5. QUAST LIKELIHOOD MODELS

5.1 Introduction :

In chapter 2, the method of obtaining least square estimates
of the parameters in case of clagsical linsar model was
discussed. Least square method of estimation does not require
form of the distribution of response variate, but it only assumes
that variance of the response variate does not depend on on its'
mean and the systematic effects are linearly related. In chapter!
3, fitting genaralised linear model to the data 18 discussed. |
While fitting generalised Iinear model 1{t is assumed that.|
distributional form of the response variate ig known and 1is a
member of one parameter natural exponential family.

When distr}butional form of the response varlate 1s not
I'nown and variance depends on the mean or when we are- not sure
about the linearity of the systematic effects, we are unable to
fit either «classical linear model or generalised linear model by
using the procedures discussed in chapter 2 and chapter 3. In
such situations, when there is insufficfent information to
construct likelihood function, but the relat{onshlp between mean

and varfance is known, a new class of models called 'quasi

likelihood models’ (QLMs) can be fitted to the data. This new

class of models was introduced by Wedderburné1974). This chapter

is devoted to the discussion of this model. Purpose of this

chapter is to
(1) define the quasi likelihocod function and gtudy 1its

properties, .

(2) describe the model and the proceduretof model fitting,
L
(3) study the method of obtaining least mbsolute deviations

estimates of the model parametéers 1&. quasi likelihood :
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(4) define extended quasil likelihood funotion,
(5) describe general quasi likelihood model and model
fitting procedure,
and
(6) model fitting for over dispersed and underdigpersed
grouped binary data.

5.2 ¢ Quasi likelihood function ¢

The introduction of quasi likelihood function by UWedderburn
(1974) widened the scope of generalised linear models. To define
the quasi likelihood funotion some assumptions are needed.

Suppose that observations Yi(i=1.2.....n) on the response
variate Y are independent with mean H, and varisnce ¢V;i(pi).
where the variance function ViiQﬁ) is some known function which
depends on u only and ¢ iz the nuisance parameter. In addition
to this the following two assumptions are made.

i) uiis soms known function of the parameters 2 in the
model;

(i1 Vii(.) are identical funct}ons. though their arguments

and hence their values are different,
(iii) the dispersion parameter ¢ is congtant for all the
observations.

To make the meaning of first ¢two assumptions more clear,
below one illustration is given.
Illustration: Consider n Iindependent observations Yi(i=},2,...,n)
on the binary response variate. The loglistic 1link function
corresponding to Y‘(i=1.z.....n) is,

T = InCu, /C(1-p 1), (1)

Equation (1) along with the def!nition-or the linear predictor T
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gives,

7 i et ’ (2)
where the notations have their usual meaning. From equation (2)
it is clear that H,¢i=1,2,...,n) is a function of 8. Further,
as pointed out in table (3.2), we have
Vﬁ(yg =8 (1-u). (3)
Then, the wvariance functions are Iidentical, though their
arguments and hence their values are different. Further

discussion In this section is made by taking into account all the
three agsumptions. Now we define the quas! likelihood function.

Definition-1: Quasi likelihood function (Wedderbuyrn (1974)):

[f there are n independent observations Yi (1=1{,2,...,n), on the

response variate, the quas{ likelihood function for 1“‘

observation Y is defined as, . '
My
Q.L(pi_,\'.t) = I{tyi‘-' t11[¢vu(t)3} dt + h(yi). (4)

Y.
1 8

where h(y) ig some function of y alons. Equivalently equation

(4) can ba uwritten as
9 Ql(pi.Yi). (Y‘-pi) (5)

o, , AN

Moris (1882) has shown that if there is a distribution from
natural exponential family with the same variance function, there
exists an equivalent log 1likelihood () corresponding to the
quasi likelihood (Q) based on single observation. To verify this
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result, some illustrations are given below. In =all the
fllustrations, a single observation on the response variate |is
denoted by Y.

[llugtration 1. Norma] distribution

Suppose the response variate has N(p.aF) distribution.
Hence the log likelihood of (u,o°) is given by,

Lu, 0 1Y) = -In(2M0%1/72 - (Y- 271265, (8)

For N(u,az) distribution,ws know

.
¢ =< . 7
Viu) = 1
Hence equation (5) gives,
SmTmmImmses B oosesees (8)
au : o

Differentiating equation (6) w.r.t. u implies,

_gf.. = _SX;.;B.Z_ . (9)
. “ a
Comparison of the equations (8) and (8) show that, . i
' at  _ _aq_
One can obtain an expression for quasi likelihood function
(Q) by using equation (4). For example, iIin case of N(p,o?)
distribution,

u
Qlu, Y) [ {(y - t)/oz} dt + hi{y),
Y

-(Y-p) 7 (267, (11)
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Equation (11) i{s obtained by taking h(Y) = 0, Similarly In other
cases also quasi likelihood functions can be obtained. The table
below gives quasi likelihood functions for the digtributions in
table 2.2.

