
4. GENERALISED LINEAR MODEL FOR DISCRETE DATA

\

4.1t Introduction
In chapter 3, a wider class of modelsf namely, generalised 

linear models is discussed. These models are useful for some non 
norma! distributions. As mentioned at the end of chapter 3, in 
many practical situations we come across the discrete data.

If the response variate takes one of the fixed set of 
possible values, it is called as discrete response variate and 
the corresponding data as discrete data. Suppose there are *p* 
possible values of the response variate. These possible values 
of the discrete response variate are frequently called as 
response categories. Some of the examples of discrete responses 
are number of births in a certain period, number of girls 
marrried before maturity age in the specific geographical area 
etc.

In many practical situations we come ' accross the
observations which takes one of the two possible forms. Such
observations are known as ’quantal’ or ’binary* observations. 
Thus in case of binary responses we have two response categories. 
Some examples of binary responses are dead-alive, married 
unmarried, defectlve-non defective, male-female etc. Generally, 
the two possible forms of binary responses are termed as 
’success’ and ’failure’.

Some techniques are developed for analysing binary data. 
These techniques are discussed mainly by Finney (1947), Cox 
(1970), Nelder & Uedderburn (1972), Prentioq (1976), McCullagh & 
Nelder (1989), Hosmer & Lemeshow (1989), Dobson (1990) and 
Collett (1991).

Most frequently we come across the counted data not in the 
form of proportions but in the form of table of counts. In suoh
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cases the data are sorted according to one or more factors each 
having atleast two levels. Some techniques are developed to 
analyse such type of data. Birch (1963), Bishop (1967), Bishop & 
others (1975), Good (1956,1963), Gokhale & Ku11 back (1978) and 
many others discussed these techniques-.

In this chapter, we discuss the theory associated with 
analysis of binary data through model fitting and that 
related with the data in the form of table of counts.

Here the discussion proceeds in the following direction.
(1) Types of binary data;
(2) binary distribution, and 1og-1 ike 1ihood function;
(3) link functions;
(4) fitting of generalised linear models and amaiysis* of 

deviance;
(5) model checking;
(6) other appropriate models for binary data;
(7) log linear model (Bishop (1969));

and
(8) log linear model (Nelder & Wedderburn (1972)).

4.2 ! Types of binary data
Suppose X = (JL, X^) is the incidense matrix and

.3^) • Let for a particular combination
(X ,X ,...,X ), observations are available on m* items.

t SB 1.JC ^ 1»
Depending on the values of mj, , there are two types of binary
data. These are

(a) ungrouped binary data;
and

(b) grouped binary data.
*(a) Ungrouped binary data t if = 1, for all i(i=1,2,...,k), 

then the binary data is known as ’ungrouped* binary data.
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Example 4.1i This example is taken1'.from Collett (1991) (Given ' •oh' 
pagers). Here the response variate ,(Y) is taken as a variate 
directly related to erythrocyte( sedimentation rate (ESR). This

» 1 *■ * i . • * "I

rate is nothing but, the rate at which the red blood cells settle
* \ | * tout of suspension in blood plasma*?when measured under standard

conditions. The ESR increases if ,the levels of certain proteins
,,'t ■ {< !

in the blood plasma Increases. In’Malaysia* an experiment' was 
carlled out to examine the extent to which the ESR is related( to 
two plasma proteins, fibrinogen and y-globulin. Since the ESR 
for healthy person should be less than 20 mm/h and since it is 
non negative, the ESR is observed to see whether it is less than 
20. Therefore the binary response variate Y takes value *1’ if 
ESR exceeds 20 and f0' otherwise. The experiment was carried out 
on 32 individuals. The data are given in Collett (1991). In 
this example, since the observations are available on each item, 
the data is ungrouped binary d&tjjg.
Cb) Grouped binary data : If , for at least one value of
i(i=l,2,...,k), the data is known *as 'grouped* binar^ data. 
Example 4.2 t

The data is collected from Ko,Lhapur city in the year 1992, to 
'Mudy the %ooocupationa1 and educational relationship between 
parents and their children having age more than 27. Proper 
eluhing of collected data gives table 4.1.

93
i



TABLE 4.1

Occupatio- Occupational status of children .
na 1 status 
of fathers

Sons Doughters
Ser. Busl Total Ser. Busi. Total

Service 316 284 600 119 6 125
Business 102 552 654 210 108 316

Foot note t Ser service , Busl t- Business.
Remark : The category of house wife is ignored, because It will 
result in structural zero.

Here the response variate is occupation of children and the
two covariats are occupation of father (X^l and sex of children
CX2>, We denote the occupation Service* by value *0* and
"business’ by value ’1’. Similarly for X^, we define the value
’0’ to 'daughters* and ’1’ to ’sons’.

Here since more than one observations occurs corresponding
to every combination of values of the stimulus variates (X .X ),* * i 2the values Y. =Y./m, (i=l,2,3,4> constitutes grouped binary data.

