of g
. * (O) _ . *< o >and y as £ = and y = y_.

(4) Fit the mean model as usual by using algorithm discussed
* *in sub section (3.4.3) for fixed £ (the current estimate 

of
(5) Compute the deviance residuals d.^ (1*1,2,...,nl from the 

fitted mean model.
(6) Fit the dispersion model for dL (i=l, 2,.,. ,n) by
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assuming gamma distribution. While fitting the
dispersion model, fix the vector of parameters ju at fj 
(the current estimate of y for the mean model).

(7) Repeat the steps (4) to (6) until,

| for all j=0, 1, . .., k (9)
and

| for all 3=0,1,...,k*. <10)

Then final estimates of Q and £ are

i \(m) . * " < in > ....Q - Q and £ = £ * , (ID

By using the above mentioned procedure one can fit the 
generalised linear model with varying dispersion.

In many fields like iocio-economic field, frequently the 
data are of discrete type. Hence in the next chapter we discuss 
the fitting of generalised linear, model for various types of 
discrete data.

«*
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