TABLE 5.1

Distribution Quasi like!ihooﬁ function Q{u;Y)

o b

Binary (Grouped) | m {YInCu/(1-p)) + lnCi-m)}

Poigson Yin(u) - u
Normal -(y-w1%7¢20™)
Exponential -{Y/u) - lnCu)

Gamma vl -(Y/u) - Intu)}

bt b’

Now, as n observations Yi(l=1,2,...,m) on the response
variate, are assumed to be Independent, the quasi likelihocod
function Q(u;Y) for the complete data set is given by,

QlusY) = § Qi(ui:Yi). (12)
L 3

Quasi likelihood function (Q) has many properties in common
with the log likelihood function. These common prbperties along
with some other important properties are stated below in the form
of theorems. The detalled proofs are aiso given.

5.2.1 Properties of quagsi likelihood function :

We club some properties of Q which are in common with the
log likelihood function (1) in the form of the theorem and then
give entire proof of the theorem.Now onwards whenever convenient
the subsciript "{’ will be dropped for simplicity.

Theorem S.1: Let Y be the single abservation on the response
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variate, and Q be as defined in equation (4). Then under the
above mentioned assumptions, Q has the following properties.
(1) E(3Q/an) = 0,

tii) E(an/a{aj) = 0,

(111) E[ caq/am)®] = - Ecd®qrau®) = 1/teve) 1,

(1v) E[ (Q/3p,)<30/80,)] = -E{o'qnapjaptn.
and
E[ (2Q/93;) (20/87)] = (1/C4VC) 1L CBu/8p,) (8p/003 1] . '

Proof ¢ From equation (5) we have,

= gl CY-u)_
() - o)

[eveiw)] HECY) -p}

= 0. (13)

£ -
. [..Qe {_QQ-}

= 0. (14)

Secondly consider,

Further property (iii) can be treated as special case of the

property (iv). Now to prove (iv), consider

E[ 2a/ap3,) <aq*‘/aﬁl)] E[ ¢oq/om)*1 [ (3u/p,) (Bu/3p)]  (15)
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(Y - w*
= E] ----==-- ;- |Uourapycaprap))]
(@Viu)) J

(1/(¢V(p)])[(deQQH(ap/Q%)]. (162
Finally,

-E[ 8*%Q/ (33,0479, 11

]

]

]
r—
g
-1
prmm——
”~ ”
* =<
=0
Tix

]
g2
|-—-‘
g

[ 1 o du ]
R e (U
(@V(u)) ani 835

Equations (16) and (17) combinedly proves the property (iv},

This property along with the equation (15) gives the proof of

the property (iii).

To see another important property of the quasi 1likelihood,
we prone the next theorem. . \
Theorem 5.2 ¢ Suppose ’Q' and ’{ denote respectively the quasi
!ikelihood. and log likelihood functions based on single

observation Y of the response variate. Then

holds 1ff the distribution of Y belongs to one parameter natural
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e

expounent {al family.
Proof t- First we prove that the condition is necessary: Then {t
is shown that the condition is sufficient.

Necesgary : Supposs,

-5 = 2. (18):

Hence by substituting value of (8Q/8u) from equation (5), above

equation becomes,

- CSRN § fol 2 B (19)

o V)

Integrating equation (18) w.r.t. u and putting

we obtaln

8O,;Y) = (L/@I[ YO - g(O)] + Blg;Y)

= ald) [YO - g8)] + B(giY), (20)

where a(g¢) = (1/¢) and B(d;Y) is the function of ¢ and Y only.
Tha log likelihood in the equa;lon (20) corresponds to the
distribution which belongs to the natural axponentia{ family.
Thus result (18) {8 ¢true only when Y comes from natural
exponential family.

Sufficient ¢ Suppose, the observation Y on the response variate
comes from one parameter natural exponential family, so that
equation (20) holds.

Differentiation of the equation (20) w.r.t. u gives,

. ¥

i ]
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28 L sy - g' (8)] {dO/du}.

Now, since g'(8) = u, a(g) = ¢ and (dusde) = V(u), above equation

can be written as,

8L _(Y-up)
a  PV(u)
- -2Q_
an

Thus, I{f Y comes from one parameter natural exponential family,
regult (18) holds.

After studying the properties of quagsi 1i{kelihood function
(Q), in the next section we discuss the quagi Iikelihood model
and the model fitting procedure.
5.3 1t Quasi likelihood model 3

Definition-2 : Quasgi likelihood mode | : Suppose
thi=1.2.....n) arg independent observations on the response
variate. Under this assumption,  Wedderburn(1974) defined the
quasi likeihood model as below.