Ill
Host of the times grouped binary data are available as they 

are condensed forms of ungrouped binary data. The examples (4.1) 
and (4.2) are sufficient to distinguish between grouped and 
ungrouped binary data. Now one can proceed towards the 
distribution of these types of data.
4.3 s Distribution and log-li'kellhood function

The distribution and 1og-11keIihood function for grouped 
binary data is discussed in section (3.3). Here we discuss 
distribution and log-1 ike 1ihood function for ungrouped binary 
data.

the
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Distribution and log-1ikellhood function for ungrouped btnaxy.
data i Suppose the response variate Y has 'binary distribution 

with mean fi. Then p.ra.f. of Y is given by,
f<y;Ai) = fjy y (yl„ (1)

i
where

<n aa = io.iy
and

(il) I <y) is the indicator function.A 1 t

Therefore, !og-11ke1ihood function based- on single! observation{ .
becomes ,i, * ■ *

= yln(^) + < 1-y) ln(iLfj)

= yln[ fj/(1-jui)] + ln(l-^). (2)
Comparison of this equation with the equation (3.3-3) gives.

4t = a(4>) = 1, 0 = in[ fjt/ii-fj)} , g(0 
h(y) = 0, ?(0jy) * 0,

For fitting generalised linear model to the binary data,

•) = ln( l+exp(0))., "1 il (3)

it
is necessary to obtain link functions.
4.4 t Link function

To obtain the relationship between the parameter jli and the
vector of stimulus variates X * (X ,X ,...,X. )’, it is convenient“ 4 2 Jc
though not necessary, to construct a model, which is able to 
describe the effect of different combinations of values of 
covariates on fj. While constructing a model, certain assumptions 
are made. Validity of these assumptions should be checked. 
Further, the model constructed should be consistent in its 
behaviour.

In section (2.7), we have seen, though classical linear
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model Is widely used model, it is not suitable for binary data. 
Thus the identity link T=fj, is not appropriate for binary data.- 
The number of suitable link functions for binary data are 
available. Four of them which are mostly used in practice arq as 
fo 1 lows.

(i) Legit or linear logistic function,
T * in|~|^-—J . <1)

<Ii) Complementory log-log function,

T * ln£-in< l-p)] . <21
(Iii) Probit or inverse normal function,

T ■ (3)

(iv) Log-log function,
T =-ln[ -in<*i>] . <41

For // < 0.5, the behaviour of log-log function is not
appropriate and hence the log-log fnctlon is not much useful when 
fj < 0.5.

Corresponding to each link function given in equations (1)
to (4), we can fit generalised linear model to the binary data.

Note :- While fitting a generalised linear model to the
*grouped binary data, it is assumed that the observations Y.^

(1=1,2,...,n) are independent. It happens only when Y^s are 
Independent with constant probability of success for all items in 
the same group. In most of the practical situations, 
observations between the groups are Independent or atleast 
uncorrelated, but observations within the group are likely to be 
correlated. The situations with positive and negative 
correlation are named as 'over' and funder* dispersion
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respectively. Thus If

then In over dispersion case is greater than unity and in 
under dispersion case it is- less than unity. Here, since is 
an unknown parameter, it is to be estimated from the available 
data. These two situations can be handled with' the help of 
’quasi likelihood functions’, and will be discussed thoroughly 
later In chapter 5. For a time being it is assumed that ^ is 
unity;

Before fitting any model, it is necessary to describe the 
model explicitly. In the next section, we discuss definition and 
fitting of different generalised linear models to the two types 
of binary data.
4.S : Fitting of generalised linear model to the binary data

Let Y be the response variate and X.(Jsi,2,...,k) be the 
stimulus variates. First we consider fitting of four different 
models, corresponding to the four link functions, for grouped 
binary data. Fitting of each of these four models is followed by 
a note about fitting the same model for ungrouped binary data. A 
generalised linear model to the binary data with the four types 
of link functions given in equations (4.4-i) to (4,4-4) are 
respectively known as, ’linear logistic model’, ’coup 1 ementkory 
log-log model’, ’probit model’ and 'log-log model’.
4.5.1 s Fitting of 1 inear 1 odist to mode 1 for grouped binary data

Logistic regression model was first suggested by Berkson 
(1944). He pointed out that, the model can be fitted using 
' iterative weighted least square’ method as a numerical 
technique.
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Definitional : Logistic mode 1 for grouped binary data s
0 0 0Suppose the response variate Y is such that Y = ra Y has B(m ,p) 

distribution. Suppose Y ( i = 1,2, . . . , n) are n realisations of the 
response variate Y. Let be the vectors of the known values of
the covariates X. (j = l,2, . .. , k) and X = *Q be the linear 
predictor.Then the model of the form,

T. = ln[ *i. )] , for i = l,2....n. (1)
In 1 I*

with ElY^i a ig called linear logistic model.
Fitting a logistic model s Fitting of any generalised linear

•i , ,

model to the data consists of the following steps.
(I) Finding expressions for the vector z of adjusted

dependent variable, and for V;
(11) applying the method of fitting generalised 1 inear

model discussed in sub section (3.4.3).
Logistic model is one of the proper models for binary data,

having a vast scope. From equation (1) we have,
exp<T >

(2)
(l+expCT )>

Now, the respective values of Z. and W. . can be obtained asl ll
below. Differentiation of equation (2) w.r.t. gives,

