4 GENERALISED LINEAR MODEL FOR DISCRETE DATA

4.1: Intr odyctlon

In chapter 3, a wider class of models, namely, generalised
linear models is discussed. These models are useful for some non
normal distributions. As mentioned at the end of chapter 3, in
many practical situations we come across the discrete data.

If the respongse variate takes one of the fixed set of
possible values, it is called as discrete response variate and
the corresponding data as discrete data. Sprose there are ’p’
possible values of the response variate. These possible values
of the discrete response variate are frequently called as
response categories. Some of the examples of discrete responses
are number of births in a certain period, number of girls
marrried before maturity age in the =pecific geographical area
etc.

In many practical gituations we come aécross the
observations which takes one of the two possible forms. Such
observations are known as ’'quantal’ or ‘'binary' observations.
Thus in case of binary responses we have two response categories.
Some examples of binary responses are dead-alive, married -
unmarried, defective-non defective, male-female etc. Genearally,
the two possible forms of binary responses are termed as
'success’ and "faflure’,

Same techniques are developed for analysing binary data,
These techniques are d(scuésed mainly by Finney (1847), Cox
(1870), Nelder & Wedderburn (1972), Prentice (1976), McCullagh &
Nelder (1989), Hosmer & Lemeshow (1888), Dobson (1980) and
Collett (1991).

Most frequently we come across the counted data not in the

form of proportions but in the form of table of counts. lﬁ such
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cages the data are sorted according to one or more factors each
having atleast two lqvels. Some techniques are daveloped to
analyse such type of data. Birch (1963), Bishop (1867), Bishop &
others (1975), Good (1956,1963), Gokhale & Kullback (1978) and
many others discussed these techniques.

In this chapter, we discuss the theory associated with
analysis of binary data through maodel ftitting and that
related with the data in the form of table of counts.

Here the discussion proceeds in the following direction.

(1) Types of'biﬁary data; '

(2) binary distribution and log:llkellhood funations;

(3) link functions;

(4) fitting of generalised linear models and analysis! of

deviance;

(5) mpdel checking;

(6) other appropriate models for binary data;
(7) log linear model (Bishop (1969));

and

(8) log linear model (Nelder & Wedderburn (1972)).
4.2 ¢t Types of binary data

Suppose X = (L.x‘> is the incidense matrix and
xa=(&1’xz”"'¥u" Let for a particular i?nbination
<X“,xiz,...,&*). observations are avallable on m, items.

Depending on the values of m:, there are two types of binary
data. These are
(a) ungrouped bina;y data;
and .
(b)) grouped binary data.
(@) Ungrouped binary data t It m:=1, for all $¢1=1,2,...,k),
then the binary data {s known as ’ungrouped’ binary data.
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Ex;h?ée 4.1 This examgle is taken from Collett (1991) (Given ' n
e

pag ). Here the response variate LY) is taken ags a varlate
directly raelated to erythrocyte sedlmentatlon rate (ESR). Thls
rate {s nothing but the rate at which the red blood oalls settle
out of suspension in blood placma.?when measured under standard
conditions. The ESR increases if the levels of certain protd!ns
in the blood plasma lncreases. In Malaysia, an experiment €uas
caré!ed out to examine the extent to which the ESR is relnted' to
two plasma proteins, fibrinogen and y-globulin. Since the ESR
for healthy person should be less than 20 mm/h and since 1t |is
non negative, the ESR i3 observed to see whether it is less than
20, Therefore the binary response variate Y takes value "1’ |f
ESR exceeds 20 and "0’ otherwise. The exﬁeriment was carried out
on 32 individuals. The data are given Iin Collett (1881). In
this example, since the observations are available on each 1tem,
the data is ungroupéd binary dé&jﬁ

Cb) Grouped binary data : 1f m?: gl. for atleast one wvalue of
f(i=1,2,...,k), the data is known ‘as ’grouped’ binary data.
Example 4.2 1@

The data is collected from KolLhapur city in the year 1982, to
~tudy the ooccupational and edu?atlonai relationship bhetusen
parents and their childréen having 'age more than 27. Proper
o2{ubhing of collected data gives table 4.1.
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TABLE 4.1

Occupational status of children . }

Occupatio-
nal status Sons Doughters
of fathers

' Ser. Busi Total Ser. Busi. Total
Service 316 284 600 118 6 125
Business 102 552 654 210 108 318

Foot note ¢ Ser :- service , Bugsi :- Business.
Remark : The category of house wife is ignoraed, because 1{t will
result in structural zero.

Here the response variate is occupation of children and the
two covariats are occupation of father <x‘a and sex of children
<xz>. We denote the occupation 'service’ by value "0’ and
'business’ by value '1’'. Similarly for Xz. we define the value
"0’ to "daughters’ and '1° to ’sasons’.

Here since more thkn onea observations occurs corresponding
to every combination of values of the stimulus variates <x1,xz),
the values Yi=Y:/m: (i=1,2,3,4) constitutes grouped binary data.

Most of the times grouped binary data are avallable as they
are condensed formg of ungrouped binary data. The examples (4.1)
and (4,.2) are sufficient ¢to distinguish between grouped and
ungrouped binary- data. Now one can proceed towards the
distribution of these types of data.