(i E(Yl) = pL; iI=1,2i00.,n,

fii) ith (i=1,2,...,n) component of the linear predictor T

is,
L 3

T- = B°+ ? xijﬁi y

({i{i} Var(YL) = ¢ V‘i(pi); i=4,2,...,n,
and

({v) approximate link between u and T is given by
I = m(ECY)),

where the dispersion parameter ¢ is assumed to be congtant for

134



all obsevations and m(.) is strictly monotonic differtiable

funztion,

Fitting a quasi likelihood mode!l means to estimate the model
parameters 3 with the help of quasi 1likelihood function (Q).
Wedderburn (1974) called these estimates of 2 as quasi likelihood
estimates.

The theorem below gives the direction of computing quasi
likelihood estimates.

Theorem 5.3 ¢t The quasil likelihood estimates are same as weighted
least square estimates.

Proof $t-~ Proof of this theorem i{s very much gimilar to that of
theorem (2.1). Let Y be the single observation on response
variate. From theorem (5.1) we have the following two results.

E(aQsou) = 0, (1)
and

ECOQ/ou)° = -EC7Qrap®) = 1/1¢ Vw1, (2)

Using chain rule Iin differential calculus we can write
(OQIGQQ = (anlap)(dp/dT)(aTlaﬁf.

Substituting the value of (#Q/8u) from equation (5.2-5) 1in the
above equation, we have

Yop) _du
ar X.. (31

As per equation (5.2-17),
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al$)¥W X X, . (4)

here W is the weight given by
-4 [ du 2
W = (V@) {_af"}

Equation (3) can also be written i{n terms of W as,
2

T xr
Equation (3) can also be written in terms of W as,

al(d)W IX (Y-u)l
-4 = ..._‘f ..... :l.._..tl_.. . ¢5)
(du/dT)

The remaining proof goes in very similar way to that of
obtaining maximum likelihood estimates by using some numerical
methods in case of generalised linear models. Hence we repeat
few main steps of the remainder proof.

Suppose Yi(i=1.2.....n) are n independent observations on

the response variate Y. Hence, similar to the equation (3) we
get

aq(u3Y) {q(¢)txu(‘(i-pi) 1} du,

Vu (p‘)
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'r': (say). (8)

Generally, the equation T; = 03 (3=0,1,...,k) are non linear

in ﬂy and hence these equations are solved by iteration using

Newton-Raphson method. This method gives mu' approximation
the estimate of 3 as,

-1

2
Simy  _ “em-4) T*(m-ab __?_S_-
@ = @ 2 @=é¢m-g, * ap .ap ﬂ_“(m-t).
i

If the Fisher’s scoring method 1{s chosen {instead
Newton-Raphson-method to estimate 3, the equation (7) becomes

g g g _?ff.).[_fii.(.fi_:'fip_-}__f'f':_
i V.. ) a7, |pugmo
-1
: [a(:p){: (wux.‘jx“)]@ém_” 8)

Equation (8) can be written {n matrix form as,

[(X’w X)]e-ﬁ‘m_”,{é(m)} = X'W i‘m-”’

or in other Way,

-~ -1 -~
g™ = [cx'w x)] ,‘m_”.{x'w ;f'“‘”}, (91
2=0

where,
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Z=Xp ¢ ﬁfd(xrgi} . (10)

Thus estimates of 3 can be obtained by using equations (9)
and iterative weighted least square technique.

Note 1. Here it {s necessary to note that,the standard
errors of the quasil likelihood estimates and those for welghted
least square estimates may be different.

2. The deviance function D(Y;u) can also be written In terms

of quasi likelfihood function as,

DCY;u) = -2¢ [QCusY) - QY] (1

. i
The values of deviance functions under generalised linear model
and quasi likelihood model may be different. This is because, in
case of generalised 1I1inear models the wvalue of dispersion
parameter (¢) {s assumed to be known, whereas in case of quasli
likelihood models, ¢ is unknown nulsance parameter which is to ba
estimated. If the estimate of ¢ is close to 1ite true value,
Wedderburn (1974) suggested estimate of ¢ as,

~  [ECY -u)? A
= 1T TRtk

= —momd . (12)

Below we give one example to {1llugtrate the fitting of quasli
likelihood model.

Example 5.1 ¢ This example ig taken from Collett (1981), (For
complete description about the data see pages _2-3.) For thise
exmple the linear logistic model ig fitted to the data as all the
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required information {s available. In this example, supposet the
responses are proportions of the plants survived, instad of the
the number of plants survived. Further assume that, sample size
is common, but unknown. In the example, two explanatory varlates
are time of planting and length of cutting respectively. Note
that, responses are also binary. Thus, a quasl likelihood model

to be fitted can be described as,

(1) ECY ) = p 3 1=1,2,3,4,

(i ith (1=1,2,3,4) component of the linear predictor T is,

T; = po+ ? xijp, ’
and
(i{s) Var(Yi) = ¢ pi(l-p‘); i=1,2,3,4.

Now, 1f the canonical link

M,
T I » i=11213!4’
"

1-p, .

