3. GENERALISED LINEAR MODELS
3.1 Introduction 3

In classical linear model, least square theory has been
used to analyse the data, where the responses are assumed to have
constant variance and the systematic effects are linearly related
to the mean of resgsponse variate. Then to test different
hypotheses about the model parameters 8 normality is assumed. In
gection (2.7) {t has pointed out that, classical linear models
are not gsuitable in all gituations. Thig 18 because, there are
many real life situations where at least one of the assumptions
of constant variance and linearity of systematic effects may not
hold good. As an example consider the following real. life case.
Example 3.1 t An experiment was carried out on the group éf 20
students, to compare three teaching methods. The sgtudents are
divided into three groups and different teaching methods are
applied to the various groups. At. the end of the course, a
test is conducted to check the per;Qrmaﬁce ‘'of these satudents.
The marks (out of 20) obtained by tﬁdh are.glyeﬁ below.

TABLE-3.1 . ;
Teaching i |- \ [1 ]
method 1 2 3 ”:4 N 5::: 6 7
{ 19 0 5 10] a 17 13
I 6 12 11 .81 10°] 13 12
it 9 8 ) 7 8 7 )

]
N [}

Below the graph of marks against teﬂéhinglﬁeéﬁods is plotted.
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The graph In Fig(3.1) shows that, the variance 1is not
constant. Hence some wvariance sgtabilising transformation |is
required. Thus the first assumption of constant varfance
required by least square maéthod fafls. Therefore least square
method can not be used to the untrénsfbrmod data. In other
words, classical linear model is not'proper to this data. Hence
it becomes necessary to search for some other models appropriate
for such type of data. Alternative techniques have been
developed to analyse such type of data. Thaey are probit analysis
(zsee o.g. Finney (1847), Prentice (i976)), logistic regression
analysis (see e.g. Prentice (1876),  Hosmer & :Lemeshow (1889),
Collett (1981)) for Binomial data; fitiing log-1inear models
(e.g. Bishop & others (1875), Good & Kurskal (1964), Gokhale &
Kullback (1878)) for the data in the form of contingency tables.

By studying similarities of many model fitting methods
involving Ilinear comblnations of the parameters Nelder and
Wedderburn (1972) developed the new clagss of models, namely,
'generaldsed linear models’(GLMs). 6 This class of generalised
linear models includes all the above types of models. McCullagh
& Nelder (1883), Dobson (1989) have. discuased the theory
associated with generalised linear model. Bresiow & Day (1980)
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described the applications of generalised Ilinear models in
'cancer research’. In this chapter we discuss explicitly the
theory associated with generalised linear model and the
illustrations are given in the subsequent chaptersr,
Here discussion is-made in the following direction.
(1) Description of a generalised Iinear model with k
explanatory variates,
(2) link function,
(3) titting of generalised linear model,
(4) measures of adequacy of the fitted model,
(5) analysis of deviance (ANODEV),
(6) model checking for generalised linear model,
(7) method of obtaining ’'robust’ aestimates of the model
parameters in generalised linear @odel.
(8) generalised linear model with varying dispersion,
(8) fitting of generalised linéa}| model with varying
dispersion. .
3.2t Generalised linear model with k explanatory variates
The definition of generalised Ilinear iinodel requires the
term 'omne parameter natural exponential fami\y . But before
describing this family of distributions,: #tl iz essential to
explain in brief, the meaning of ’'One -péfémeter exponential

family’. For this supposs,

(1) $ (S R) is the range of respons§ ‘variate Y, giving
positive p.d.f., ,

(11) 6" 1s parameter of the distribution of Y,
and

(111) o (€ R) is the parameter spaee oﬁ 9
Definition-1 : One parameter e;ponent;gr ggm ly tA clasg of

p.d.f.s(or p.m.f.s8) depending on a real vslued parameter a' of
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the following form

f(yge..¢l=exp{é(¢)[a(y)b(é')-g(b(e.)l+h<y)]+((¢ly)}Jsty).
o' e 6*;
or euivalently,

f(y;0,¢) = exp { al(p)[aty)® - g(O) +hiy)] +&(P;y)? }Is(y). (1)

e‘e 9.;

i known as one parametser exponential family, {f & does not
depand on e'.
Here

(1) 1ge¥) = {(1): therwize *

(11) & = b(®") is a function of & only,

(iii) al(g) is the function of ¢ alone and bhaving positive

value,

tfv) a(Y) and h(Y) are the functioné of Y only,

(v) g(8) is the function of @& Jnly,

(vi) ¥(¢;Y) is the function free from 8.

Note ¢t (1) If ® < R¥, distribution of Y is said to be a member

of k-parameter exponential family.

(2) It the distribution of response variate Y, belongs to
one parameter exponential family, the 1log likelihood of 6 |is
given by,

8O,¢3y) = {a()I[aly)® - g(O) + hiy)] + £ (diy) }. (2)

Now, we give few illugtrations for understanding purpose.

{llugtration 1 : Normal digtribution :
Let the response variate Y has normal distribution N(u.az)
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(uaR, oe R+). Then the p.d.f. of Y is given by,

-¢As/R)

f(y;p.o’) 2(2no" ) exp {(y-p)'l(Zo’)}. (3)‘

y é R,
which glves the log llkelihood function based on gingle

observation as

L, otiy) = ~LIn2r0®)1/72 - (y* - 2uy + u517(26%) .  (4)
The equation (4) can be rewritten as

Hp, oty = tuy - (uir2) ~Cy*/2)170° - nzrd®izz. (B)

On comparing the equation (5) with the equation (2) the
following findings can be obtained.
¢ =08, a(g) =(1/9), © =pu, g =08%r2,

. (6)
aly) =y, hiy) = -y=/2. E(Psy) = ~Lin(2Ml/ald)) 172,

Since the' range of Y does not depend on the distribution

parameter, the N(p.a’) distribution belongs to one parameter’

exponential family. Here o® is the nuisance parameter.
[llustration 2. Beta distribution of first kind :

Suppose the response variate Y has beta distribution of
first kind with parameters (u,»>0). Therefore, the p.d.f. of Y is

givaq by, St

1

¢ ""'"'t(yu.i;v)‘-="{l“(h)l“(»)/l“(p+v)} y‘p “(1-')'3-(-” le"ii('y). SR
whare, ’
03 if Yea (0,1)
t (Y) =
104 1 ; otherwise.

Hence, the log likelihood of 8 is,

20,¢95y) = In(e) + (u-1)iny) + (»-1)Iin(i-y), N
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where,
c = {LCqIlw) /T udr)},

From the equations (7) and (2), it can be seen thgé,

g

¢ =al@) =1, 8 = [(u-1) (»-1)1", g(@) = o
(8)
o

aly) = Iinty) 1InCi-y)1’, hiy) = ¥y} =

As the range af Y is free from parameters of the distribution,
equation (8) indicate that, beta distribution of first kind
belongs to two parameter exponential family.
Remark : If a(y) = y, the p.d.f. of Y glven in equation (1) |is
sald to be In the canonical form, and '®’ {8 known as canonical
parameter. . .
Morigs (1982), has named the class of distributions, having
p.d.f. in:the canonical form, as natural exponential family.
Therefore, ’0One parameter natural exponential family’ oan be
defined as below,

Definition-2 : One parameter natural exponential family :A
class of p.d.f.s(or p.m.f.s) depending on a real valued parameter

8" of the folliowing form ‘

f(y;9,¢) = exp {:a(¢)[y9 -. g(8) +hiy)] +f(P:y) }!s(y). (9}
' o = bte*) and 0" o™y

is known as one parameter natural exponential family, 1if Sg does

not depend on 9‘. The parameter & is called as ’natural
parameter. ’

Note t [f the distribution of response variate Y belongs to one
parameter natural exponential family, the log likellhood of 8 s

given by, . P
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0O,¢3y) = {a(@)[y® - g(@) + hiyl]l + Zidsy) }. (10)

Note that the natural exponential family is a sub class of
'exponentlal family. Further, 1{t c¢an be seen that N(p.az)
distribution is a member of one parameter natural exponential
family. On the other hand beta distribution of firgt kind is not
a member of this class.

Below gome illustrations are given to have the idea of
natural exponential family more clear.