4.3 1 Distribution and log-likelihood function

The distribution and log-likelihood function for grouped
binary data is discussed in section (3.3). Here we discuss
distribution and log-likeiihood function for ungrouped binary
data.
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Digtribution and log-likelihood function for wungrouped binary

r
data : Suppose the response variate Y has “binary distribution

with mean u. Then p.m.f. of Y is given by,

tays) = @ -tV 1 o, (1)
4
whers

(i) A1 = {O,l}
and

({1 lA (y) is the indicater function.
1 . i

Therefore, log-likelihood function baseq-'oﬁ gsingle. observation

becomes . .
Lp,y) = yln(w) + (1=y)InCi=-p)

= yin[p/ct-)] 4 Inci-p), (21

Comparison of this equation with the équat&on (3.3-3) gives,

@ =alg) =1, 6 = Infu/C1-2)1, g(O) = Lln(l+axp(B)), } {

(3}
0, T($;y?

For fitting generalised linear model! to the binary data, (it
is necessary to obtain link functions. ‘
4.4 ¢t Link function

To obtain the relatfonship between the parameter u and the
vector of stimulus variates X = <x‘,xz,...,xk)', it 1s convenient
though not necessary, to construct a model, which {is able to
describe the effect of different combinaé!ons of values of
covariétes on u. While congtructing a model, certain asgumptions
are made. Validity of these assumptions should be checked.
Further, the model constructed should be consistent in {ts

h(y)

0.

behaviour. .
In section (2.7), we have seen, though oc¢lagsical Ilinear
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model s widely used model, It is not suitable for binary data.
Thus the identity link T=u, 1s not appropriate for binary data,-
The number of suitable Iink functions for binary data are

availabtle. Four of them which are mostly used in practice arg as
follows,

(i) Logit or linear logistic function,

I
T = ln{ it } . (1)

(ii) Complementory log~log function,

T = Lnf ~tn¢i-)]., ' (21

(ii{1) Probit or {nverse normal function,

T = ¢ *qo. (3
(iv) Log-log function,

T =-ln[ ~-ln(u?]. (4)

For u < 0.5, the behaviour of log-log function 1is not
appropriate and hence the log-log f%ction is not much useful when
n < 0.5,

Correaponding to each link function given in aquaiions 1
to (4), we can fit generalised |linear model to the binary data.

Note :~ While fitting a generalised linear model to the
grouped binary data, }t is aésumad that the observations Y:
(1=1,2,...,n) are independent. It happens only when Yi,‘ are
independent with constant probability of success for all items in
the same group. In most of the practical gsituations,
observations between the groups are independent or atleast
uncorrelated, but observations within the group are likely to be
correlated. The situations with positive and negative
correlation are named as ‘over’ and 'under’ dgqursion
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respectively. Thus {f

then in over digpersion case ¢' is greater than wunity and in
under dispersion case it is less than unity. Here, since ¢' is
an unknown parameter, it is to be estimated from the available
data. These two gsituations can be handled with' the help of
'quasi likelihood functions’, and will be discussed thoroughly
later ip chapter §. For a time'belng it is assumed that ¢’ is
unity.

Berora‘fltting any model, }t is necessary to describe the
modél explfcitly. In the next section, we discuss definition and
fltting of different generalised linear models to the ¢two types
of binary“data.

4.5 & Fitting of generalised linear model to the binary data

Let Y be the response variate and xj(j=1,2,...,k) be the
stimulus var{ates. First we consider fitting of four different
models, corresponding to the four link functions, for grouped
binary data. Fitting of each of these four models is followed by
a note about fitting the same model for ungrouped binary data. A
generalised linear model to the binary data with the four types
of link functions given iIin equations (4.4-1) to (4.4-4) are
respectively known as, 'linear logistic model’, ’couplementory
log-log model’, ’'problit model’ and "log-log model’,.

4.5.1 : Fitting of linear logistic model! for grouped binary data

Logistic regression model was first suggested by Berkson
(1944). He pointed out that, the model can be fitted wusing

*iterative weighted least square’ method as a numerical

technique.
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Definition-1 : Logistic model for grouped binary data :
Suppose the response variate Y {s such that Y' = m‘Y has B(m‘,pi
distribution. Suppose Yi<i=1.2.....n) are n realisations of the
response variate Y. Let ;'ba the vectors of the known valuses of
the covariates Xi (j=1,2,...,k? and T = X3 be the Iinear
predictor.Then the model of the form,

Ti ln[pi/(1~piJ]. for i=1,2,...,0, (1{
with E(Yi) =y, is called linear logistic model.
Fitting a logistic model : Fitting of any generalised linear
model to the data consists of the following steps. f’ .
(1) Finding expressions for the vector 2z of adjh;téd
dependent variable, and for ‘W; H
(11) applying the method of ‘fitting generalised Ilinear
model discuesed in gub section (3.4.3).
Logistic model is one of the proper models for binary data,
having a vast gcope. From‘ equation (1) we have,

“. - ——-————"""'——- [} ’,--1,2...-'“- (2)
¢ (1+exp(T ))

Now, the respective values of Ziand Wii can be obtained as
below. Differentiation of equation (2) w.r.t. M, gives,