{s chosen then execution of the program given 1iIn Appendix-2(A)
with minor changes gives following results under the model

Iogit(?i) = ﬂo+ ﬁ‘xi‘+ nzxt‘ H

.i=1,2|3'4-
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TABLE-S. 2

Sr. Parameter Standard P t
Mo. (1) estimate error arameter
- T
0 -0.3038205 0.17654 INTERCEPT
1 " -1.4275420 0.22068 TIME
2 1.0176910 0.21921 LENGTH

Deviance = 1.010284
Mote : This data can be looked as a under dispersed binomial
data.

In the same way quasi likelihood model daescribed above can
be fitted by using diffarent link functions like complementory
log-log function and log-log function. Execution of the progran
in Appendix-2(A) give the results corresponding to these two link
functions also.

Bing (1993) gave some more’ discussion on the deviance
function for quasi{ likelihood models. Due to the time facing wve
have not studied it explicitly.

There are gsome other methods of estimating the model
parameters in quasi likelihood model., Below we discuss one of
them.

As discussed {n section (2.3), 'least absolute deviation’
approach to estimate the pa{ameters was introduced by Boscovich
in the year 1757, nearly forty yearg before the 1introduction of
leagt square approach. Hence, {t is naturally quite interesting
to see whether least absolute deviation approach can be used |in
quasi likelihood models instead of usual least square approach to
estimate the parameters. Morgenthaler (1982) discussaed how least
absolute deviation method can be used to fit quasi 1likelihood
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model. The next section is devoted to study it explcitly.
5.4 Least absolute deviation method for fitting quasi
likelihood model 3

Suppose Yi(i=1.2.....n’ are independent obsgservations on the
response variate Y with|% as the median corresponding to the
distribution of Yi. Let njlj=1.2.....k) be the vectors of known
values of the stimulus variates Xﬁj=1.z....,kl. Then the model
here is given by,

Ti= G(m_), (1)
1=1,2,...,0n, .
where

(1) G(.) is strictly monotonic differentiable function and Iis
a link function between m and @;

(§43) mei=1,2,...yn) is median of the distribution of Y .3

(3) Sl(mi) is the wuser supplied measure of variation for
median m .

As discussed earlier in section (2.3), in this method the

parameters are estimated so as to minimise,

T 1%, 7= s (2
------------ 3 >
. {st(m‘)l¢1/z> ' ,
While fitting model (1) the question {s whether (it |is
suitable for the data to be analysed. When the responses are
having discrete distributions, model ¢1) {8 not suitable. The

reason behind this is, for discrete distributions, median is not
a good function to use. Hence this model 1i{s appropriate only
when the responses are having tentinuous distribution.

Consider gradient corresponding to the guantity in (2). it
is given by,
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[Stm)] ""”{Sgntrm}.

Hence the estimating equations to estimate £ wunder L‘-fit by
using least absolute deviation principle are

x'cw'r""”{Sgncry} =0, (3)
where,
dm, 2
W, = [s.<m.)]““”’[~---‘-—] . (a)
| 7 3 1 8 dT
t

Note that, as for any arbitrary response Yi

E{Sgn( Y.l-mi_ )} = Q,

estimates using equations (3) are consisient. Morgenthaler
(1992) proceeds further to compute the variance of the estimates
under the additional regularity co;diticns.

Since this approach 1is suitable only for continuous
responses and we Qie more interested In discrete distributions,
we terminate this discussion.

For Wedderburn’s (1874) original quasi 1ikelihood function
(Q) , tests like likelihood ratio tests (dR éests), score tests
are useful for testing various hypotheses about the model
parameters and Iink functions as in cagse of .generalised Ilinear
models. But, ;one of these methods is useful for the comparison
of different ;ariance functions. Nelder & Pregibon (1887)
introduced the ﬁaw term, ‘'extended qua%i likelihood function
(Q*)’. This function is useful for the cohparison of different
varfiance functions also,
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5.5 Extended quasi likelihood function @

Suppose there is a single observation Y on the response
variate. Nelder & Pregibon (1987) constructed the extended quasi
likelihood function (Q%) such that, for known dispersion
parameter ¢, it is same as original quasi likelihood (Q). Hence
0" must be of the form,

Q' dsy) = Qlup, dry) + t*(¢;¥)
= -|-RSyiu) * s
= [ £ ] + ¢ (Psy). (1)

Melder & Pregibon chosen the function t'(¢;y) as,
£ piy) = -(1/72)In{2eViy)}, (2)

where V(Y) i{s the function of Y, obtained by replacing 'u® by 'Y’
in the variance function V(u). Thus extended quagi 1likelihood
function Q") is given by,

Q" (. Piy) = - (1/2)1n{zn¢vw1} - [—9%593—]. (3)

It {s easy to see that the estimates of u obtained by
maximising the extended quasi likelihood function (@) coinsides
with the usual quasi likelihood estimates of u. This i{s because
the extended quasi likelihood function (@) is a linear function
of the quasi likelihood function (Q).