CdX/d^.) = [tf. )]“*. (3)

Also note that,
E< Y. ) ■ fj. , ■t l
Var<Y ) = [ fj. (L-fJ. )/n. ]t *. % t

Equation (3.4-19) gives ilh component of the vector X as
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Z. » T.+i i
{ <y.-*i J I

V ) Jl 1,
(5)

Similarly, from equations <3.4-18),(3) and <4),we have
W. . = /j. (1-ju. ). (6)11 L 1

After obtaining expressions for Z. and W.., to fit a linear
i ii

logistic model, method described in sub section (3.4.3) can be 
applied easily. As mentioned there, • one can start the 
calculations by taking initial estimates fjj°> of ju as y.^
Remark t If any of the samples has either all failures or all 
successes, the value y^ reaches to its extreme value, zero or 
one respectively. In such a case add or subtract a "number ' 0.5

ktfrom the corresponding value of Y accordingly, so that none of
is either zero or one.
Gore & Shanubhogue (1984) have discussed the applications of 

linear logistic regression models in the field of ecology. 
Strauss (1992) focused on many faces of logistic regression and 
showed how it can be used to analyse the data in different 
fields.

sometimes Instead of using linear logistic model, it is 
preferable to use the generalised logistic model. Johansson
(1973) has used generalised logistic model to study the effect of 
advertising.

For single observation on the response variate, and with the 
single explanatory variate V, the linear logistic function given 
in equation (2) becomes,

In
{

l-V

}
a ft + ft X' O f i (7)

99



Note that the linear iogistio function Is symmetric about 
0.5. The value about which the function is symmetric, is known 
as point of Inflection.

When a saturated level K* different from 1 is required, the 

modified linear logistic function can be written as,

Ini----------- l = ft + ft X . (8)

1 K - J ° 1

To introduce non symmetry in the model, one can add second 
order term in X on the right hand side (RHS) of the equation 
(8). Thus equation (6) becomes,

ml- — -------- 1 = ft + ft X + X*. (9)
I W* I O 1 sl K - M J

When the explanatory variable X takes only positive values, 
the non-symmetry can be allowed in the model by reformulating the

model as,

In{ } ln(/? )* ft ln(X) o * £ (10)

Applying least square method of estimation to equation (10), 
it can easily be seen that, Intercept Inlft^) of the model is 
zero. To have a model with with non-zero Intercept, Johansson 
(1973) suggested the following form of generalised logistic 
function.

In{ Lnift )+ ft in(X)o 1 t (11)

When there are K stimulus variates X ,X ,...,X (k >1), then
A 2 16
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logistic function in equation (11) changes to.

f k - i* 1In-c-- ------V • Inift ) + £ ft. ln(X.) . (12)l K*- » J ° i J '
Johansson has used generalised logistic function given in 
equation (12) to study the effect of advertising.
/4naLysis o£ deviancelANODEV2 t Detailed discussion on ANQDEV is 
made in section (3.6). As mentioned therj ANODEV oan be carried 
out by computing deviance function for the sequence of models, 
and then taking differences between appropriate deviance 
functions. Finally, for drawing conclusions, assymptotic results 
about the distribution of difference between deviances is used. 
Equation (3.5-35) gives the deviance for grouped binary data. 
This equation is useful to carry out ANODEV.
Example 4.2 CCont.Di-

Data in table (4.1) is useful to study the relationship 
between stimulus variates X^, X2 and the response variate Y. We
can fit four linear logistic models stated below, to the data.

exp(fl )
Model (1) : E(Y.) = (13)1 l + eicp(0o)

Model (2) s E(Y ) =
exp(/? + n X )1 O f i i 1 (14)

V 1 + exp(/3o+ /} X )

Model (3) : E(Y.) =
exp(/3 * (3 X. +|) X, >O A i & 2 2 (15)l 1 + exp(/? + (i X. X, )1 o 1 i H 1 2 it
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Model (4) : E(Y.) =
exp(/3 + |3X *ft X. +/3 X. X )O ' ± i ± 1 2 i.2 1 B i. i ».2

1 + exp(/? + ft X. +0 X. +0 X. X. )O ,lll,2u2,9ili.2
(16)

Once the model is fitted, it can be used to estimate the values 
of Y , under the respective model.

Data in the table (4.1) Is useful to study the relationship 
between occupational status of children <Y) and occupational 
status of fathers (X ), If the factor sex of the children <X )i 2
is taken as another explanatory variable, the relationship
between Y and X , X can be studied. Here both the stimulus1 2
variates are at two levels '1* and 'O’,(say). Let Y be the 
proportion of children joining service in different fields. Then 
four linear logistic regression models for Y^are as stated in 
mode is (1) ,to (4).

Executing program in appendix-2(A), to fit the models (1) to 
(4) to the data from example (4.2), parameter estimates obtained 
are given in the tables (4.2) to (4.5). At the bottom of table 
deviance is given.