) -1
(dT,‘/dpi) = [.ui_(l-ui_)] . (3)
Also note that,
E(Y ) =p ,-
t * } (4)
Var(Y‘) = [pi(l—ui)/ni]

Equation (3.4-19) gives ﬁh component of the vector Z as
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(Y -p )
Z-f Ti_" T LTS I (5)
“;(1_“i)

Cimilarly, from equations (3.4-18),(3) and (4),we have

V.. o= oa (1-p). (6)

Lt

After obtaining expresslons_for Zi and uii, to fit a linear

loglstic model., method described Iin sub gection (3.4.3) can be
applied eagily. As mentioned there, - one can gtart the
calculations by taking initial estimates ;:” of K, as y.
Remark 3 If any of the samples has either all failures or all
successes, the value Y, reaches tolits extreme wvalue, =zero or
one respectively. In such a case add or subtract a ‘number' 0.5
from the corresponding value of Y‘ accordingly, s0o that none of
;ia’ is either zero or one.

Gore & Shanubhogue (1884) have discussed the applicationg of
linear logistic regression models iIn the field of ecology.
Strauss (1892) focused on many faces of logistiec regression and
showed how it can be used ¢to analyse the data in different
fields.

sometimes instead of using iinear logistic model, 1t |is
preferable to use the generalised logistic model. Johansson
(1873) has used generaliged logistic model to study the effect of
advertising.

For gingle observation on the response variate, and with the
single explanatory variate ¥, the linear logistic function given
in equation (2) becomes,

T
ln{ --------- } = B+ B,X . 7)
{-p



Note that the linear logistic function 1is symmetric about
0.5. The value about which the function is symmetric, {g ¥known
ag point of inflection.

When a saturated level K. different from 1 is required, the
modified linear logistic function can be written as,

To introduce non symmetry in the model, one can add sgecond
order term In X on the right hand side (RHS) of the equation
(8). Thus equation (8) becomes, )

7]
zn{-~-; ————— } =p,+AX+AX. (9)

When the explanatory variable X takes only positive values,
the non-symmetry can be aliowed in the model by reformulating the

model as,

)
Ln{---; ----- } = In(@ )% A, IncX). $1:))

Applying least square method of estimation to equation (10),
it can easily be seen that, intercept ln(ﬂo) of the model 1is
zero. To have a model with with non-zero ({intercept, Johansson
(1973) suggested the following form of generalised logistic

function.

L

u-I
tnd---gme— = In(@ )+ B, In(X). - (11)

When there are K stimulus variates x‘.xz,...,xk (k >1), then

100



logistic function in equation (11) changes to,
p-I
tnf{---o=m=-- = ln(ﬁ°)+ ? ﬁjln(xj) . (12)

Johansson has wused generalised logistic function given in
equation (12) to study the effect of advertising.
Aralysis of deviance(ANODEVD 1 Détalled discugsion on ANODEV s
made Iin section (3.6). As mentioned ther, ANGDEV can be carried
out by computing deviance functien for the sequence of models,
and then taking differences between appropriate deviance
functions. Finally, for drawing|concluslons, agsymptotic results
about the distribution of difference between deviances s used.
Equation (3.5-35)'glves the deviance for grouped binary data.
This equation {sg ugseful to carry ocut ANODEV.
Example 4.2 (Cont.): -

Data in table (4.1) {g wuseful to study the relationship
between stimulus variates X‘, x2 and the response variate Y. Ve
can fit four linear logistic models stated below, to the data.

expi(f3 )
Model (1) : ECY,) = -------=%__ . (13)
¢ 1+exp(fa )
exp(3 fX )
Model (2) : ECY ) = -—----o- ..t (18)
1+ exp(ﬁ°+ ﬁ‘xi‘)
pr(ﬂ + X +6 X )
Model (3) : E(Y) = —==------ L (15)
L+ exp(f + B X 48X )
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CTEN

Model (4) : E(Y) = —-=w----2--o2.22 .2 28 2 202 12 | (16)

Once the model is fitted, it can be used to estimate the values
of Yi. under the respective model,

Data in the table (4.1) 1s useful to study the relationship
between occupational status of children (Y) and occupational
status of fathers (Xi). [f the factor sex of the children (le
is taken as another explanatory variable, the relationship
between Y and X‘, xz can be studied. Heres both <he stimulus
variates are at two levels "1’ and "0’, (say). Let Y.l be the
proportion of children joining service in different fiwlids. Then
four linear logistic regression models for Yiara as stated in
models (1) . to (4),

Executing program in appendix-2(A), to fit the models (1) to
(4) to the data from example (4.2), parameter estimates obtained
are given in the tables (4.2) to (4.5). At the bottom of table

deviance is given. .
TABLE 4.2
Sr.No. | Estimate 7 S.E. Parameter
1| -0.2403968 0.48901E-01 INTERCEPT

Deviance = 476, 1927
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TABLE 4.3

Sr.No. Estimate S.E. Parameter
1 0.4054648 0.75810E-01% INTERCEPT
2 -1.1547020 0.10231 OF

Deviance = 343.9368

TABLE 4.4
Sr.No. Estimate S.E. Parameter
1 2.5576600 0.1605 INTERCEPT
2 -1.850483 0.12779 OF
3 -2.430887 0.14714 SEX

Daviance = 1.485048
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TABLE 4.5

Sr.No. Estimate S.E. Parameter
i 2.8873710 : 0.41841 INTERCEPT
2 -2.322401 0.43485 oF
3 ~2.880606 - ' 0.42633 SEX
4 0.5270557 0.4554 OF . SEX

Deviance = 0

Now the analysis of deviance table can be prepared as below

ANODEV TABLE

TABLE 4.6
Model Description d.f. Deviance First difference
Null 3 476, 1927
oF 2 343.8368 132, 2559
OF+SEX 1 1.4850 342.4418
OF+SEX+0F. SEX 0 0 1.4850

Comparing the first difference with the table value of
chi-gquare with appropriate d.f. (here d.f. of the difference |is
unity), following conclusions are drawn.