[1lustration 1 : Gamma gtribution @

Let the reegponse variate Y has gamma distribution with

parameters (v,u), »,un >0) p.d.ft.

flyju,v) = {tl/F(v)](v/p}”}exp(-vy/p)yv-ll (y), (11)
10, 0

where

1 it Ye (O,m)
!mw(“ = )
’ 0 ; otherwise.

Thus the log likelihood function based on single observation s
Au,viy) = - InlT(w) - (vy/p) + (»-U)InCy) + vin(w/). (12)

Rearrangement of the terms Iin equations (12) gives
S, viy) = v [—(y/p)=-In(u)] - In(IM()) + »in(p) + (p-1)in(y).
’ (13)
Comparison of the equations (13) and (10) gives

¢ = (1), alg) = 1/¢, & = -1/pn, ge8) = Ln(-1/8),
. (14)

aly) = y, h(y) = 0, £(¢,y) = -IN((g))+gln(g)+(p-1)Inly)
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Since the range of Y i free from the parameters (u,»), the
digtribution of Y {s a member of one parameter natural
exponential family.

Illustration 2 : Poisson digtribution : . '
Let Y be the response variate having Poisson distribution

with parameter (A >0) Then the p.m.f.0of Y ig given by

exp(")\)ky/y!3 y = 0,1,..-

flysx) = 0; otherwise (18>

Hence the log likelihood function based on single obsgervation y

becomes

LA3y) = =X + y In (A) - In(yl) (18)

Comparing the equation (16) with the equation (10) we have,

¢ =alep) =1, 6 = ln(A), g@) = exp(d),
. (1?7)
aly) = y, hiy) = 0, f(:y) = -In(y!l)

The}efore, it can be observed that, Poisson distribution belongs
to one parameter natural exponential family.
lllugtrét!on 3 ¢ Binary digtribution for grouped dats

Let response variate Y be such that Y'=m'Y has Binomial
distribution B(m‘.pl. Let p denote the mean. Note that for
grouped binary digtribution pu = p. Then the p.m.f. of Y is given
by

) » L] »
flysm ,u) = m { mo e B YOt TE Yoy } (18)
my ' 4
Where

) A e (0, 1/0 vevayl)
and
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13 y € A,

(i1{) lA (y) =
2 0; otherwise.

Thus, log-l1ikelihood function based on single observation is

»
l(m‘.p;y) = ln{ n cm’y } + n.yln<p) +m‘(1—y)ln(1-p) + ln(n’)

(18)
The rearrangment of the terms in equation (18) gives

L
J(M‘.H=¥1 = m.[Yln (p/7¢L-01 + InCi-p23] + ln{ n cm‘y } + indm)

On comparing the equations (10) knd (20), we get, (29
¢=1/m ,alp)=1/7¢, © = Ln(u/(1-u)), g(e) = in(l+exp(o)),
s(y)=y, h(y) = 0, £(¢,y) = ln[m.c . 1 + lnm ).

. 'ty
(21)

Thus we conclude that this distribution belongse to one parameter
natural exponential family.
Results of the above given distributions belonging to one

parameter natural exponential family can be summarised as in the
following table. . !

47



-

be written as,

£ = 20,93y) = {a(@P)[yO - gCO) + hiy)] + F(osiy)]}.

natural exponential family.

Hence,

It is well known that (See e.g.

48

Distribution Normal Gamma Poisson Grouped
£y ) binary
o SEEs Losmanena **
Range Qf Y (—m,m) [O,M) 0,1'-0- O.l/ﬂ '-'vpl -
¢ o® 170 1 1/m
ald) 1/¢ 1/¢ 1 1/7¢
8 M -1/u indu) tn{p/(L-p1}
g¢8) e*s2 In(-1/8) exp(o) in(l+axp(@))
hy) -y*r2 0 0 0
__________________________________________________ ;;_-___-_
~ln[§?$§] -Indr($)) ‘“{ ¢ m‘y}
Ly T4 t¢ln(g) “intyl) + tnem)
2 +(@p-1)lnly) nim
el )

A very important result which holds for one parameter
natural exponential family is prodbd below.

Result-1: If the dependent variate Y comes form one
parameter natural exponential family with natural parameter '6'
and nuisance parameter '¢’, then

E(Y) = g’ (8)
(22)
Var(Y) = g'"(6)/a(e)
Proof 3 Suppose Y is the gingle observation on the response
variate with mean u. Assume that Y comes from one paramete;

the log likelihood of & can

(23)

Kendall & Stuart (1068},




-t

E(dtrd6) = 0, (24)
and

E(827861% = -E(d°Lr80%), (26)

Differentiating equation (23) w.r.t. @ twice, wa get,

9t/88 = a(P)ly-g’'(e)1 " . (26)

and
2 2 '
3°L786" = al(@)(-g*'(6)1, (27)

The equationa (24) and (268) combinedly imply
n = g'ee); ‘ (28)
and hence
8780 = a(P)ly-ul. (28)

From equations (25), (27) and (29)= it can be seen that
g7'7(8) = a(pivar(Y)] = V. (30)

This result igs useful in developing algorithm for fitting
generalised linear model (GLM), whose definition i{s given below.

Definition-3 : Generalised linear modél :

Let Y be a regponse variate with p.d.f. (or p.m:f.) ff.;e')
which belongs to the one parameter natural exponential family
with & as‘a natural parameter.

Suppose Y‘ (i=1,2,...,n) are n independent observations on the
response variate Y. Let Xo Eyveves X be the vectors of known

—*
values of the covariates Xj (§i=1,2,...,k). Let

T. =P8

i o + ; xt.jﬁj' fDr i=1|21.:-’“, (31)

i
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where

m
(]

(Bb'ﬁ;""'ﬂﬁ” is the vector unknown model parameters

and

I~
n

(Tz,Tz,...,T“)’ ig the linear predictor.

Then a class of models of the form,

T = m(ECY))s (32)
where m(.) i3 a gatrictly monotoic differentiable function |is
called the class of ’'Generalised Linear Models’' (GLMs).

Since 'T’ is a linear sum of the ‘effects of explanatory
variates, it is called as 'linear predictor’. Further, slnce:the
function m(.) gives the relationship between E(?] X = %) and x,
Nelder & Wedderburn (1872) named this function as "link
function’.

We now ghow that clasgical linear model is a partiocular case
of generalised linear model. In classical linear model we assume
normal distribution for responses. It {s already shown that
normal distribution {s a membepr of one parameter natural
exponential family. Further, for clasgsical linear model, we have
E(Y) = Xpg = T.

From the definition of generalised Iinear model, 1{t (s clear
that, clasgsical linear model is a special case of generalised
linear model with 'identity’ link function. By the 'identity’
link functi{on we mean the link, T = pu. Thus the generalised
linear model allows two extensions, namely, digtribution of the
rasponge variate may be any distribution from natural exponential
family, and the link function m(.) may be any striotly monotonic
differtiable function.

As we have seen earlier, the functional relationship betwaen
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Y and X 1s known as link function. Along with the 1likelihcod:
funotion, this function is also required for fitting generalised
linear mode! to the data. Thus, link function plays a vital role
in the theory of generalised Ilinear model. Hence, (it is-
discussed explicitly in the next section. o
3.3t Link function S R

Generalised linear model ' is fitted ‘tdtﬁihé;.ﬁaﬁi *gﬁé@ﬁgﬁ?
reparameterisation péocess. It should be done' in sguch 'a Qay
that the new parameters gives linear relationship betueen
E(Y|X=x) and x. The function which relates the covariates
(X, X,¢e0c.,X )’ and the new parameters @ with ECY) {s known as
link function. In other words, it §s a function which gives
relationship between linear predictor T and expected value u of
the response variate Y. Since u completely depends on the
behaviour of the responses, and valuaes of the gatimulus vari{ates
are fixed, the function m(.) gives link between random component
and systematic components,

In elassical linear models we ,have an identity link, T = pu.
This type of link is suitable in classical linear models, because
both T and u can take any value on real 1ine. Here 1t should be
noted that such type of link is not always suitable.’ Now' we
fillustrate this by considering two situations and sguggest
appropriaté links in each case.