TABLE 4.2

Sr.No. Estimate S.E. Parameter

1 -0.2403968 0.48901E-01 INTERCEPT

Deviance = 476.1927
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TABLE 4.3

Sr.No. Estimate S.E. Parameter

1 0.4054649 0.75810E-01 INTERCEPT

2 -1.1547020 0.10231 OF

Deviance = 3/13. 9368
TABLE 4.4

Sr.No. Estimate S.E. Parameter

1 2.5576600 0.1605 lNTERCEPT

2 -1.850483 0.12779 OF

3 -2.430897 0.14714 SEX

Deviance = 1.495048
•
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TABLE 4.5

Sr.No. Estimate 5.E. Parameter {

1
t

2.9873710 0.41841t1 INTERCEPT

2 -2.322401 0.43485 OF

3 -2.880606 ' 0.42633l SEX

4 0.5270557 0.4554 OF.SEX

Deviance = 0
Now the analysis of deviance table can be prepared as below

ANODEV TABLE 
TABLE 4.6

Model Description d. f. Deviance First difference
Nul 1 3 476.1927
OF 2 343.9368 132.2559
OF+SEX 1 1.4950 342.4418
OF+SEX+OF.SEX 0 0 1.4950

Comparing the first difference with the table value of 
chi-square with appropriate d.f. (here d.f. of the difference is 
unity), following conclusions are drawn.

(1) Sex (of a child ) plays a vital role in the occupation.
(2) Occupation of father is also an important factor showing 

effect on occupation of their children.
(3) The factors occupation of fathers and sex of their 

children are likely to be independent.

f

104



Tab Ip (4.6) is the ANODEV table which has its own importance 
in deciding which factors shows effect on the response variate.

NOTE t- To fit a linear logistic model for ungrouped binary 
data following changes are required.

(1) In the definition of linear logistic model, the 
distribution of response variate Y is bernaulli distribution with 
parameter p.

(2) To start the calculations, take CE y./ n) as initial
i

r in |estimate u. of u .
(3) ANODEV can be carried out as usual in case of .grouped 

binary data.
(4) As the ungrouped binary data occurs very rarely, we will 

not illustrate its fitting numerically. However the following 
discussion is very important.

Discussion t McCullagh b Nelder (1989) claimed that in case 
of ungrouped binary data, deviance is not giving any Inference 
about the goodness of fit of the fitted model. This claim can be 
justified by showing that deviance depends only on fitted values 
and not on the observations.

From equation (4.3-2), we get

z{Vi■ E <y. tn<y ) + (1-y. ) tn(l-y. ) l .} (17)

Since Y takes only two possible values zero and one, it Is clear
that,

J£> = 0- (18)

Hence deviance is given by,
D(y.,y) = -2 { l(p,4>,y_) ^ (19)
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■ -2 £ [ y^ + lna-it ) ] . (20)
L

For simplification, consider equation (3.4-22). It gives,
(9l/9p.i • £ (y^ jul)XlJ| (2D

which imp!ies,
£pA9tf9(3.) = £ (y.- ft. )T. . (22)• J J « • ^J *

Further, since estimates Q at Q are the solutions of the 
equations

<9t/9ft.) * 0| 3=0,1.... k, (23)
equation (21) gives,

r (y. - /u. )T. = 0. (24). I t L
L

Finally, equations (20) and (24) comblnedly give,

D(ji,y) • - f {«•*} • (25)

This proves the claim.
Thus, usual measure (deviance) of goodness of fit is not 

useful for ungrouped binary data. Hence the other measure, 
namely, Pearson's ** statistic defined in equation (3..5r-2. ) must 
be used.
4.5.2 i Fitting of complementory log-log mode 1

This is another Important model for grouped binary data. 
The complementory log-log transformation and its use in dilution 
assay was described by Fisher (1922). Crowder (1991) gave the 
application of this model in the field of reliability. This 
model is useful for extreme values of Y.

Definition-2 s Complementory log-log mode 1 t Suppose the
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response variate Y is such that Y = m Y has B(m ,p)
distribution. Suppose Y <i=l,2,...,n) are n realisations of the
response variate Y. Let be the vectors of the known values of
the covariates X, (j = l,2,...,k) and T. * X£ be the linear

•Ipredictor.Then the model of the form,

T. ■ ln[-ln(l-ju.i], for i-l,2,...,n. (26)t I*

with FfY^) = fj , is called complementory- log-log model.
Fitting a. comp 1 emantorv 1 og- log mode 1 :

The equation (26) implies,
^ = i - exp-f-expiT.^)}. (27)

Differentiating equation (27) w.r.t. fj,, we have
(dT./ dfj.) = - -ffl - v. Hnfl - v )}"*. (26)

thNow equations (3.4-19) and (28) gives i component of Z as

Z ■ T.1 L
. /... ). t (l-#j. ) J (29)) ii ' i

Similarly, from equations (3.4-18), (6) and (28) it is clear that,
(l-#i )[ ln(i-£. )]* 

u ------i__.-----L----, (30)
U *1

Once the expressions for Z. and U.. are obtained, a
i it

complementory log-log model can be fitted by using method 
described in sub section (3.4.3). The initial estimates yto> of 
y can be taken as y . Remarks mentioned in (4,5. D are also 
applicable here.

Another important point to be noted here is that in .this
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model fitting, since

^ s l ■ expj-expcr )*, (31)
the values of estimates often shoots towards both the 
extremities, ofteniy. Thus it is necessary to keep restriction 
on values of the estimates so that their values does not go 
beyond accuracy limit of the computer at any cycle.