(1) Sex (of a child ) plays a vital role in the occupation.

(2) QOccupation of father is also an important factor showing

effect on occupation of their children.

(3) The factors occupation of fathers and sex of their

children are likely to be independent.
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Table (4.8) is the ANODEV table which has ite own {mportanoe
in decliding which factors shows effect on the response variate.

NOTE - To tit a linear logistic model for ungrouped binary
data following changes are required.

(1) In the definition of linear logistic model, the
distribution of response variate Y is bernaulli digtribution with
parameter u. i

(2) To start the calculations, take (P yvl nj as initial

estimate ;;m of ..

(3) ANODEV can be carried out as usual in cage of .groupe&
binary data,

(4) As the ungrouped binary data occurs very rarely, we will
not {llustrate {ts fitting numerically. However the following
discussion is very i{important.

Discussion ¢ McCullagh & Neldsar (1889) claimed that in case
of ungrouped binary data, deviance {3 not giving any iInference
about the goodness of fit of the fi}ted model. This claim can be
Justified by showing that deviance dependg only on fitted values
and not on the observations.

From equation (4,.3-2), we get

L

Uy .¢3y) = T {%iln(yt) + (1-yi)ln(1-yi)} . (17)

Since Y; takes only two possible values zero and one, it ts clear
that,

L Y

Ly,d5y) = 0. (18)

Hence deviance is given by,

DCy,p) = -2 { &u,¢,y) } €181
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-y

= -2 D[y T + Intt-p) 1. (201
i

For simplification, consider equation (3.4-22). It gives,

(ot/a'ﬁj) = F (y.- pi}x”s 21y
which implies,
}j:ﬂj(atlaﬂj) = F (yi—‘ BT, . (22)
Further, since estimates é of 3 are the solutions of the
equations
(88/0{35) = 03 3=0,1,...,k, (23)
equation (21) gives,
L (y, - n)I)T =0. (24)

i

Finally, equations (20) and (24) combinedly give,

D(y,2) = -2 L {Zzﬁi + Indt- @) } . (25)
. % .

This proves the claim.

Thueg, usual measure (deviance) of goodness of fit {s not
useful for ungrouped binary data. Hence the other measure,
namely, Pearson’s xz statistic defined in equation (3.5-2) must
be used.

4.5.2 ¢+ Fitting of complementory log-log model

This is another important model for grouped binary data.
The complementory log-log transformation and its use in dilution
assay was described by Fisher (1822). Crowder (1881) gave the
application of this model in the field of reliability. This

model is useful for extreme values of Y.
Definition-2 : Complementory log-log model ¢ Suppose the
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response variate Y 1is such that Y‘ = m.Y has B(m‘,pl
distribution. Suppose Yi (i=1,2,...,n) are n realisations of the
response variate Y. Let ;’be the vectors of the known values of
the covariates xj (j=1,2,....k) and T = X3 be the Ilinear
predictor.Then the model of the form,

TL = l“[ 'ln(l-pi)]s for i=132|-vu|nl (26)

with F(Yi) = M is called complementory log-log model,

Fitting a complemantory log-log model : ,
The equation (26) implies,

np =1 - exp{-exp(Ti)}. (27)

.

Differentiating equation (27) w.r.t. B.. we have
. v
(dT./ du ) = = {(1 - p )lncl - pt)fd, (28)

Now enuations (3.4-18) and (28) gives ﬁh component of Z as

~ ~ (y.~-u, )
Zt = Ti - el SR . (29)
(l-pi)ln(l—pi)
Similarly, from equations (3.4-18), (6) and (28) {t {s clear that,

R (1-pi)[ln(1-;illz
T S S i (30)

Once the expressions for Zi and Uii are obtained, a
complementory log-log madel can be fitted by wusing method
desoribed In sub section (3.4.3). The initial estimates é«o> ot
4 can be taken as Y.+ Remarks mentioned in (4.5.1) are also
applicable here.

Another important point to be noted here 1s that 1in _this
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model fitting, since

B o= 1 - exp{—explTi)}, (31)
the values of estimates often shoots towards both the
extremities, oftenly. Thus it is necessary to keep restriction
on values of the estimates so that their values does not go
beyond accuracy limit of the computer at any dycle.

We have developed a FORTRAN-77 program and it 1{s given |(n
Appendix-2(A). This {s uyseful to estimate g under this model.
Example 4.2 Ccont.) @ ' .

Here four complementory log-log models which can be fitted

to the corresponding data are given below.