Suppose response variate Y has Poisson distribution with
parameter n. Here identity link is not appropriate, since the
linear predictor T may be  negative, whereas u 1is strictly
positive. So the Iink function m(.) must be such that
m(.) :¢(0,0) -> (-w,m). One such function ia In(u). Thus one
appropriate link Iin this situation is log 41§k given by T=In(ul.

Secondly, assume that the response varuéte Y is such that
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v's nY has binomial distribution B(n,u'. Here also {dentity link
is not proper, as value of the parameter u is in between (0,1).
Hence the link function m(.) should map from (0,1) to (-w,m).
Three important functions of this type are mentioned below.

(1) Logit function, T = Ln{-Igp-} 3

(i11) complementary log-log function, T = In(~ln(i-ul)) 3
(111) probit funotion, T = & (u); where #(.) is the normal
cumulative distribution function.

Remark : The 1ink T = 8, 18 known as canoniqa! 1ink. Thus,
*{dentity link® for normal distribution, ’log iink’ for Poigson
responses and ’'logistic link' for binomial digtribution are some
{ilugtrations of canonical links.

After discussing the link function explicitily, we are iIin =a
position tao fit generalised linear model to the data.
3.4 ¢ Fitting of GLM

Fitting the model means estimating unknown parameters Iin the
model. Parameters in the model can be estimated by using
different methods. Some 61 the {mportant methods of fitting
generalised linear model to the data are

(1) weighted least square method;

(1I) maethod of maximum likelihood;

and
(I11) method of obtaining robust estimates.
- ¥
The third method we discuss at later stage of the chapter in
sectlon (3.8). Below we discuss the {first two methods

expiicitly:

3.4.1 : Weighted least square method :
In least square method of estimation, estimates of the model

parameters are obtained under the following two assumptions.
(i) Error components in the model are independantly
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digtributed with mean zero and constant varianoce a?.
(1{) The identity link holds.

In case of generalised linear models, other than c¢lassical
linear model, the identity link does not hold. In othar words,
the systematic effects are not linearly related with the means of
original responses Yi(i=1.2,....n). To. overcome this problem,
Nelder & Wedderburn (1872) defined . the new variates
Z(i=1,2,...,n! as, '

%ﬁ T, + (Y, - p )T, /7dp.), (H

so that E(Z) = XB. This {mplies that, if the new dependent
variable Z Is considered instead of Y, the identity Iink |is
suitable for Z. Hence the generalised lineér model In terms of Z
can be written as, '

Z=XB + e, (2)
with
E(e) = 9,
and
Var(g) = diag(var(e‘). var(az).....var(eh)). (3
Consider
var(e.‘) = var[(Yi_-pi_HdTi/d.ul)]
- 4
= (dT, 7du )% varcy))
| 3 1 9 *
- 2
{'vi L ) 7 tadg) J}m'ri /dp. )
= (atpIv, O (say),
where

-4
2
Hu = {[Vii(pi)](dTi,dpi’ } . {(4)
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Define
. v = dia‘(waa'wzz""'wnn)' (51

Premultiplying by w2 to the model (2), we have

z2'=x"g + o, _ (6)
with .
L‘ - 'u/z); . . .
x* = Wi 2y , . . )
and :
Q_‘ = '(112)1.

Since at(¢) is assumed to be constant, for the model (6), one ¢an
obtain least square estimates of the model parameters 2 by wusing

well known normal equations, ’ . i
x*rx*13 = x"r 7",
or equivaletly,

(X’W X3 = X'W Z. (7

Since in generalised linear model, the newly defined variate
Z and the weight matrix W both depend on the estimates of model
parameters 3, It is necessary to use the weighted least square
method iteratively. Here it iz essential to note that, as the
newly defined dependent variate Z 1is unobservable, it 1g not
possibie to obtain weighted least square estimates of 2 without
malkting any assumption about the distribution of response variate.
Hence, for fitting generalised linear model, this method ¢an be
used only after ma@ing a valid digtributional assumption for the
response variate Y. Once we assume a particular digstribution
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from one parameter natural exponential family, this method can be

used,
Note :- In case of classical linear model we have
E(Y) = pand V(ud = 1, (83
Therefore we have from equations (1) and (4)
Z=Yand W = 1 )
Hence for n observations equations' (7) reduces to
(x*xg = XY, ’ (10)
which are the normal equations given 15 equat}on (2.3-8). Thus

in case of classical linear model, weighted lbagt square method
ig equivalent to the usual least square method.

Now we discuss the second method. '

3.4.2 : Method of paximum likelihood @

In the class of generalisgsed [inear models, distribution of
the response variate 1{s a member of one parameter natural
exponential family. Hence, the method of maximum likelihood can
be used to estimate the model parameters 3.

Suppose Yi¢1=1.2.....n) are n independent responses with
p.d.f. (or.p.m.f.) of Yi is given by,

f(ytgai.¢) = axp{o\(¢)[yi'9i_ - gtei) + h(yi)] +.{(¢gyi)]}.

Therefore, the log likelihood of @ based on n observations |is

given by,
2€8,¢;Y) = L {atd) [y 8, - g€8,) + h(y )] + B,y )1} 11}
i
In order to obtain maximum likelihood estimates of g3, we
differentiate the expression (11) and set the resulte equal to

zero. Differentiation of expression (11) c¢an be obtained by
using chain rule. According to this rule, we can write
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0&/0{?; =¥ (8:{89.‘)(dei/du.‘)(dp.‘/dTi)(ﬂL/aﬁj). (12)

[ 3

From equation (11) it can be observed that,
(88/86“ = a(«p)[yi_ - g'(ei)] (13)

Further, from the result (3.2-22) we have,

g’@0.) = p, :

vt b . (14)
’, =
g’ (e, ) V. W)

Also, we have
T, =% x,.3, ,
j

i=1,2,..,1m3

Xio" i3 for all 1.

Hencsa,
aTi/api = *i 1 jBO,l..-..k. (15)

Using equations (13) to (15), in ‘(12) we get the estimating
equations as

. alp)ly, - u] du,
T. = B {-==-=--"cee2ne —eza X. = 0 (18)
ij

j=°p1---,kc

Alternatively, the above equations (16) can be written |In
the matrix form as,

et (y-w) =0 , (17)
where

(L) D = (Dij), with Dii = (d“;/dﬁj’ for every { ang J valus,

(11) € is the variance covariance matrix of Y.
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After solving equations (17 we acbtain estimates’ of
ﬁ,(j""o’l’..l'k).

Since Y:s ti=1,Z,...,n) are independent,
C = d!ag(var(Y‘).var(Yz).....var(Y"}). (181

It can be observed that in case of classical linear model, the
estimating equations (17) reduces to the norm;l equations given
in (2.3-6). This can be justified as follows.

Justificatin ¢ For classical linear model, we have,

T =4, (19)
and, '

where T = X3 and g = E(Y).
Equation (19) implies, D = X , and g #X3. .Hence for classical
linear model, the estimating equations (17) become,

X’ (y-Xp) = Q.

i.e.
(x'x)g = X'y, (20)

which are the normal equations as given {in equations (2.3-6).
Since the normal equations in (20) are linear equations in g3, the,
estimates of # can be obtained by sdlving them.

For non normal distributions, the equations (17) are non
linear eqations in 3. Theérefore, {t may not be possible to
obtain the maximum likelihood estimates explioitiy. However by
ugsing appropriate numerical technique, the estimates of 3 can be
obtained.