We have developed a FORTRAN-77 program and it is given in 
Append!x-2(A). This is useful to estimate £ under this model. 
Example 4.2 Cconi. 3 i

Here four complementory log-log models which can be fitted 
to the corresponding data are given below.

%

Model (5) : E(Y.)

Model (6) : ECY.)\

Model (7) : E(Y.)I

Model (8) : E(Y.)

l-expC-expCT^) , 

l-exp(-exp(T_.) ,2 i

l-exp(-exp(Taii *, 

l-exp(-exp(T4i) ,

where
<i) T. = ft ,lL 'O’

(ii) T .2u T + 0 X ,
(Hi) Tsi. T. + /LX. .2l 2 i2

and

(3D

(32)

(33)

(34)

< 5)

(iv) T4i T + /3 X. -X. .St. 9 il l2
Execution of the program in 
to (8). for the given data,

Appendix-2(A) to fit the models 
gives the parameter esimates and
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deviance under each model as shown in the tables <4.7) to (4.10)

TABLE 4.7

Sr.No. Estimate S.E. Parameter

1 -0.5444595 0.37103E-01 . INTERCEPT

Deviance = 476.1927
TABLE 4. 8

......................... ■ ■ ■ ' ...................................-.................... ■

Sr.No. Estimate S.E. Parameter
»1 -0.0874217 0.49641E-01

1
INTERCEPT

2 -0.8616092 0.75562E-01 OF

Deviance = 343.9369
TABLE 4.0

Sr.No. Estimate S.E. Parameter

1 1.33573 0.10102 INTERCEPT

2 -1.326136 0.93079E-01 OF

3 -1.668342 0.96917E-01 SEX

Deviance = 5.654145



TABLE 4.10

Sr.No. Estimate S.E. Parameter

1 1.110723 0.13118 INTERCEPT

2 -1.033836 0.14984 OF

3 -1.401135 0.14326 SEX

4 -0.4503045 0.18866 OF.SEX

Deviance = 0
To decide which terms in the model are slginifleant,table of 

deviance difference is useful. This table is given below.
TABLE 4.11

Model Description d.f. Deviance First difference
Nul 1 3 476.1927 • s
OF 2 343.9369 132.2558
OF+SEX 1 5.6541 338.2828
OF+SEX+OF+SEX 0 0 5.6541

Comparison of the deviance differences in table (4.22) with 
the table chi-square value with one d.f.gives the first two 
conclusions similar to those based on linear logistic model. 
Here fitting of comp 1ementory log-log model indicates that 
occupation of father and sex of their children may be related.

Now we will not discuss the *probit*mode 1 as Berkson (1951) 
pointed out the reasons to support why he prefers ’logits’ to 
’probits’. However Fisher (1947) used probit model to analyse

/
/
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binary data. Now we discuss the "log-log" model.
4.5.3 : Fitting of l og- log mode 1

This is another appropriate model for extreme values.
Definitlon-3 : Log-log model : Suppose the response variate

* * gtY is such that Y = m Y has B(m , p) distribution. Suppose YL
<i -1,2,...,n) are n realisations of the response variate Y. Let
JL be the vectors of the known values of the covariates X. 

j . i
(j = 1,2.... k) and J. * X(3 be the linear predictor. Then the model
of the form,

T = in[ -tni^)] , for is1.2»...,n, (35)

with E(Yt) * is called log-log model.
E’.Htl.ng, a log -log model :

The equation (35) gives

#4^ = expJ-expl-Tj^ )}. (36)

* Differentiating equation (36) w.r.t. we have

(dT./ d*4.) = - <37)l L t «. 9

Now equations (3.4-19) and (37) gives ilh component of Z as

a
Z. {

fj. ln(^4. )l l
} (36)

Similarly, from equations (3.4-18), (7) and (37) it is clear 
that,

• ** * *#4: [ ln(*4 )]*
------------ s-------- . (39)u ...(1-*J. )l

Once the expressions for Z and W.. are obtained, a log-loglit.
model can be fitted by using method described in sub section 
(3.4.3). The Initial estimates y<0> of ju can be taken as . y^.

ill
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Remark mentioned in (4.5.1) is also applicable here.
Another important point to be noted here is that, in this 

model fitting, since
= exp{-exp<-1\ )} (40)

the values of estimates often shoots towards both the 
extremities, oftenly. Thus it is necessary to keep restriction 
on values of the estimates so that their values doss not go 
beyond accuracy limit of the computer at any cycle.

A FORTRAN-77 program is developed and it ■ is given in 
Appendix-2(A) which is useful to estimate Q under this model. 
Example 4.2 Ccont.3 s

Here four log-log models which can be fitted to the 
corresponding data are given below.

Model (9) s E(Y> » exp<-exp<-T ) (41)

Model (10) : E(Y ) exp(-exp(-T .) *• xi (42)
L

Model (11) : E(Y. ) ■ exp(-exp(-T .) (43)

Model (12) s E(Y ) = exp(-exp(-T .)l r r 4i (44)

where
(1) T ■ ft1L ' O

and
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Execution of the program in Appendix-2(A) to fit the models 
(9) to (12), for the given data, gives the parameter esimates and 
deviance under each model as s|pun in the tables (4.12) to (4.15).