Model (5) E(Yi? = 1—axp€-axp(T*i) ’ (3L
Model (6) : E(Yi) = l-exp(-exp(T,. ) , (32)
Model (7) : E(YJ = l-expl-exp(T_.) . 33
Model (8) : E(Yi) = l-expl-exp(T_.J} , (34)

where
i) Tﬁ = ﬁo,

(1) T, =T, + B,X,,

(iii) Tsi. = T2|. + nzx.tz.

and
(iv) T‘i = Tm. + rsaxu.xu.

Execution of the program in Appendix-2(A) to fit the models
(6) to (8), for the given data, gives the parameter esimates and
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deviance under each model as shown in the tables

(4,7) to (4.10).

TABLE 4.7
Sr.No. Estimate . S.E. Parameter
1 -0.5444505 ' 0.37103E~-01 . INTERCEPT
Deviance = 476.1827
TABLE 4.8
Sr.No. Estimate ' S.E. Parameteaer
1 ' -0.0874217 0.4964}E~01 INTERCEPT
2 -0.8616002 0.75562E-01 OF
Deviance = 343.8369
TABLE 4.9
Sr.No. Estimate S.E. Parameter
1 1.33573 0.10102 INTERCEPT
2 -1.326136 0.83078E-01¢ OF
3 -1.668342 0.86817E-01 SEX

Deviance = 5.654145
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TABLE 4.10

Sr.No. Estimate S.E. Parameter
1 1.110723 0.13118 INTERCEPT
2 -1.033836 0.14984 OF
3 -1.401135 0.14326 | SEX
4 -0.4503045 0. 18866 OF. SEX

Deviance = 0
To decide which terms in the model are sgiginificant,table of
deviance difference I{s useful. This table is given below.

TABLE 4.11
Model Description d.f. Deviance First difference
Null 3 476.1927 : !
OF 2 343.9369 132.2558
OF+SEX 1 5.6541 338, 2828
OF +SEX+0F4+SEX o] (o] 5.6541

Compari{son of the deviance differences In table (4.22) with
the table chi-square value with one d.f.gives ¢the first two
conclusions similar to those based on Ilinear logistic model.
Here fitting of complementory iog—iog model Indicates that
occupation of father and sex of thelr children may be related.

Now wa will not discuss the ’'probit’model as Berkson (1851)
pointed out the reasons to support why he prefers ’logits®' to
'probits’. However Fisher (1947) used probit model to analyse
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binary data. Now we discuss the ’"log-log’ model.
4,5.3 : Fitting of log-log model
This is another appropriate model for extreme values.
Definition-3 : Log-log model : Suppose the response variate
Y is such that Y
(i=1,2,...,n) are n realisations of the response variate Y. Let

m‘Y has B(m‘.pi distribution. Suppose Yi

L}be the vectors of the known values of the covariates xj
(j=1.2,...,k) and T = X3 be the linear predictor.Then the model
of the form,

Ti = l“[ “l“(pi)]g for i=1.2,.v.3 M,y (35)

with E(Yil = M, is valled log~-log model,.

Fitting a log-log model :
The equation (35) gives

g o= exp{—axp(—Ti)}. (36)

Differentiating equation (36) w.r.t. M, we have
. -4
(dTi/ dpi) = - {piln(pi)} ' (37)

Now equations (3.4-19) and (37) gives fh component of Z as

. - I - (y.-u.)
2 =T, - { mmmgmmtozie—o- } . (38)
t L
i i

Similarly, from equations (3.4-18), (7) and (37) {t ({s clear
that,

. g [inea )"
[ B mmmmTm—m-x-teo-oo- . (39)
(1-u.)

Once the expressions for Z‘ and Uii are obtained, a log-log

model can be fitted by using method described iIn sub section

“to)

(3.4.3). The initial estimates u of u can be taken as, Y.
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Remark mentioned in (4.5.1) is also applicable here.
Another important point to be noted here is that, 1iIn this
model fitting, since

H = exp{~axp(-Tl)}, (40)

the values of estimates often shoots towar&s both the
extremities, oftenly. Thus it is necessary to keep restriction
on values of the estimates so that their values does not go
beyond accuracy limit of the computer at any cycle.

A FORTRAN-77 program 1{is developed and it .is given |in
Appendix-2(A) which {s useful to estimate 2 under this model.

Example 4.2 Ccont.) @
Here four log-log models which c¢an be fitted to the

corresponding data are given below.

Model (@) ¢ E(Y ) = exp(-exp(-T ) , : ] ai)
Model (10) ; E(YL) = exp(-eup(-Tzi) ’ (42)
Model (11) : E(Yi) = exp(-exp(-T'i) : (43)
Model (12) : E(YL) = exp(-exp(-T‘i) ’ (44)

where
(1) Tu = ﬁo,
(11) Te" = T’." + ﬂ‘xi"p

LD T, =T, + BX_,

and

(iv) T“ = Tm_ + ﬂaxu.xu.
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Execution of the program in Appendix-2(A) to fit the

(9) to (12), for the given data,

models

gives the parameter esimates and

.

deviance under each model as gjgun in the tables (4.12) to (4.15).