For the class of generalised linear models defined by Nelder
& Wedderburn (1872), the approach of Newton-Raphson method 1is
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used to compute maximum likelihood estimates. Nelder & Wedderburn
(1972) introduced this method. Later McCullagh & Nelder (1883)
reproduced the same with more explanation. We also use the
Newton~Raphson method as a numerical technique to solve the
equations kl?). According to this meéhod mlh appréximatlsn of
the estimates of 3 is given by

aimr o ptm=1y _ [o#om-1) b e 1t (211
é é - @=é(m%1>. . apjant é.é¢m~a> i
2
where [ _2E ] ig the matrix of second order derivatives of £,
89,061

e :
expressions for [ -Oﬁisﬂ: ]. For th;g consider,
2
e .4
S 2 —ce-(3L/B '
3,00, = Tap (9B
s [2¢ o7,
= z P ARSI S— ,......k—
T, .
i 1 | & 3
-2 _[22_
L L a'ri 'xu.,)]
= z -g—— ff- ?I:‘- X
i a;ri. & oﬁl -
Y
= F or? . xuxd) (22)
i
Consgider,
22e ° [ ae dai ]
Teox T TaTT| d6. *TdT
M‘,t . i i
_or 98 99 ..e__[ ef]
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Since the response variate is assumed to have a distribution
from one parameter natural exponential family, we get from the
equations (3.2~27) and ¢(3.2-28),

2 2
9 :/aei = a(¢)V£i(pi). (24)
dpi/dei = Vii(pir. (25)

Using equations (3.2-29) and (24), agualion (23) can be rawritten
as,

2 2
_fo- = ald) {(y. ~u) -g-?h- - V.. () -Eii_ :-gfi (28)

12 YoM, 9t i 'H dp, - v TaT] ) -
i i

Sometimes, Fisher's scoring method is simpler than
Newton-Raﬁhson method. In Fisher's method of scoring, matrix of
gsecond order derivatives in equation (21) "is replaced by 1its
expectation. Now taking expected value eqdétion (26) can be

written as H'

2
N o7 S (Y (P25 T Y It
a3 8(?‘_ Vi.i.(p )1° T iy it
J
= —P a<¢)wu<xijxu}. . 27>

Hence by proper changes Iin equation (21), and using equation (27)

wa get, '

t
+

=3
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S(m)> Stm-1) *{m-42
E] =g [I " ]Q=é(m—a)'[a(¢,§ {wi.i.xi.jxtl.}]eq;(m-l*
N al(@){x, (y -p )1} . 1
=€(m~1) + [2 {___...._}__l,__t__i_--- }.(dpi /dTi_ ’] ~ -5
i V.. 8=C

-4

. [“(4”§ W, x5 l}]ér_é(m—t)

Qtm? _ Sim-2) ’ -, -4
FES 8 + {x ¥ F (y &n} _tme” [(X’W X) ] ~— » (28)

6=¢ =g
Equation (28) is same as
- i
» Stmy . Aim-1)
[(f L x’]@=émpue = [cx w x)]@=ém"”6
-4
+ {X'W F ¢ x-e,}e=é‘""'”

= X'W g.(m-l) ;
where

z = Xg ¢ {F"W. - E’}

i.e. z =T+ {F“(y_ - ;_n}.
Thus m‘" approximation of estimate of 3 can be obtained from the

equation
. (xX*w Xopg = X'V¥W 2z, (29)
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where the matrix W is obtained from current estimate of 3.

Remark : From equations (7) and (29) it 1{s observed that for
generalised linear model with density (or mags) funotion as in
equation (3.2-9), solution of the-paximum likelilhood equations is
equivalent to an iterative welighted least squares procedure with
a weight function - t

¥ = V*'F%, (30)
and a modified dependent variate
Z =T+ (Y- gIFY (31)

vhere
(1) u = ECY)
(1{) v = diag(gu,vgz,...,vnn).

and
(i1Li{) F = dlag(f“,fza,....f“n).‘
with
fﬁ = (dpi/dTi)
, for i=(,2,...,n.
v,, = var(Yt)/a(¢)

ii

In fitting generalised linear model, we have used Fisgher'’s
scoring method as a numerical technique to obtain parameter
estimates. This method was introduced by Fisher(1935), {n the

'appendlx of a paper by Bliss (1835). Greon(1984), Jorgenson
(1984), Finney (1887) and McCullagh & Nelder (1989) used the sama
method to fit generalised 1inear model. Below we give an

algorithm of the same method to compute the maximum 1ikelihood
estimates of g3.

3.4.3 : Algorithm to gbéa;g maximum likelihood egstimatgs of 2 :

While fitting generalised linear model, approximate values
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of maximum likelihood estimates of 8 can be obtained by wusing
weighted least square method as a numerical technique. As stated
earlier, since the new dependent variable Z and W both depend on
the fitted values, the procedure is iterative. Hence estimates
should be obtained 1teratively by using N-R-method ér Fisﬁer's
method of scoring. To obtain estimates of 3, equation (28) can
be used. ‘This method has the following steps.

(I) Write the incidence matrix X ;

(Il) fix a small positive number & (8ay, ) to get estimate

of 3 with desired accuracy ;
(I111) find expressions for (dpi/dTi) and Vti 3
(IV) take averages of different samples In the data as
10

inttial estimates p. ot;ﬁ,'<1=1.z.....n1 3

Lt

(V) obtain T.°’ = m(&;°’) ;

(V1) compute

- 1
(o) _ ———e 2
e - [ . Cdp, 74T, ) ] ~eon
Pi-

v._. .
L 1
and
- - (y.-u )
toy (O} v
it M=
(VII) compute é‘o’ as
@«oa = (X'Vl‘m)()-‘X’VI‘m;_‘m;
. 1) 200D “t1? -4 2C2)
(VIILIJ obtain T =xg®", and  pt = wTteT M)

(IX) repeat steps similar to the steps (VI) to (VIII) until
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At - ptt 2 L ¢ce, forall §=0,1,...,k; (32)

] }

(X) ﬂ;P’, (j = 0,1,...,k) are the final estimates of ﬁi it
conditions (32) are satisfied for ﬂ}”, but are not

tp—-1)

i

Remarkg : (1) When any of the ;;o>

adjustment should be done by adding or subtracting proper

positive number, so that the corrected initial estimate will not

satiagflied for 2 s for atleast one value of J.

takes extreme value, some

be an extreme value. . )
(1i) Another important fact to be noted here 1is about

existence of inverse of the matrix (X'W X). Wedderburn (1876)
has proved that (X'W X)"* exists for log concave link functions.

After fitting generaliseé linear model to the data, one may
be interestd in testing different hypotheses about fhe model
parameters 3. For this purpose 1t {8 necessary to obtain
sampling distribution of maximum likelihood estimates of 8.
3.4.4 :Sampling dustribution of mawimum l;gqlihood estimates @

Suppose (X'W X) -is2 non-singular, so that tﬁere are unique
maximum likelihood estimates of the parameters (3 and are close to
the true value #. Suppose I is the information matrix. Then
using Taylor’s first order approximation about é: for I‘(@), we
get,

™ = TN + K@ - @ (33)
For simplicity, let
u = atrag, (34)

and H is the matrix whose (j,l)“' component is (OFAIQﬂjQﬁl).
Then result similar to (3.2-25) glves
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I = ECY Uy,
= -E(H). (35)

As H is asymptotically equal to 1{its expeocted value and
since If(@’ = 0, for large samples equation (33) becomes,

™ @ = -1 - B,
which implies, ' '
@ - @ = 1Y@ (36)
i

It I 12 the wmatrix of constants.' taking expectation of the
equation (38), we have,

EG@-0 =0, (37
and

E[( - @).¢3 - #1°'] = B *T (.1 (@17 (38)

Hence by using equation (36) and since {t {s agsgsumed ¢that I (s
the matrix of constants,equation (38) can be rewritten as

E[(3 - @.¢8 - g)'] =17", (39)
Thus for large samples,
(@ - @ has N__ (0, I") distribution.
This shows that for large samples,
8 has N (@, I"") distribution.

i.e. (B - B1V'I(@ - B) has x° distribution with (k+1) d.f,

3.5 t Measures of adequacy of the fitted model :
Once the model i{s proposed, the next part is to see whether
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{t fits "well’ to the data; i.e. to check how 'good’® fitted
model describes the data.

A 'good’ model has to balance two requirements.

1. The model should be as complex enough to approximate the
real world phenomenon it describes.

2. The model should be as simple as possible for the reason
that, gimpler it is,” the more comprehensible it is.

Thus if there are two models that give approximately the
same degree of agreement with reality, we should prefer the
"simpler’ model. A model is simpler, if it contains fewer number
of parameters. The *full’ model describes the data Iin the ’best’
possible way, but {t does not reduces the data as it has: the
numbher of parameters equal to the number of observations. This
model descoribes the data in the best posaible way because, it
assigng complete variation in values of the regponse variate to
the systematic components. On the other hand, '"null’ model |is
the simplest model containing a single parameter. Thus it
congsiders all the variation between values of Y due to the random
component. Hence it describes the data in thq 'worst’ manner.
This shows that model should be intermediate model containing p
(1 < p < n) parameters, and describing the data iIn sufficiently
better way. Some well known techniques used to check the
adequacy of the fitted model are ag follows.