As stated earlier, Moris (1982) has shown that, if there 1is
a distribution from natural exponential family with the same
variance function, there exists an equivalent log likelihood ({)
corresponding to the quasi Illkelihood (Q) based on single

observation. This result remains true for Q" in case of normal
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and inverse Gaussgian distributions. For gamma distribution,

q+

differs from log likelihood by a term depending on ¢ only. For

discrete distributions like Poisson, binomial we can show that
is approximately equal to the log likelihood. This fact will

+

aq
be

explicitly justified below. For this suppose Y is the single

observation on the dependent variable.
[llustration {. Normal digtribution :

Suppose Y has N(u,o®) distribution. The log likelihood
(p,aF) becomes,
Hu,0diy) = -~ In(2Mo™)/72 - (y-w 27¢(20%). (&)
For N(u,o") distribution, table (3.2) gives
@ = o2, V(u) = 1 and D(y;p) = (y-m)=. (5)

Using resgults (5), equation (4) becomes

L, p5y) = -(1/2)tn{zn¢\_f<y)} - [_95.32%&'2_]' (8)

which is same as Q'(pu,¢5y). Hence for N(p.a’l distribution,

@iy = Q¢ @iy, (7
[liustration 2. Gamma distribution :

Suppose Y has gamma digstribution with density

(u/u)’{exp-vy/m} yo~
f(ysu,p) = —--rom—mm e — e —m—em - I tyl,

for (u.» > 0). Hence, the log likelilhood function becomes

flu,v3y) = =Iln(C(p)) + vin(w) - »in(u) - (wy/u) + (y-i)ln(g)
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= —(1/2)ln(2ﬂy?/v) - vl -Inlysu) + (y-ud)ru] + g:(v),

(8)
where,
g:(v) = -p o+ (1/2) InC2M/) - In(T () + »ln() . (9)
From tablq (2.2) we have, ‘
& = 170, V) = u° and Deysu) = 2{-Inly/u) + Cy-p)/u}. (10)
With the help of (10), equation (8) can be written as
Lu,dsy) = QT (u,Q5y) + g:<1/¢’- (1

Thus in case of gamma distribution, extended quasi 1ikelihood
(Q*) differs from log likelihood by a term depending on ¢ only.

Illustration 3. Poigson distribution :
Let the observation Y be having Poisson distribution with

mean u. Therefore the log likelihood of u is
Lusy) = ~u 4+ yln(u) - in(y!l). (12)
Using Stirling's approximation, namely,
nt = ¢2in) 7 (aMexpi-nt, (13)

in equation (12) we get,

‘(p;y) = - + yln(p) - ln{(Zﬂy)u/z’Y‘w

expl(~-yl}
X -p o+ ylnu) -~ (1/2)In(20y) - ylnty) + ¥y
&= -(1/2)In(20ly) - {ylnly/p) - Cy=p)}. (14)

For Poisson distribution, the table (2.2) gives
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¢ = 1, Vu) = pn, DCysp) = 2{ylnlysu) - (y-p)}. (151

From equationg (14) and (15) it can be seen that, the gquantity on
r.h.s. of equation (14) is same as Q+(p,¢;y). Thus for Poisson
distribution,

L Husy) = QTG @iy, (16)
llustratfon 4. Binomial distributiow ¢
Assume that Y has B(m‘.p) distribution. Then the Ilog

lilrelihood based on single observation can be written as
» . m* [
fm ,p3y) = ln{ Cy} + ylnt(p) + (m -y)in{l-p), (17)

Using Stirling’s approximation and readjusting the terms,

equation (17) 'can be written as

em’, usy) = -c1/2) [ln("n) + ln{ ?-'-(5-“-5!-’-—}] + mitnim) - ylndy)
L » » »* m'—
- mo-y)intm -y) + yln(u/m ) + (m -y)ln{---;—-}
m
W »*
> -(1/2)1n{—g§¥5§-323-} —{%ln(y/u) + cm*-yiln[-m;ix-l},
-~ m -n
(18
with p = m*p. For B(m*,p) distribution it can be shown that,
o= 1, Vel = ptm -u)
. - - (19)
DCysu) = 2 ylnCy/su) + (m - yItn{(m - y)/7{m - )}]

Therefore, equations (18), (19) along with the definition of Q+

imply.
m,u5y) = QY Cm, u3y) (20)

Below in table (5.3), expressions for Q' corresponding to
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above foug distributions are written collectively.

TABLE-5. 3
Expressions for extended quasi likelihood

Dist. .

in case of single observation

-(1/2) tnC2My (m"-y)/m"
Binomial n2fy(m -y)/m 3

~[yinty/m+tm -yrinCim” -y1/¢n -u1)]

Poisson =(1/2In(2Ny)Y-{yin(y /) ~(y-u) }
Normal -c172)inczno® ) -cy-p1®rc20®
Gamma -(1/2)ln(znyz/v)—v{~ln(x/p\+[(y-p)/p]}+g:(yl

Note : While using Sti{rling’s approximation to replace factorial
notations (y!, say), one has to remember that as y approaches to
zero, Stirling’s approximation for factorial approaches to =zero
{nstead of unity. Hence 1{t {s better to use the folloﬁing
modified form in place of usual Stirling’s approximation. .iThe

new formula {3, ) *

(¢ Vg

vt = {2Mcy+o* ¢y expc-y).