TABLE 4.12 ... . e

Sr.No. Estimate S.E. . Parameter .
v ¥
1 0.1977779 ’ 0.33362E-01 _INTERCEPT
B - - .~.\l-.'.-.1’ o el Y ‘.
: -h’”.-ﬁwﬂh””t?u*‘ﬁfﬁ%niﬂa"‘V:f-“
) Deviance = 476 1927‘; ; A Z‘; ‘. w.tiﬁ:'hfhn?'h; -
LT Tl SN ERR D BT e
;‘. B :’ < . TABLE ‘. 13 ‘. .t .-'._: '._ |:.';. -,'c_: Y I‘-.'l. v, *
. e " ' x : 5 2 .:.', N ,‘; '. -.- K —-":;,- 13 An v . )
SriNo. * u il Estisate’”. | k. S.E.TY ¥ )i Paramateriits
1 0.6717268 0.49362E-01 INTERCEPT
N B . NN AR SO N O
2 . -0, 7085508 0.72178E-04" ] "> 00F TS
'- -
Devlanoe = 843 2368 : ol el diegady .iﬁf“
« ;'" ,‘..' e feee ‘.‘ 3 gy~ ‘e ,‘I .., My e ‘:'--.‘5"" “’ﬂ.}.’;‘ I H " ‘;".*‘:' ':, ,.;":-.4
s T .*_.,n_. _TABLE 4.i4 PESEY Rt Site  how ;e-i{i'-f‘":

Sr.No. Estimate

S.E. Parameter .

1 2,088358

0.11453 ANTERCEPTLY |

2 -1.119431

0.75430E-01 oF

3 -1.610214

0.1032

-Daviance = 8.4670
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TABLE 4.185

Sr.No. Estimate S.E. Parameter
1 3.012016 0.4058 INTERCEPT
2 -2.132401 0.41731 - OF
3 -2.567581 0.41036 SEX
4 _ 1.068398 0.42448 OF.ssi

Deviance = O
To decide which terms in the model are siginificant, table of
deviance difference l§ useful. This table is given below.

TABLE 4.16
Model Description d.f. Deviance First differenc
Nul | 3 476. 1927
OF 2 343.98368 132. 2558
OF+SEX 1 8.4670 335.4698
OF+SEX+QF.SEX 0o 0 8.4670

Comparison of the deviance differances in table (4.16) with
the table chi-square value with one d.f.gives .the conclusions
similar to those based on complementory loglog model.

After fitting anf modei to the data, next part is to check
whether the model fits well to the data and assumbtions ‘made
during fitting the model are not necessarily invalid. Therefore
in the ne;t section, we discuss model checking.

4.6 ¢ Model checking @
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While checking the model, one has to look towardg the Qodel
in different angles. It is atleast necessary to check the fitted
model for '

t1) the form of the linear predictor,

(2) the inclusion of explanatory variate,

(3) the adequacy of link function,

(4) the presence of outliers,

(5) the goodness of link test.

As in section (2.5) one can use the different residual plots
to draw the conclusions about adequacy of the fitted model.
Before drawing the residual plots, it :13 neépssﬁry to decide,
which among the three regsiduals, discusgsed In section (3.5)
should be used. UWilliams (1884) and Pierce & :Schafer (1886)
showed that, when binomial indexes are not very small, a standard
normal distribution f{s a better approximation. Hénce, when model
{s suitable for the data,have their values in between -2 to 2,
For a suitable model, if the absolute value of residual exceeds
the value 2 for any data point, it indicates that particular data
point may be outlier. [In case of. binary distribution, since
computatfon of Anscombe residual (g difficuit, ¢the devianca
residual is computed.

Further part of the model checking can be carried out as
discussed in section (3.9). Since the computer programs in
FORTRAN-77 are not developed for model checking, we will not
check adequacy of any model numerically. We discuss 1in chapter
6, the model checking based on residual plots.,

At this stage the question in one’s mind may be 'Are there
some more models suitable for binary data ?'.Hence below we
discuss one suitable model for binary data and other methods of
analysing the binary data.
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4.7 ¢ Other methods of analysing binary data 3
Another way of analysing any data 1{is to make the proper
transformations on the response variate, 80 that a c¢lassical
linear model! is suitable for transformed data. sometimes, use of
transformed respongeg for the Qnalysis ig helpful because it may
be gsimpler to fit classical linear model to the transformed data
than to fit generalised linear model to the wuntransformed one.
Nelder (1968) has discussed these normalising and :lineaglsing
transformations in general case. As our aim s restirctéd to
generalised linear model, the detaiis of ténsrormations are - not
glven here. One can refer Nelder (1868) for further detalls.
Log-linear model is another proper model for binary data.
This is so because the data can be considered as in the form of
caontingency table. However this model is also suitable for the
data presented in the form of cotingency table of any dimension,.
If the data are classiflied according to the categories of various
variables (factors) related to the responée variate, ‘the
resulting table is called as contin;ency table. If the data are
classied accodring to the categories of one variable then the
contingency table 18 known as one dimensional contingency table.
If for the classification two factors are used, we get two
dimens{onal contingency table and so on. For such type of data
the systematic effects are multiplicative Iin nature. This fact
is used to suggest a suitable model in this gituation, 'Log
linear’ model is one of the suitable model for the data where the
systematic effects are thought to be of multiplicative naturae.
LLog linear model is nothing but the linear model in terms of log
probabilities or in terms of logarithm of the expected cell
counte (cell counts are entries in the contingency table). In
the next few sectionsg we discuss this model explicitly. .
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4.8 Log-linear model (Bishop (1969))