1. usual chi-square statistic for testing goodness of fit,

2. Pearson’s chi-square statistic <x*).

3. Deviance (D).

3.5.1 : Chi-gquare gtatigtic for goodness of fit : The wusual
x;—test of goodness of fit can be used to test the goodness fit

of the model. This test uses the xF statistic given by,
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' (6. -E)*®
2 it
x = z __——-..-.:-——— » i=1,2.-.-.ﬂ » (1)

which has chl square distribution with (n-t-1) d.f.
Here

(1) t = number o;.d.f. lost in pooling;
(ii)({= observed frequency of ithuclassl
(i111) E= expected frequency of ith class.

3.5.2 : Pearson's I? gtatistic ¢t Other important measure of
goodness of fit is ’generalised Pearson x’ statistic’. yThis
statistic is obtained '‘by using the'formula,:

(y.-p )
X*=§¢ {--—l---‘:—--} . (2)
i Vil(pi)

Formulse for generalised Pearson X* statistic for distributions

in table (3.2) are summarised Iin table (3.3) given below. These
formulae can be obtained easily. .

TABLE 3.3
Distribution Pearson X- statistic
Normal T (yt-ui)z
&
T T T T TR T T T T T T T T T T e e
Gamma Ly u ) /Cu)
i
Exponential P (y‘- ;t)z/;:
i
Poisson Ly, ~u )z / b,
Grouped binary h X (yi-pi)z/(pltl—yi))
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3.5.3 : Deviance : To assess the goodness of fit of a generalised
linear model, the following statistic namaly, 'deviance’ (D,sav)
fs suggestad by Nelder & Wedderburn (1972), which s based on
likelihood ratioc statistic. Bishop & others (1975) named the
same statistic as G° statistic. The full model {is useful in
defining this test statistic.

Let Z(u,p35y) and &ly,é3y) be the maximised log 1ikelihoods
corresponding to the model under study and the full model
raespectively. Then the deviance (D) i{is given by

DCy ,u) = ¢ {-2[ L@, dsy) - ey dip)1h. (3

In ganeralised linear models deviance plays a role similar
to the role of residual sum of squares In classical Iinear
models,

To make meaning of the term deviance more o¢lear, below
formulae for deviance corresponding to the distributions in
table(3.3) are obtained by assuming that there are n observations
on Y. .

Illugtration 1 :Normal digtribution : Let observations (Yi) on
the response variate Y are independently Normally distributed
random variables with parameters (pi.aF). Then from equation

(3.2-4) we have

f,ofiy) = (-n/2)lnc2Mo®) - (1720M1F (y, -1 ). a)
i

Similarly we obtain the formula for {&(y,¢sy). Hence from
equation (3),deviance becomes

Dy, ) = B (v, -1, (5)
i

Remark : Ag already pointed in chapter 2, the goodness of fit of

classical linear model with error Components distributed as
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normal, is based on residual sum of squares. It can be seen that
the deviance (D) in equation (5) is nothing but residual sum of
squares (E), given {in equation (2.4-2).

I{lustration 2 : Gamma distribution : Suppose we have n
obsarvations (Yi) on the response variate Y having gamma
distribution with‘p.d.f. as Iin equation (3.2-11). Then equation
(3.2-13) glves

fuowsy) = D [ -y /p; - Intu )] -nln(C)4neine) + (- DIF Inly, )
i i

. (8)
Hence after getting {y,¢1y),from squation (3) we have,
Deysu) = 2 [-Inty /u.) + (y -uY/u 1} (7
i

Nelder & Wedderburn (1872) have shown that the second term {n

equation (7) is {dentically equal to =zero. Proof s wmade

available in Appendix-i. Thus equation (7) is equivalent to
DCysa) = -2 T tnty, /a). (8)

1 S
[llustration 3 : Exponential digtribution :

Suppose Yi (1=1,2,...,n) are n independent obsarvations on Y
having exponential distribution with mean u. Then the log
likelihood of Y can be written asg

tusy) = -E[ln(p.‘) + ¢y.llpi_)] . (9
i
Hence from equation (3), we obtain
DCysu) = -2{F [lnty /u ) + (y -p2/u. 1}, (102
- )

According to the theorem proved in Appendix-1, it osan be gean
that the second term in equation (10) is =zero. Hence, equation
(10) becomes
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DCysu) = -2 {& lnfyi/pi_l }. (11
. i

[llugstration 4 : Poisson dLstg!butibn t
If we assume Polsson distribution with parameter u, then from
equation (3.2-16) it can be seen that

LHu,y) = E-[-;-;.t + y Intu ) - ln(yi!)]. (12)
. i. , - .
This implies,

Dlysu) = 2{E [yilnly, /p ) + Cy -u )1} (13)
i A
As per theorem given in Appendix-l.: it can be seen that the
second term in equation (i3) is fidentically equal to zero. Thus

equation (13) {is same as

Dlysu) = 2 z yiln(yil;;.‘). (14)
1 3

[llustration 5: Binary glsbglgdtggn for grouped data @

Considering Binomial distribution with parameters (m:,p‘)

for Y:=m:Yi. where Yiis thé ith observation on Y. Then assuming
independence, we have,

2w sy) = Eomdy Ince) + -y D Inti-p O} + olm,¥), (15)

where c(mr.x) is a function free from p. Thus from equation (3),
deviance is

- » -~ "~
DCy,u) = 2§ mi[yil“(yi/ui) + (l-yi)ln(l-yi)lfl-pi)]. (16)

Devi{ances discussed Iin this section, for different distributions,

are summarised {in table 3.%,.
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Distribution ' ﬂe»ian&g
Normal A -y.j?
:, 1 3 | e
Gamma =2 L Linty 72 13 -
i
Exponential -2 pn {ln(; fp i
! i
Poizson z z {Eyiln(y /p 1 '
Grouped binary 22 {[y lﬁ(y /p ’1+(1 y )ln[(l Y )/(1-gt)‘}

3.5.4 ; van‘ageg “_é the devisance Q g&g&lg&ig-:
() & a!ﬂ‘tﬂ&lc i apprbpriaae .for maximum Likelihood .

)
eétzmazes. RN .
Explanation : From- equation (1), 1t is- clhar:that since t(;,¢,i)
is maximised log likerihood function };r intermediate model, aqd
gince D 13 non negatﬁve, maximum likelihood estimates give the

minimum value of D. Thus D {s appropriite for maximum Ilikelihood

afs -
S - e

-

aestimates.
(11) Conditional break down of D is possible.

Explanation : When thére are two modelg,_ model (1) and model
(2),they are said to be nested if one of them (say e.g. model
(2y) ocontaing only awsubset ét terms gontained fn other model
(1.,e. model (1)). For nested models conditional break down of D
is possible. In simplest conditional break down of D statistic
D(2) corresponding to model (2) c¢an be broken dowﬁ into two
partsg . .

s (1) a measure of distance of the estimates of ﬁarématers in

tﬁe model (2) from those obtafned under model (1);

({11 a D statistic D(1) for model (1).
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For this,rewr{te equation (1) as,

)

[} olip ]

Dey ¢ 1-2C0 tcé,.mx) - m}‘.mpl +[ “é‘,mz) - y.esy) 1IN

D [¢2yjc12] + D (1, (17

‘where 8%;.¢=1) denotes the maximised log likelihood under model

(1) and D[ (2){(11] is the conditional D statistic for model (2)
given model (1). 1If model (1) is a full model then D[ (2)|¢12].
is equal to D(2). Such type of conditional break down does not
" exist for x° statistic given in eguation (16).

(1i{) Structural breakdown of D is possible.

The structural break down which is possible with D, 1is not
possible with »° statistic in equation (18).

To use the deviance(D) as a test étatlstio for testing
goodness of fit of the fitted model, the distribution of ’'D’ must
be known. In classical linear models, ag normal distribution is
assumed for error components, exact distribution of the deviance
can be computed easily. But when we depart from normal
distribution and from linearity of*different effects, generally
exact distribution of the deviance is not obtainable. In some
gsituations like exponential distriution, exact sampling
distribution can be achieved. When exact distribution can not be
obtained, a chi-square distribution is a better approximation for
the difference In deviances.