Nelder & Pregibon (1987) have mentioned that ¢this approximatién
is better than Stirling’s approximation. '

’

Nelder & Pregibon (1887) have discusgsed the application of
extended quasi likelihood (@ . in pstimating non linear
parameters affecting the variance function. Here by ’'non linear

parameter’ we mean those parameters not included in the linear

predictor.

Quagi l!ikelihood models {iIntroduced by Wedderburn (1974)
requires variance function in the form Var(Y) = ¢ V(u). %his
requirement can be relaxed by using (< Suppose variance
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function is of the form,

Var(y) = ¢ Va(p). (21)

With this new variance function we have,

. De(y;p)
QQ(P-¢37) = - (1/2)ln{?ﬂ¢ve(yi} al laviat > il (22)
where,
ey = -pf-S¥zul_
De(y.p) = -2 Va‘“’ du. (23)

Nelder & Pregibon (1887) considered the family of variance

function as
Va(u) = n 16 2 0. (24)

It is easy to see that, for 0=0,1,2 the family (24) of variance
functions gives varlance functions corresponding to the normal,
Poisson and gamma distributions respectively. Thus for these
values of &, form of the deviance function is well known. For
other values of &, an expression for deviance function c¢an be
aobtained as below.

Using the form of variance function given in (24), equation

(23) can be written as,

Dy tysu) = -2 _SXégl- d
T )
i (1-9) u(2~-9) n
= ~2]-Y¥eeee. - =Y
(1-9) (2-8)
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t1-6) (2-9)

=z{[y(2'9’ - (2-8)yu + (1-9)u 17 [ (1-9)(2-91}

(25)

Thus for the family (24) of variance functionzs, formulae for

variance functions can be summarised as below.

r(y-u)2 s for & = Q

2{yln(y/ui=-(y-u)} 3 for 6 = 1
De(y;p) =
2{Cy- 0 7pu-Inly/p0} 3 for 8 = 2

(2-8) (1-8) (2-6
2[y 2-6)

.

~(2-8)yp +{1-8)u 178(1-81¢2-8)1; o.w.

To fit an extended quasi likelihood model by considering the
family (24) of varlance functions, we must be sure about
existance of the distribution which 1g a member of exponential
family for each possible value of 6. Tweedie (1881) has
discussed the distribution of variance function. He proved that
for non negative value of 8, exponential family exists. Thus
family (24) {s one of the proper family of variance functions.

After discussing extended quas{ Iikelihood function W,
the next step iIs to describe the respective model and the model
fitting procedure.

5.6 Extended quasi likelihood model 32
5.6.1 Defining a model :
This model can be defined as follows.
Definition-4 : Extended gquasi Jikelihood madel : For n

independent observations Yi (i=1,2,...,n) on the response variate
Y, an extended quasl likelihood model is same as joint model for
mean and dispersion. Hence, extended quasi likélihood model has
two parts, namely, model for mean and model for dispersion. Thus
extended quasi likelihood mode! can be described as below.
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{A) For the 1"'(1=1.2.....n) mean, mode!l specification is,

(1) E<Yi) = M,

(ii) i“‘ti=1.z.....nl component of the linear predictor T
is givan by,
'& = ﬁ°+ ?xuﬂj= m(pﬂ
and

(iit) Var(Yil = ¢hvu(“£"

Thus dispersion parameter changes. Changes 1in the disgpersion
parameter are taken into account by the model for digpersion.

(B)Y For the i"'(i=1.2.....n1 dispersion, model specification
is,
(G 9 E(di) = ¢,

(113 iu'¢i=1.2,....n1 compongnt of the linear predicetor (1)
for dispersion i{s given by,

»
4

L SR E;u"iyf = h'<¢‘).
and )

(iii) Var(dt) = 8 Vn(¢a),
where Vu(¢K) is the variance function corresponding to di'

In the model for dispersion, di (i=1,2,.+,+5sn) is a propsr
measure of dispersion, h‘t.) is the link function and‘ n isl the
digpersion linear predictor. :ﬁ (ij.l.....k') are the mode |
parameters and Ui (j=1,2,¢+.yk ) are the stimulus va:iatas for
digpersion model. Generally, the set Uj (j=1,2, ..,k V) is the
subset of X, (§i=1,2,¢e0.,k}.