Bishop (1969) introduced this model for data in the form of
contingency table. She defined the log !inear model as below.
definition-4 : Log linear model :

Suppose the discrete data are presented in the form of I[IxJ
contingency table. Let Yq and “U (i € A‘. j € Azl be

respectively the observed and expected cell counts . for ti,j!“‘
cell. Then the full (saturated) log linear model is'given by,

I“EE(Yii)] =+ Ut Uzcir * utz}i-i" (o

.for { e A‘ and j € Az
with each of the three subscripted U-terms sums to zero over each
lettered subsgscript. Here A1 = {1,2,:4.,1} and Az = {1,2;,...:4d1),

Cne can define 'unsaturated’” log ‘linear model for two
dimensional contingency table by deleting any of. the four terms
on the right hand side of the model <(1).  Similarly one can
easlly write log linear model! for higher dimension also. The
theory related to this model is enologous to that of ’factorial
experiments’,

The {nterpretation of the different U-terms (model
parameters) In model (1) {s given in detail by Bishop & others
(1975). She developed the model and the model fitting procedure
anologous to that of factorial experiment. She mentioned three
gampling schemes suitable for log linear modele. These are

1. Independent Polisson sampling (IPS),

2. simple multinomial sampling (SMS)

and

3. product multinomial sampling (PMS).

If the sample size {s unrestricted, the observed counts are
Independently distributed Poisson varlates. In this case the

probability mass function (p.m.f.) of Yi.i (1 e A‘, ] e ,Azl is
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given by

PCY, .=y, ) = {Fpij) v exp(—piiil(yii)!} !A(yth. (2)

where )
(8> A = (0,1,...])

1, it y,. & A
(1) 1 C(y 1 = v
A 151

When the observations are made over a period of time with no

0, otherwise

prior knowledge about the total number of observations, the
distribution of the observed cell counts will be of the above
type.

When the sample size N (= [J) is fixed the restriction on
the fixed sample size imposed on a series of independent Polisson
distributiona give multinomial digstribution. Hence the mass
function of YH ({ e A’, i e Az) is given by

N? pii (yij)
PCY =y, ) & = H{-—--*- I_Cy. .}, (3]
L) L) 11 ¢y, ! i, N B "1
i.g -
where
(i) B = {y‘,‘ ij s 0'1':"'N;‘_8"yii =N ," * ¥
L.,
and '
1; if y e« B
(1) Lty ) = v

v 0; otherwise
sometimes 1t may happen that though we are examining

theoretically a single group, in the experimental sgituations we
frequently have sgseveral groups with the total number of
observations in each group are determined by ¢the separate
sampling scheme. In such situations product multinomial sampliing
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{s a suitable sampling scheme. To describe it explicitly we need
to introduce the various terms like "configuration’. Therefore
we will not give the further detalls.

It is proved that under any of the above three sampling
gschemes stimates of the expected cell counts are same.This s
becausE, all the three distributions belong to one barameter
natural exﬁonentia}_tamily and for all the distribution cornel of
the log likelihood is same. Hence Iin the further discussion we

consider the independent Poisson sampling sqheme. Bishop, &
others (1975) discussed the conditions 'under which ¢the direct
egtimates of the cell counts are obtalnab!e.' Birch's (1963)

iterative procedure of obtaining estimates of the expected cell
counts for three dimensional contingency table when the direct
estimates are not available can be wused to fit a log linear
model. As Bishop & others digcussed the model fitting procedure
axplicitly, we will not discuss this method of fitting log linear
mndel. However we have developed 1independently a PC-based
sottware package 1in FORTRAN-77 usefu]l for three dimensional
contingency table with each factor having at most seven
categories (levels). Below we give one numerical example and fit
the different log linear models to {t.

Example 4.3 ¢ Thlis example is taken from Nelder & Wedderburn
(1972, Maxwell (1961) discusses the analysis of a S5x4
‘contingency table giving the number of boys with four different
ratings for distributed dreams in five different age gfoups. 'The
data are Iin the following table. The higher the rating the more

the boy suffers from disturbed dreams.
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TABLE-4.17

Age in years 4 3 Rating 1 Total
5-7 7 - 3 4 7 21
8-9 13 11 15 10 49
10-11 7 11 9 23 50
12-13 10 12 0 28 50
14-15 3 A 5 '32 44
Total 20 a1 a2 100 223

We can fit four different types ofﬁlqg-lingam models stated
below by considering age as first factor and rating as second
factor. The ANODEV table for this ‘problem looks as below.