Sampling distribution of the difference between deviances
can be obtained by using that for maximum likelihood estimates of
the model parameters f. Ue.have already shown that, for large
samples,

(@ - {)'I(E - @ has a° distribution with (k+1) d.f.

Now, on expanding log likelihood function £(B3;y) about the
maximum likelihood estimates é of 3, we get,
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L3y = HPIy) + (B - PVUE + (1/2B - PUH@IE - B, (18)
where gﬁé) and H(é) are values of U and H evaluated at é.
Since é are maximum likelihood e:timaées of 3, these are the
solutions of the equations U(B) = Q. Hence,
U@ =.0. (19)

Using equation (18) and approximating H(é) by E(H), equation (18)

becomes

2[ 2@ry) - &@iw] = B - P IE - .

Therefore, from the distribution of é, {t {s clear that for large
n, the distribution of 2[&@;y) - L(Biy)] has 2" distribution
with (k1) d.f. Thus the distribution of deviance |is x?

distribution with (k+1) d.ft.

Though this chi-square approximation is not adequate in all
the cases, a better approximation is yet to be suggested. The

table of deviance differences has {ts importance to select the
terms showing significant effect on wvalue of the response
variate.
3.6 ¢t Analysis of deviance _

For orthogonal data with normal errofs. analysis of varilance
CANOVA) is a very useful statistical tool for separating the
effects due to systematic components from' those " due to random

components. Nelder & Wedderburn (1972) suggested a
generalisation needed, so that it 1s applicable for analysing
generalised linear models. While making generalisation, two

problems should be considered. First is, terms in the model are

*
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generally non orthogonal and the other {i{s, for non normal
distributions, different sums of squares (SS) are not measuring
properly the effects due to different components.

Before going to the generalisation, we look towards the
usual ANOVA table from different angle. ANOVA can be . considered
as the first difference of the measures of descripancy for a
gequence of models each including one term more‘than the previous
model; e.g. in factorial model with .two factors A and B (say),
we have ANOVA with three terms namely main effdcts A and B, and
the interaction effect A.B. SS for these tactors are the first
differences of the SSEs corresponding to’ the sequence of four
models 1, A, A+B and A+B+A.B respectively.Note that measure of
descripancy for model 1 is just TSS, and that for full model
A+B+A.B is 0. It is also clear that for the full model d.f.are.
equal to O. ' oda '

Now the generalisation {is very much clear. Nelder &
Wedderburn (1872) have used D statistic ‘'as a measure of
descripancy for a given sequence of nested ‘generalised linear
models, and taking the first differences formed the analysis of
deviance (ANCDEV) table. Since in generalised linear  model,
mostly the data 1is non orthogonal, the interpretation is a bit
compl icated. Each number {In the ANOD?V: table represents
variation due to that after eliminating ofﬁeots of the terms
above it-and ignoring effects of the terms below 1it. )

In model fitting problem interpretation of the fitted model -
{g also a very important part. In the next section this part 13;

-

introduced in brief.

3.7 &t Interpretation of the fitted model 13
Interpretation of the fitted model is also a part and parcel

of the model fitting procedure. In other words a model should he:

L . At

i
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such that the practical conclusions can be drawn from estimated
parameters of the model. Thus the question i{s ’what do the
estimated coefficients of the model tells us about research

qestion that motivatad the study ?° Many times coefficients
associated with the explanatory variataes are of interest. Very
rarely intercept ﬁo is of interest. Egstimated coefficients of

the stimulus variates represents rate of change in the value of a
function oé the response variate,co}reéponding'to per unit change
in the value of stimulus variate. Thus interpretation of data
involves two parts.

(1) Determining functional relationship between the response

variate and the stimulus variates X = <x‘,x2,...,xk:'.

(2) Defining appropriately, uni{t of change for the

independent variables.

As we have seen éarller, the functional relationship between
Y and X is known as link functlon. Along with the Iikelihood
function, this function is also required for fitting generallised
linear model to the data, .

Another important segment of the model building i3 model
checking. When some proposed model is fitted to the data, it is
necessary to check whether the fitted model is appropriate. This
checking is needed, because some times model fits well to the
data, though the assumptions made while fitting are invalid. In
the next section, discugsion 1is made on model checking for
generaligsed |linear models. Modael checking 1includes checxing
goodnesg of fit of the fitted model and chacking for vallidity of
the assumptions made while formulating the model.

3.8 t Model checking for generalised linear models 3
The main problem in data analysis through fitting a model is

to select a proper class of the models, so that conclugions drawn
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from the analygsis are not far away from the truth. A
statistician can choose the model class carefully by taking into
account the type and structure of the data. Many times it may
happen that, though the class is selected carefully, the data
themselves indicate that the model -selected {s unappropriate.
This situation occurs bacause of two reasons. First, ,the
complete data indicates departure from the fitted model, and
secondly, ;here may be few data points away from the rest which
are known as outliers. Below we club the vari&us methods of
mode! checking into three groups, namely,

(1) visual diaplay;

(I1) tests of deviations In particuiar direction;

(111) searching for influential pointg (outllers).
The methods in the group (1) are similar to ‘the methods of
drawing residual plots as described in gection (2.5). First we
discuss these methods.

Ag in clagssical linear models, here algso the raw- material
for model checking Is, fitted values of the linear predictor T,
new adjusted dependent variable Z and the projection matrix H.
The residuals can also be used as a raw materfial for model
checking. The various types of residuals in generaliged Ilinear
model are discussed below.
3.8.1 : dua t As stated In section (2.5), the residual
analysis is essential to test adequacy of the fitted model.
Residuals are ugseful to examine thoroughly the appropriateness of
the fitted model. These are also useful to oheck whether the
outliers are present. Hence in the next Pavxt wa study the
residuals related to generalised linear models.

In cagse of generalised linear models, the generalisation of
residuals is to be done so that it {s useful for mnon Normal
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distributions also. Below we discuss three different residuals,
suitable for genersalised linear models.

Pefinition-4 : Peargon residual :- It is defined as the signed
square-~root of the component of the Pearson’s chi square

statistic of goodness of fit. Thus it is given by, :

r, = Cy-p)/7tVin) 173, _ (1)

'An important disadvantage of Pearson residual is that 1ts
distribution for non-Normal distribution {8 skewed. So the
properties of Normal distri{bution turns out to be invalid. Hence
this residual is not much useful. The residual which 1is more
appropriate {s Anscombe residual. This regsidual was Introduced
by Anscaombe (1853).

Definition-5 :Anscombe resjidual:- Anscombe defined the residual
by replacing y in Pearson resfdual by the function A(y) and ; by
A(;). This function A(.) is selected such that the distribution

of A(y) {8 very close to the Normal distribution. Wedderburn
proved that, for generalised linear model, the function A(.) {is
given by,
du
A(,) = J=-=crecemcmcmea v (2
[V(p)]“/”

This replacement normalises the probability function, but to
stabllize the variance it is neceggary to scale {t by estimated
standard deviation of A(Y). .Since it 1is not easy ¢to compute
exact variance of A(Y), we take 1itg first order approximated

value,

LA’ 0] v}t (3

Thus Anscombe residual becomes,
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CACY) - ACa))
b o= om0 i YY)

Below we obtain expression for *Anscombe residual’
corregponding to Poisson distribut&onh
Illustration 1. Poisson dis;r;butidg s,

Let the gingle observation Y bd'havlng.Pbisson distributfion
with mean u. From table (3.2) we have,

V) = u,
which gives,
du
At = I==00285"
= (3727, (5)
and
A'(p){V(p)}“’z, = yIA/d). 8)

Using equations (5) and (6) in (4), the Anscombe residual for
Poigson distribution becomes,

v, = (3/2) Cy-) 74n* 2797 7
Simi{larly, we can easily obtain'rormulae for Anscombe residual
corresponding to normal, gamma and exponential distributions. To
obtain an expression for Anscombe residual correhpondlnb to
binomial responses is complicated. Cox & Snell (1968) obtained

this exprésslon.

When deviance {s used as a measure of goodness of fit, then
it {8 better to use deviance residual.
Definition-6 : Deviance residual :~ It is defined as the product
of posfitive square root of a quantity (d;) contributed by @each
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unit for deviance and sign of the difference between y and pu.
Therefore deviance residual (rn) is given by,

. '
T2
r, = sign(yi- pil[di] . (8

The three residuals for some well known distributions from
one parameter natural exponential family are tabulated below in
table (3.5)., These formulae are quite clear frbm expressions for
H, th' equations (15 to (4) and equation (8).