TABLE 4.12

Sr.No. Estimate S.E. Parameter

1 0.1977779 '
■ t

0.33362E-01
...... - i

INTERCEPT

'Deviance *

^ 1 ,

• ‘ „r 5 * .” .j

476.1927:• "j- > ,v
\ • 1 l" ' •

. TAi
" . • * » 4 . ‘ *

** 1 ' • .t ’'Ilk «•
JLE 4.13 *. ;vV’

■ a? •I* }&£•.> “ $'■’ <•
1 '.O**• . .. ■- ■■ ■; ;

'V •' ■ 1 ■’

• ? Sri*No. '■ J',:tvEsti Water*!. •r:)C sJe'.\s&-&V Par amb ter V1" * *

1 0.6717269 0.49362E-01 INTERCEPT

•V'
* 2 . -0* 7995505

i %
0.72175E-0i‘7'‘- c.

!Deviance »
* »* / 1 t* **«, ,,»-* >. % * * ♦.- .1 . - ** - '

343.9368 .
* * t * * i
■ -.TAiILE 4.14

.■

'!.> ’* - ■ ’ i 'i‘"

- t t i ‘ ’

Sr.No. Estimate S.E. Parameter -

1 2.088353 0.11453• ..INTERCEPT f\

2 -1.119431 • . 0.75430E-01 OP
. *' * *

3 -1.610214 0.1032
u

•; sex ■ •'• * »

■Deviance * 6.4670

S
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TABLE 4.13

Sr.No. Estimate S.E. Parameter

1 3.012016 0.4059 INTERCEPT

2 -2.132401 0.41731 - OF

3 -2.567581 0.41036 SEX

4 1.068398 0.42448 OF.SEX

Deviance * 0
To decide which terms in the model are siglnifleant,table of 

deviance difference Is useful. This table is given below.
TABLE 4.16

Model Description d.f. Deviance First differenc
Nul 1 3 476. 1,927
OF 2 343.9368 132.2559
OF+SEX 1 8.4670 335.4698
OF+SEX+OF.SEX 0 0 8.4670

Comparison of the deviance differences in table (4.16) with 
the table chi-square value with one d.f.gives .the conclusions 
similar to those based on complementory loglog model.

After fitting any model to the data, next part is to check 
whether the model fits well to the data and assumptions made 
during fitting the model are not necessarily invalid. Therefore 
in the next section, we discuss model checking.
4.6 s Model checking l
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While checking the model, one has to look towards the model
• 1

in different angles. it is atleast necessary to check the fitted 
model for '

(1) the form of the linear predictor,
(2) the inclusion of explanatory variate,
(3) the adequacy of link function,
<4) the presence of outliers,
(5) the goodness of link test.
As in section (2.5) one can use the different residual plots 

to draw the conclusions about adequacy of the fitted model. 
Before drawing the residual plots, it ' is nec,essary to decide, 
which among the thre^ residuals, discussed in section (3.5) 
should be used. Williams (1984) and Pierce & .Schafer (1986) 
showed that, when binomial Indexes are not very small, a standard

- I

normal distribution is a better approximation. Hence, when model 
is suitable for the data,have their values in between -2 to 2. 
For a suitable model, if the absolute value of residual exceeds 
the value 2 for any data point, it indicates that particular data 
point may be outlier. (n case of binary distribution, since 
computation of Anscombe residual is difficult, the deviance 
residual is computed.

Further part of the model checking can be carried out as 
discussed in section (3.^). Since the computer programs in 
FQRTRAN-77 are not developed for model checking, we will not 
check adequacy of any model numerically. Ue discuss in chapter 
6,the model checking based on residual plots.

At this stage the question in one’s mind may be ’Are there 
some more models suitable for binary data ?’.Hence below we 
discuss one suitable model for binary data and other methods of 
analysing the binary data.

j
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4.7 * Other methods of analysing binary data s
Another way of analysing any data is to make the proper 

transformations on the response variate, so that a classical 
linear model is suitable for transformed data, sometimes, use of 
transformed responses for the analysis is helpful because it may 

be simpler to fit classical linear model to the transformed data 
than to fit generalised linear model to the untransformed one. 
Neider (1968) has discussed these normalising and .linearising 
transformations in general case. As our. aim is restircted to 
generalised linear model, the detail's of trnsformations are • not 
given here. One can refer Neider (1968) for further details.