TABLE 4.18
Model Description d.f. Deviance First differenc
Null 19 ‘84,6068
A 15 73.7673 20.8385
A+R 12 32.4571 41,3102
A+R+A.R 0 o 32.4571

Foot Note t—- 'A’' and 'R’ respectively denote the factors age and

rating.
The conclusions can be drawn by comparing the differences

with the table chi square value for suitable degrees of freedom.
I[f the log linear model is viewed in different angle, since the
Poisson distribution is a member of one parameter natural
2xponential family, the thory of generalised linear model will be
straight way applicable to the log linear model. In the next
section we discuss how this approach can be applied.
4.9 Log-linear model CNelder & Wedderburn €C1972)) 3
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Suppose the response variate Y has Poisson distribution with
mean u. Here we discuss log linear model far two dimensional
contingency table only. Now suppose Y” (i e At. j e Az) be the
n realisations on the response variate Y. Reindex these
observations as Yi (i=1,2,+4.,0) sucﬁ that first .J observations
corresponds to the firgt sample, next J to the second sample and
S0 on. In the same way reindex the parameters as B,
(i=1,2,...,n) s0 that first J components of the vector g are u .,

next J components are p: and so on. Herse
A
W = (DR p 3 for 1=1,..., 1. T

As we are assuming Polsson ;istribution to the responses, one of
the possible link function {s ’log-link’ function. This link
function is given by,

T = in(). 2
Now we give below the definition of log linear model.

Definition-5 : Log linear model ¢ Suppose the response
variate Y 1is having Poisson distribution with parameter pu.
Suppose Yi(i=1.2.....n\ are n realisations of the response
variate Y. Let ;ibe the vectors of the known values of the
covariates xi (j=1,2,...,k) and T = X2  be the linear
predictor.Then the model of the form,

T‘ = ln(“i.‘. fO!‘ i=1.2.....n. (3)

with ECY) = p, is called log-log model.

Fitting a log-log model :
The equation (3) gives

B, = exp(Tt). (4)

Differentiating eguation (3) w.r.t. H,» we have

cC‘Tt‘/dHI) - ’//4{ 3 i:],é,'--vn . (5)

121



Now equations (3.4-18) and (5) gives fh component of Z as

-~ ~ (y- —p- )
Z, =T, + {}--1-—3--} . (61
. L
M

Similarly, from equations (3.4-18) and (6) it {e clear that,

ut; = M. (7 :

Once the expressions for Zi and "ti are obtained, a:
log-linear model can be fitted by using method described 1in sub§
section (3.4.3), The initial estimates p'®’

(1/J)E(yﬁ). If all the observations in any sample are equal to

of u can be taken as.

zero,'take the corresponding sample total as 0.5.

A FORTRAN-77 program given Iin Appendix-2(B) {8 useful to
estimate 3 under this model.
Example 4.3 CCont.DJt -~

Data in table (4.22) is useful +to study the relationship
betwaen stimulus variates Xi, xz and the response variate Y. We
can fit four types of log-linear models stated below, to the
data. *

Model (13) : E(Y;’ = @xp (ﬂa). . (81
Model (14) : E(YJ = @xp (ﬂ°+ ﬂixL‘). (D
Model (15) : E(Yi’ = @xp (ﬁ°+ ﬁixi£+ ﬂzxiz) (1)

Model (16) : E(YL1 exp '((9°+ pix.u:« razx.m + ﬁsx“xizl.um
Once the model is fitted, It can be used to estimate the values
of Yi, under the respective modsl. . J
Data in the table (4.22) {s useful to study the relationship
between the number of dreams (Y) and age group of boys(x‘). If
the rating factor <xz) is taken as another explanatory variable,

the relationship between Y and X‘, Xz can be studied. Here none
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of the covariate {s at two levels. Let Yi be the number of
dreams for boys in different age groups. Then four log Ilinear
models for Yiare as stated in models (13) to (16).

Executing program in appendix-2(B), to fit-the models (13)
to (16) to the data from example (4.3), parameter estimates
obtained are given Iin the tableg (4.19) to (4.22). At the bottom

of teble deviance i{s given. - !
TABLE-4.19
Sr.No. | Estimate - Parameter
1 2,4114 INTERCEPT

Deviance = 84.6075

TABLE~4. 20
Sr.No. Estimaete Parameter
i . 2. 30855 INTERCEPT
2 0.1264 AGE

Deviance = 87.551
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TABLE-4. 21

Sr.No. Estimate Parameter
1 3.1637 INTERCEPT
2 ~-0.1264 AGE
3 -0, 3349 RATING
Deviance = 57,7147
TABLE-4. 22
Sr.No. Estimate Parameter
1 3.0643 lN%ERCEPT
2 0.5155. AGE
3 -0.3061 RATING
4 -0.1836 AGE.RATING

Deviance = 40.7375

Now the analysis of deviance table can be prepared as below
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ANODEV TABLE

TABLE 4.23
Model Desoription d.f. Deviance First difference
Null 189 94.6075
AGE i8 87.5510 7.0565
AGE+RATING 17 57.7147 29.8363
AGE+RATING+A.R 16 40,7375 16.9772

Comparing the first difference with the table value of
chi-square with appropriate d.f. conclusions can be drawn.

Difference between 'the procedures of fitting log 1l!linear
mode! by the two different approaches iz Bishop’s approach do not
require the 'dummy’ covariates where as in Nelder;s approach the
dummy covariates should be defined and their values though
nominal should be provided.

While fitting generalised linear model to the data we are
assuming that the response variate_has a particular distribution
from one parameter natural exponential family. Many times it |{is
not possible to specify the underlying distribution completely.
In such cases generalised linear model cannot be fitted. In the
next chapter we discuss the models useful in such

gituations.
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