TABLE 3.5

Distribution Pearson Ahscombe Deviance
Resi{dual (rp) Residual (rA) Resgidual (rb’

Normal (y.- p) (y. - p.) {Signty - u 0}
i i i i -
by, - ul
3yl ;a/s) {Signly - p. )},
9 ) N S LR, -
Gamma (y,~ » ) n ;1,, {-2[;“<yi/ 11

+ (yi/ pi)-l}

121

1,8, {Sign(yi- "t)}'

(.- nosa |30 H
Exponential ' v 1Tttt ;I;; ----- {-20inCy 7 p)]
i ~ .
- Gy /s e+t ®
- - z/2 “2/3 {SignCy, - p. )},
_ 1,230y, - p ) i i
Poisson M "“3=I}2‘£ ----- (2[ y.lnly, 78,1}
2" Y At
12
-y, +taul

Though the formulae for Anscomba residual and deviance
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residual are looking different for non-Normal distributions, 'for
given VQIUFS of ¥y and u, these two residuals are having very
similar values. By using any of these residuals one c¢an carry
out the residual analysis. These residuals are in terms of u.
The replacement of u by ; requires a standardisation factor. The
standardisation of Pearson’'s residual is discussed by McCullagh &
Nelder (1983) and that of deviance residual by Cox & Snell
L1a8ly, If absolute value of the residual for some data point is
greater than *2’, the corresponding data point should be checked
for outlier’s test. We will not discuss here the methods for
group (II1) due to their vastness. Now we discuss the methods in
group (11) briefly.

(11) Tests of deviatigns in particular directions

After fitting the generalised Iinear model, the most
important question comes in the mind is that ocan the value of
deviance function decrease sgignificantly by

(a) including an extra stimulus variate,

(b) changing scale of the stimulus variates,

(¢) changing link function in a particular direction,

(d) changing the variance function,
with the help of available {information about the stimulus
variates, link function and variance function.

(a) Selection of covariategs : Generally the experiment
containg information on large number of stimulus variates, but a
model should contain less number of parameters and should fit
sufficiently well to the data. So it {s necegssary to select a
get of useful covariates. Then sequence of nested generalised
linear models {s fitted and using the deviance function ({t s
declided, which covariate shows significant effect on the response
variate. Covariates showing significant effect will be included
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in the model.
(h) éhecklng scale of gtimulug variate t Method of checklng
scale of the stimulus variate has following steps.
(1) Suppose X and 3 denotes respectively the covariate whose
scale igs to be checked and coefficient of the covariate.
(1I) Replace X by '

g*(G:X) - xﬁ; for & = 0, ' (9)
in(X); otherwise. -

P

(I11) Fix € > O, a small p&sitive'numbef,-io obtain'ebéi@ate

of & with desired acgcuracy. : Ty

107, of & as

L)

(IV) To start calculations take initfal value (@
unity. : '

(V) As Taylor serigs expansion for g*(e,X), with first order
approximation gives

({e}]

g“ @, = g"w, ) + (0-0 1L ag” 1001 4 g ,

replace ﬂg*(e,X) by two linear terms f2U + »V;

where,
(0 *_ _(O)
u = g (@ 3X),
R
(o) ag 6;3X)
V"' = ommeememee—- ’
a0 9=9“"
and
r(o) - ﬂ(a_acm)'

(V1) Fit generalised linear model with U and V as covariates.
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{VIil) Compute G“n an improved estimate of 6 by

e(t) = a(O) + r!O) /7 ﬂ(O)'

(VIII) Repeat steps similar to the steps (V) to (VII) until

a(b__ eu.-n < e,

(I1X) Final estimate of @ is &%, )
Remarks : (1) If the Iinitial estimate 8 is far away from the
true value of 8, convergence of the p}ocess is not sure.

(2) Though this process {isg Pery ugeful, it 1ig not a
good technique to include more non Iinear parameters iIn the
model, when other covariates are highly correlated. This 1Is so
because, generally estimates of the non linear parameters have
large sampling error and are highly correlated with each other
and with corresponding linear parameters. :

(c) Checking Link Functions ¢ While fitting generalised
linear modél, link functions are adsumed to be known. Ingtead of
this, it 1s useful to assume that, link functions come from a
class of link functions and particular value of one or more
parameters describes elements of that class. Most of the times a

class of one parameter link functions is either taken as

e
T=4 M3 1f0=0 (10>
Qn(p); otherwise;
or
(2]
T = {[Lu -1] r6}.

Pregibon (1880) proposed linearising technique to get

optimum estimate of 6. The procedure described by him has
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following steps.

(I) Suppose T = m*(a,p) is the link function, as defined 1In
equation (10).

(Il1) Fix & > 0, a small number, to estimate & with desired
accuracy.

(IIl) To start calculations take inftial value (9“”) of &

as unity.

(1V) As Taylor serfes expansion for m*<9,e), with flrsﬁ

order approximation gives . a
¥ LIPS {. 1 o) ]
m(O,u) = m (& ,u) + (6-86 I[Im /091929«» v
* ) o e'?’.
m o,u) = T + 6-6") p Intu). (i
E
Equation (11) can be rewritten as, . t
(o),
: T = n*(o,) - 6-6") °  inqu),

which 1s equivalent to,

o _ (o)

I = ? xi,ﬂi I SR S (12)

where,
(o) : % ’ _
x'ul:-ﬂ.) =8, ln(pt’ * (13?

(V) Fit generalised linear model with linear predictor ro»

as given Iin equation (12).
(V1) Also fit generalised linear model with linear predictor

L=EX,p,

(VII) If difference between deviances of. the two fitted
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models at gteps (V) and (V1) is significant,
conclusion is 8 is appropriate valus of O,
(VII1) Take different values of 8 Iin place of
repeat the steps (IV) to (VII). The value of & for

which deviance is minimum, is the maximum I[ikelihood

o' and

estimate of 6.

(d) Checking Variance Function : Nelder & Pregibon (1887)
suggested a method of comparing variance functions for continuous
data by using the idea of 'extended quasi 1ikelihood function’.
For the distributions discussed {n the table (3.2), {t can be
shown that the log likelihood (&) is close.to, an extended quasi
likelihood discussed in chapter 5. This faét can be used for
checking variance function.

3.9 Method '‘of obtaining robust estimates @

As discussed in section (2.3), leagt absolute deviations
approach to estimate the parameters was Introguoed by Bascovich
in the year 1757, about 40 years back t& the iIntroduction of
least square approach due to Gauss In 1787, Hence 1t 1is
naturally quite 1intersesting to see whether least absolute
daviations approach c¢an be used In generaliéed linear models,
instead of usual weighted least square apqroaph, to egtimate the
model! parameters. Morgenthaler(1882) has a&plained haw least
absolute deviations principle can be ‘used’ to find robust
estimates of the model parameters in case of generalised |inear
models.

During the lagst decade or more, several statisticians worked
on robust estimation of the model parameters for generalised
linear models. Some of them are Pregibon(leZ), Stephanski &
others(1986), and Kunsch & others(1988). All the above
statistioclans cocentrated particularly on logistic model (hodel
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is discussed in chapter 4). Morgenthaler(1992) described robust
estimation in case of generalised linear models. Below the
method of obtaining robust estimates is given explicitly.

Method of obtaining robust estimates @

Since least absolute deviations resists the ¢gross error
gignificantiy, it s of {nterest to study haw least absoclute
deviations principle can be used to obtain robust,K estimgtes.

Suppose Yi<i=1.2.....n) are n independent responses with

E(Y;) = M, }
VarcY ) = V . (u ).

(1)

Then robust estimates for fitting Lq~ norm (q = 1) can be
obtained by minimising the gquantity,

Therfore, ith component of the gradient corresponding to the
quantity K(u,Y) is

-(qr2) tq-1)

q [v, )] Y, -« | sgniY -u ), (22
i=1,2,-.-,n.