Log-linear model is another proper model for binary data. 
This is so because the data can be considered as in the form of 
contingency table. However this model is also suitable for the 
data presented in the form of cotingency table of any dimension. 
If the data are classified according to the categories of various 
variables (factors) related to the response variate, 'the 
resulting table is called as contingency table. If the data are
classied aocodring to the categories of one variable then the
contingency table is known as one dimensional contingency table. 
If for the classification two factors are used, we get two
dimensional contingency table and so on. For such type of data 
the systematic effects are multiplicative in nature. This fact 
is used to suggest a suitable model in this situation. ’Log 
linear’ model is one of the suitable model for the data where the 
systematic effects are thought to be of multiplicative nature. 
Log linear model is nothing but the linear model in terms of log 
probabilities or in terms of logarithm of the expected cell
counts (cell counts are entries in the contingency table). In 
the next few sections we discuss this model explicitly.
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4.8 Log-linear model CBishop Cl96933 i
Bishop (1969) introduced this model for data In the form of 

contingency table. She defined the log linear model as below. 
definition-4 : Log 1 Inear mode 1 :

Suppose the discrete data are presented in the form of IxJ
contingency table. Let and (i j Vtj ’ i| 4*

respectively the observed and expected cell counts .for ci,j) 
cell. Then the full (saturated) log linear model is given by, 

ln[ E(Y. ,)J = V + U,. + U ■ . ' (1)l j 4. < t. > 2< }) IB < i , j >

be
ih

A^ and j « A_4 2• for i
with each of the three subscripted U-'tersis sums to zero over each 
lettered subscript. Here A^ « {1,2,...,I) and A2 =

One can define ’ unsaturated* log linear model for two 
dimensional contingency table by deleting any of. the four terms 
on the right hand side of the model (1). Similarly one can 
easily write log linear model for higher dimension also. The 
theory related to this model is anologous to that of ’factorial 
experiments*.

The interpretation of the different U-terms (model 
parameters) in model (1) is given in detail by Bishop & others 
(1975). She developed the model and the model fitting procedure 
anologous to that of. factorial experiment. She mentioned three 
sampling schemes suitable for log linear models. These are

1. independent Poisson sampling (IPS),
2. simple multinomial sampling (SMS)

and
3. product multinomial sampling (PMS).
If the sample size is unrestricted, the observed counts 

independently distributed Poisson variates. In this case
probability mass function (p.m.f.) of Y. . (i

‘l j A _)

ar e 
the 
is
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given by
P<Y. . =y. . )

«• l ‘l

<yu'exp<-fj. '}
where

<1) A = tO,lp...i

(il) l < y.. JA
if yt e A 
otherwise

<2>

When the observations are made over a period of time with no 
prior knowledge about the total number of observations, the 
distribution of the observed cell counts will be of the above 
type.

When the sample size N (= !J) is fixed the restriction on 
the fixed sample size Imposed on a series of independent Poisson 
distributions give multinomial distribution. Hence the mass 
function of Y^ <i e A^, j e Ag) is given by

P(Y = y. . )i j t j

where

f- —lI1]‘."ti-|<!'lt’
. II <y. .)! Ji.il n J
i, j

1 (y. .) <3)

(i) B = <yt|| yL. = 0.1

and

NS E yu = N h 
«i , i> 1

Cii) i Cy )B 'i I

sometimes 
theoretically a 
frequently have 
observations in 
sampling scheme.

' 1; if y_ « B 
0; otherwise

it may happen that though we are examining 
single group, in the experimental situations we 

several groups with the total number of 
each group are determined by the separate 
In such situations product multinomial sampling
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Is a suitable sampling scheme. To describe it explicitly we need 
to introduce the various terms like 'configuration*. Therefore 
we will not give the further details.

It is proved that under any of the above three sampling 
schemes sti.mates of the expected cell counts are same.This is 
because, ail the three distributions belong to one parameter 
natural exponential family and for ail the distribution cornel of 
the log likelihood is same. Hence in the further discussion we 
consider the independent Poisson sampling scheme. Bishop, & 
others (1975) discussed the conditions under which the direct 
estimates of the cell counts are obtainable. Birchfs (1963) 
iterative procedure of obtaining estimates of the expected cell 
counts for three dimensional contingency table when the direct 
estimates are not available can be used to fit a log linear 
model. As Bishop & others discussed the model fitting procedure 
explicitly, we will not discuss this method of fitting log linear 
model. However we have developed Independently a PC-based 
software package in FORTRAN-77 useful for three dimensional 
contingency table with each factor having at most seven 
categories (levels). Below we give one numerical example and fit 
the different log linear models to it.
Example 4.3 t This example is taken from Nelder & Uedderburn 
(19721. Maxwell (1961) discusses the analysis of a 5x4 

‘contingency table giving the number of boys with four different
• r

ratings for distributed dreams in five different age groups. The 
data are in the following table. The higher the rating the more 
the boy suffers from disturbed dreams.
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TABLE-4.17

Age in years 4 3
Rating

2 i Total

5-7 7 3 4 7 21
8-9 13 11 15 10 49
10-11 7 11 9 23 50
12-13 10 12 9 28 59
14-15 3 4 5 32 44

Total 40 41 42 100 223

We can fit four different types of '1 o,g-1 inear models stated 
below by considering age as first factor and rating as second 
factor. The ANODEV table for this‘problem looks as below.

TABLE 4.18

Model Description d. f. Deviance First differenc
Nul I 19 *94.6068
A 15 73.7673 20.6395
A + R 12 32.4571 41.3102
A+R+A.R 0 0 32.4571

Foot Note t- ’A* and fRv respectively denote the factors age and 
rating.