5.6,2 Fitting a model :

For proper fitting of extended quasi Ilikelihood model, a
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cholce of dispersion variance function ig very 1important. In
dispersion model, the square of Pearson's residual (rp) or of
deviance residual (rn) is taken as a measure of dispersion. As
discusgsed in section (2.5) it {s clear that, {t i{s more suitable
to use deviance residual among the two. In some applications
Pearson'’s residual is used because of computational simplicity.
Now from equations (3.7-1) and (3.7-3) we have,

(y, ~p )2
(r:)i = {---l—-&—--} (1)
vti(ui)
and
2
(rn)i = Dy 3u 0. (2)

To fit an extended quasi{ likelihood model, expressions for
mean and variance of the dispersion responses (di) are required.
So we obtain these expressions.

It is eagsy to sgsee that for any of the two forms of
dispersion responses deseribed in equations (1) and (2), E(di)=0,
(for {=1,2,...,n). This fact can be justified as below.
Justification 1t

part-1 : Assume that the dispersion responses are of the

form given in equation (1), Then for any component (r:k
(i=14,2,...,n) we have,
2
2 (yi_pt)
E[¢)] =E {---=--%---
Pt V.. ()
[ 9 8 1 8

= Var(Y 1/V_ ()
T §8 3 A 3
= ¢@. (3
Part-2 1 Suppose, the dispersion responses are taken as

deviance residuals (r;).L (i=1,2,...,n?) as given in equation (23,
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Now to avoid confusions consider a single observation case. Note

that to behave Q" like log likelihood w.r.t. ¢, we must have

E(3Q°/8¢) = 0, and E(8°Q'78¢%) = -Ecaq*ragZ, a3

Equations (56.4-3) and (4) combinedly imply

whih gives ‘
E[DCY;id)] = ¢ (5)

Hence for n observations case we get for ﬁh dispersion responss,

E[D(Ytnﬁ)] = ¢ﬁ, for i=1,2,...,0. (61
Since
z § w=
[D(Yi.'pi.)] - (rn)‘- fDI‘ 1-—1.2.---.“.

the justification is copleted.

To obtain expressions for varlance, from equations (1) and
(2) it can be observed that, for normal responses dispersion
variasble d hass ¢x, distribution. Hence, var(d.) = 2¢7. For
non normal distributions this may not be the exact situation.
Thus if the responses are having non normal distribution, some
adjustment In responses (d‘) of the dispersion mode | is
necessary. If dt’s are taken as r: » adjustment is necessary for
additional variability in r: + In case of r: we show that no
adjustment is necessary. Pregibon (1888) has discussed some
adjustments. The same adjustments are discussed below in detall,

First we discuss about adjustment for additional variability
in r: » Though we are taking

Var(d) = 2¢f , i=1,2,...,1,

frequently the variance exceeds this value. To c¢ompute correct

variance, consider
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Vs r{( r:)t} =V, D [Va r(‘ri-ni)']

-2 2
(vi.i.(“i.,) [K4 + ZKz 1

-2 2
(Vu(‘ﬁ’) <2K;)[ 1 + p;/Z] ' 7 ‘

where ' a

(1) e, = K4/K: s iz the standardised fourth cumulant,

(ii) Kr(q=1.2.....) denote  the respective cumulants

corresponding to the response variate.

Since Kz = Var(Y‘). the equation (7) reduces to ¥
Var{(r). } = 2¢ (1+p./2) (8)
pi i 4 ’

For the variance in r: » the value of o,  is necessary. For

the oaoverdispersed binomial and Poisson distributions the
adjustment can be made {f the fourth cumulant of Y has some
pairticular relation with the gsecond cumulant. If the condition

-

= } > '
t> \;Kz, for r 2 2 (9

holds upto .fourth cumulant, then using

K, = ¢ V. (10)

- ()

¢ V(aVy au)

we have

~
L

2VCOV /70010407 du)
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\rl

= ¢3Cavs oo, (11)

Similarly, from the equation (9) we get,

K
+

K!'K
a2

n

e{-3a-covren v
-2 [-gg-(owaa)]}

o L)

(v 86, (121

i
lﬁ"
<
—~—
gl

"
'9-"
<

ot
8 @

Using the equations (8) to (12), the third and fourth

standardised cumulants (pa and e,! can be obtained as below,

K2y tr2
= J--3.0 '
Pq K©? N
2

- ¢a/z( av/80) /(V’/Z)
= ¢V /v, (13)
and
P, =.¥IV/00°)/V*

Sl L))

o)
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o)

= 20V () + Ap:. ' (14)

where V’(u) and V''(u) are repectively the partial derjvatives of‘ﬂ
V(‘J) w.!‘.t. H- ‘

Be}ow we obtain expressions for adjustment‘faotor (1493/21,'
corresponding to some well known distributions.