For q = 2, the gquantity Iin (1) s equivalent to the ith

component of quasi likelihood. (quas! likelihood is introduced 1in
chapter 5), Morgenthaler(1982) mentioned that for any other
value of q, gradient in (2) non consistent estimates of # when
the responses are not symmetrically distributed around their
means. To obtain symmetrically distributed responses, the
distributional form of the response variate must be known.

Since in generalised linear models, distributional form of
the response variate is known, correction factors for gradient
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given in (2), to obtain consistent estimates of g are naturally,

- - tq-4) -
C. = E{lYi pil sgn(Yi yi)} ’ (3)
i=1.2’|..'n.
Hence the i"h (i=1,2,...,n) component of the corrected gradient
is,
-{qr/2) - {q~41? - -
q [V, ] Y, -u | sgncY -u. ) - C1.

Thus estimating equations to obtain estimates of 3, corrected for

consistency are,

-lq/:)'

- tgq~41) - - -
ql v_, (m 1] Y. -u. | [sgncY -p ) - C](du 7dT X, = 0O,

i i
i=1,2,--~,ﬂ- (4}

Hence this method can be wused as an alternative method to
estimate the model parameters 3 in case of generalised linear
models.

In all the above discussion of generalised linear models, {t
is assumed, for known distributional form of the responses Yi
(i=1,2,...,n), variance of Yi is a specific function V(u.) of the
mean n. of Yi. Mathematically, the variance of Y, (i=1,2,,..,M)
is given by,

Var(Yi) = @ V(Mt). (51

To clearify me;nlng of the above statement, an {llustration
s given below.
Itjustration 1. Normal distribution @

Suppose Y‘(i=1,2.....n) are n independent responses having
N(pi,oz) distribution. From the table (3.2) we recall that, for
N(pt,az) distribution,

¢ = o and V(yi) = 1,
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V.
Thus in this case, the variance of Yl_(i=1,z,....nl is a specific
function of;ﬁ upto a muliplicative constant o,

On the other hand, 1f we asgume that responses ‘1’,t
(i=1,2,...40n) are independentiy distributed N(pi,o:) variables,
then
¢, = o, and V) =1,

1 3

Therefore, in this case Var(?i) is not a specific function of the
mean u, ti=},2,...,n¥, This is a case where the factor, related
to the disgpersion parameter {8 varying iIngtead of being a
constant., In such situations 1{¢ ¢l is unknoawn, 'general ised
linear model’ can not be fitted in {ts original form given by
Nelder & Wedderburn (1872). The models which are useful here are
'generalised linear models with varying dispersion.
3.10 Generalised linear models with varying dispersion

Smyth (1888) introduced-the ’'generalised linear model with
varying dispersion’. Thus he generalised ’generaligsed linear
models’, by including a '"dispersiomn model’ along with the usual
'mean model’. The term ’'mean model’ which occurs first time, 13
nothing but the usual ‘’'generalised Ilinear model’ given {n
definition (3). Before Smyth (1888), Nelder & Pregibon (1887)

introduced new c¢lass of models, namely, 'extended quasi
likelihood models’. The model introduced by Smyth (1988) is very
much similar to the extended quasi likelihood model. Below we

discuss ’generalised linear model with varying dispersion’.
Generalised linear modei with varying dispersion’ oan be

defined Iin the following two parts.

Definition-7 : Mean mo H

Let Y be a response variate with p.d.f. (or p.m.f.) f(.;e‘)
which belongs to the one parameter natural exponential family.
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Suppose Yi(i=1.2.....n) are n independent observations on the
response variate Y such that E(Yi) = M, and Var(Yi) = ¢%Vu(p‘).
Let Xv Kyvoves K be the vectors of known values of the
covariates xj (j=1,2,...,k). Suppose

T‘. = ﬁo d ?xiiﬁj. fOl‘ i=1.2.---.ﬂ. (1)
where
g8 = (ﬁo.ﬁ‘,....ﬂki' is the vector unknown model parameters
and
T = (Ta'Tz""'Tn)' is the linear predictor.

Then a class of models of the form,
T = m(ECY)D)s (2)

where m(.) {is a strictly monotoic differentiable funotiong
1g called as the mean model.

For the 'dispersion model’, deviance residuals (di) are
generally taken as unobservable responses. Then dispersion model
can be defined as below.

Definition-8 : Dispersion model

Congider the unobservable responses di (i=1,2,...,n) with
ECd) = ¢ and Vartd. ) = 6V_(¢ ). Let ;; (§=1,2,...,k") be the
vectors of known values of the covariates Z; (j=1,2.....k*).

Suppose
L ]
ti. = ro + ? zi.iyj. fO!‘ i=1.2.---.ﬂ. . (3)
where .
¢ = (ro,r‘,....rk')' is the vector unknown model parameters
and
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{ = ((‘,(2,....(n)' is the linear predictor for dispersion

model.

Then a class of modelsgs of the form,
[ = KE(d)): (4)

where h(.) 1is a strictly monotoic differentiable functionj;
is called as the disparsion model.
Definition-9 (Smyth 1989) : Generalised linear modgl with varying

dispersion :
The ’generalised linear model with varying dispersion’ can

be defined in conjunction with the above definitions of wmean
model and dispersion model ags the class of models of the form

n(u)=X3, h(g=Zy, Var(Yi_)=¢iVu(yi) and Var(dt)=9tvn(¢i). (5)

for {=1,2,...4M0

The following theorem helps in developing the procedure of
fitting generalised linear model with varying dispersion.
Theorem 3.% 1 Mean and dispersion I{n the generalised l{near model
with varying dispersion are orthogonal.
Proof t Suppose Y‘ (i=1,2,...,40) are n independent observations
on the response variate. Suppose the dispersion parameters ¢i
(i=1,2,...,n) are not constant for all responses. Then log
likelthood of the complete data set is given by,

1 8

1
e.p3y) = ;5 { ~a~" [v,8 -8 1ehty 2] + Lig ay,) } (6)
Differentiating equation (6) w.r.t. eiamd ¢i‘ (i=1,2,...yn) we
have,

8°2/(80 8¢ ) = ~(y -’ (@ 1)/ (7). - <7
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Taking expectation on both the sides of equation (7)) and wusing
the fact that g'(ei) = (for i=1,2,...,n) we gat,

. E(9°¢/(80.9¢ 1) = 0. {:3
The equations (8B) above imply that mean and dispersion parameters
are orthogonal. ) '

In generalised linear models with varying dispersion since
the mean and dispersion parameters are orthogonal, It is possible
to estimate the parameters 3 and ¥y one at a time. We discuss
below the procedure of fitting generalised 1linear model with
varying dispersion.

3.11 Fitting of generalised linear model with varying dispersiont

Suppose 7 and ¢ (r=0.,1,...) denote the '
approximation to the estimate of p and ¢ respectively. Due to

the {interlinking of the two models, fitting procedure is
alternating as described below.

While fitting the mean model keep ¢ fixed at @. Similarly,
fit dispersion model by fixing u at é. This method has the
following steps. *

(1) Decide the ’'independent® variates Z: (j=1.é.....k‘) for

the 'dispersion’ model.

(2) Choose two small posit!ve‘numbers s, and €, according to
the desired accuracy for 3 and y.

(3) To start the calculations take initial estimates of ¢
and p as &‘o’ = En1 and é‘o’ = y.

(4) Fit the mean model as usual by using algorithm discussed
in sub section (3.4.3) for fixed & (the current estimate
of ¢.

(5) Compute the deviance residuals di (i=1,2,¢..yn) from the
fitted mean model.

(6) Fit the dispersion model for di (i=1,2,...,M) by
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assuming gamma distribution. While fitting the

. Y .
dispersion model, fix the vector of parameters u at u
(the current estimate of u for the mean model).

(7) Repeat the steps (4) to (6) untll,

| ;?;”’- n‘i“"‘"| < &, tor all 3=0,1,....k (9)

and

{m ) {m ~4)

I ri F S ?i 1 | < &2, for a‘! 5=0|1'v--’k‘- (10)

Then final estimates of 2 and y are
g =0 and ¢ = ‘", ' (1)

By wusing the above mentioned procedﬁfe one can 1t the
generalised linear model with varying'diépersldn. '

in many fields like gocio-economic field, frequently the
data are of discrete type. Hence i{n the mnext chapter we discuss

the fitting of generalised linear. model for various types of
discrete data. ' ' '
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