The conclusions can be drawn by comparing the differences 
with the table chi square value for suitable degrees of freedom. 
If the log linear model is viewed in different angle, since the 
Poisson distribution is a member of one parameter natural 
exponential family, the thory of generalised linear model will be 
straight way applicable to the log linear model. In the next 
section we discuss how this approach can be applied.
4.9 Log-linear model CNelder & Wedderburn Cl97233 i
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Suppose the response variate Y has Poisson distribution with 
mean fj. Here we discuss log linear model for two dimensional
contingency table only. Now suppose Y (i e A , j e A ) be thevj i 2
n realisations on the response variate Y. Reindex these 
observations as Y. (i=l,2,...,n) such that first J observations

*■ I

corresponds to the first sample, next J to the second sample and 
so on. In the same way reindex the parameters as jj. 
(i = 1,2, . . . , n) so that first J components of the vector y are fi , 
next J components are ju* and so on. Here

#4* * (1/J)£*!.. i for 1-1,..., I. .
j M

As we are assuming Poisson distribution to the responses, one of 
the possible link function is * log-link' function. This link 
function is given by,

T = . (2)
Now we give below the definition of log linear model.

Definition-5 : Log 1 inear mode 1 t Suppose the response 
variate Y is having Poisson distribution with parameter y. 
Suppose Y (i = l,2,..,,nl are n realisations of the response 
variate Y. Let &■ be the vectors of the known values of thejcovariates X. <j-1,2....,k) and £ = X£ be the linear
predictor.Then the model of the form,

T. = tn40. for 1-1,2,... ,n, (3)

with E(Y ) a fj., is called log-log model.I L
Fittlng a. log-log model s

The equation (3) gives
fj.t = exptT^). (4)

Differentiating equation (3) w.r.t. jit, we have

fdTr/d«0 - V*i , . <*)

J2.1*



*

Now equations <3.4-19) and <5) gives , th component of g as

Similarly.

*

from equations <3.4-18) and <6)

<0>

it is clear that,
(7) I

I

Once the expressions for Z. and W.. are obtained, a<l tllog-linear model can be fitted by using method described in sub! 
section <3.4.3). The initial estimates yto> of y can be taken as- 
< 1/J )E<yt.). If all the observations in any sample are equal to
zero, take the corresponding sample total as 0.5.

A FORTRAN-77 program given in Appendix-2<B) is useful to 
estimate p under this model.
Example 4.3 CCont. 51-

Data in table <4.22) is useful to study the relationship 
between stimulus variates X , X2 and the response variate Y. We 
can fit four types of log-linear models stated below, to the 
data.

Model <13) : E<Y ) = exp ip ). <8)t r o
Model (14) • E(Y) = exp <pQ+ ^X^). <9>
Model < 15) : E<Y.) = exp ip * p X. + p X. ) <10)
Model < 16) : E<Y ) « exp </3 + pX. + |3,X.. + /?X. X. ),(1Di O ill 2 i2 9 il 12

Once the model is fitted, it can be used to estimate the values
of Y., under the respective model. • »

Data in the table (4.22) is useful to study the relationship
between thq number of dreams (Y) and age group of boysCX^). If
the rating factor <X2) is taken as another explanatory variable,
the relationship between Y and X , X can be studied. Here none1 2
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of the covariate is at two levels. Let Y. be the number of
1

dreams for boys in different age groups. Then four log linear 
models for Y.are as stated in models (13) to (16).t

Executing program in appendix~2(B), to fit'the models (13) 
to (16) to the data from example (4.3)t parameter estimates 
obtained are given in the tables (4.19) to (4.22). At the bottom 
of table deviance is given. ‘ x

TABLE-4.19

Sr.No. Estimate Parameter

1 2.4114 INTERCEPT

Deviance = 94. 6075.

TABLE-4. 20

Sr.No. Estimate Parameter

1 2.3955 INTERCEPT

2 0.1264 AGE

Deviance = 87.551
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TABLE-4. 21

Sr.No. Estimate Parameter

1 3.1637 INTERCEPT

2 -0.1264 AGE

3 -0,3349 RATING

Deviance = 57.7147
TABLE-4. 22

Sr.No. Estimate Parameter

1 3.0643 INTERCEPT

2 0.5155
a

AGE

3 -0.3061 RATING

4 -0.1836 AGE.RATING

Deviance = 40.7375
Now the analysis of deviance table can be prepared as below
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ANODEV TABLE
TABLE 4.23

Model Description d.f. Deviance First difference
Nu 1 1 19 94.6075
AGE 16 87.5510 7.0565
AGE+RATING 17 57.7147 29.8363

AGE+RATING+A.R 16 40.7375 16.9772

Comparing the first difference with the table value of 
chi-square with appropriate d.f. conclusions can be drawn.

Difference between the procedures of fitting log linear 
model by the two different approaches is Bishop’s approaoh do not 
require the ’dummy’ covariates where as in Nelder’s approach the 
dummy covariates should be defined and their values though 
nominal should be provided.

While fitting generalised linear model to the data we are 
assuming that the response variate has a particular distribution 
from one parameter natural exponential family. Many times it is 
not possible to specify the underlying distribution oompletely. 
In such cases generalised linear model cannot be fitted. In the 
next chapter we discuss the models useful in such 
situations.
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