Illustration 1. Normal distribution : Suppose the response
variate Y has N(u.oP) digtribution. From table (3.2) we have,

@ = o and V) =1, (15)

Therefore from equations (13) and (14) we see that, P, = 0. This
implies,

(14p,/2) = 1. 1.
Illustration 2. Over dispersed binamial distributfon ¢ Let the
response variate Y i{s over dispersed B(m’,p) variate, Then the
variance of Y is given by,
Var(Y) = (¢*/m 1{ucm -0}, ' (17

It is oleap from equation (17) that,

¢ = & /m", and V) = {uim -}, ‘. (18)

Differentiating the variance'functlon V() in the equation (18)
w.r.t. u succe;sively, we obtain

Vi) = (m - 2w)
(19)

Vircu) = -2
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Hence from the equations (13), (18) and (18), we get

P

- “ L Y M) TR P "

) - oyt ' e ety '._- R I Vet :"'F."‘" h}"
- Pl -

which with thw help of equations (14) gives

»* 2
p‘ = -4(¢*/n&){ 1 4+ _Sm-sgg-)-—- }.
mlm —p)

Hence the value of (1+p;/2) becomes,

»
(4o, r2) = 1 + -2¢-- {--‘359—‘—131’3—}. (21
m

The variance of deviance residual (r:) can be obtained as.
follows. . ‘

2 il

By taking differtiation tuwice of the extended quasi

. }
likelihood <(Q%) given in the equation (5.4-3) and taking -
expectation using equation, we get - ¥

ecs?aroe®s = g 2.1 ceoly . DEYiEd_
(9°q" 78¢%) E{M[(2¢)+ i ]
= { [.E(Q.‘.Eiell-] . }
é 20 ] :
= ~C1/2¢°). (22)

Consider
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P i:*w ! -r-ugai—bk SR BEh Y
O e VT TS LIS P _DEYsud Tp
E(aa/a@o = E { ¢ 3é )+ s }ﬁ%
- "'2".1. "-. EaE o
2
= E { -0 S¥aw) } + (1/46%) - C1/28%. 2.
4¢ ’ " T

Now, according to the result (4), we have

ECo*asa¢™ = - ECoaso8)". . (24)
, Hence, from the equations (22) to (24) we obtain,: -’ :l: ,-Jﬁ?ﬂfﬂ
ECD®(Ysu)) = 3¢°. (25)

Thus the equations (5) and (25), it i{s olear that

Var(D(Y;u)) = 2¢°. 28)

. Thus gamma distribution with scale factor '2'fls‘appiop;!a€eﬁffbi"
digpersion model. By assuming this distribution ¢to dispersion
variates dJi=1.2.....n). the estimating equations _for @ and rd
are respectively; Ve e e ?Eié

——E—-—E--—- '-3&&—} M for j=0. 1,... ’ki . - (27)
i

{(di-eﬁi) aéi}' .
) MR Slabelelabde bt .-5;--' » for j'-"Olll.'"lk 5 . (28)

2 .
3 : ? o9 R e
3¢ " ‘Equations -(27): and :(28) ‘are the estimating’ “equations,~*
i provided E(d.) = ¢ and atleast V() = 2¢:. regardless of the

; distribution of responses Y.. For the dispersion model, most

4
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common link functicns are 1déntity and log link functions.

Algocithm for fitting extended quasi 1likelihood model s
same a8 that given for fitting generalised Iinear model with
varying dispersion in section (3.10). As mentioned earlier,
actual programming for the same is quite complicatad. The well
known software package 'GLIM' Is available to fit this model.

Az statea_in section (4.3), for over =dispersed or under
dispersed grouped binary responges quasi 4ikediﬁood model can be
titted. Below we discuss the Infitial steps of .this mgdel
fitting. )

S.7 Madel fitting for over dispersed and under dispersed grouped
binary dai.al H ' '

While fitting algrouped binary data, there are many causes
giving rise to the problem of over or under dispersion. The main
reason (s, the model taken has fewer termgs than requirement |{n
its systematic part. For example, in case of ’'factorial
experiments’, deletion of significant interactions from the model
may Indicate that the model {s inadequate. Another reason is
improper scale of the covariate. Final and very {mportant cause
is the dependence of obsgservations. Some times presence of few
outliers in the data may indicate that the data is over or under
dispersed. The under dispérsion case occurs rarely. Hence we
congider only the case of over dispersion.

5.7.1 Fitting a model to over dispersed grouped binary data :
Suppose the unobservable random variable Pi(i=1.2,...,n) are

independently distributed over the Interval (0,1] with mean and

variance of Pt(i=1.2.....n) are respectively,
ECP1 =M, & Var(P) = o'n_(1-1), 1)
T 1 9 1 8 T t.
Assuma that for given PL(=pi. sayl, Y: (i=1,2,...,n) has B(m:.pi)

distribution. For fitting a model, the unconditional variance-of
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. .
YL(i:I.E.....n) is necessary. To compute the unconditional

variance following well known results {n probability are

used (see e.g. Rohatgl (1988) page-170).
Result-1: If X and Y are two random variables, then

ECY) = E{E(Y|X)}
and
Var(Y) = E{Var(Y|X)} + Var{E(Y]|X)}

_ Using the above result in equations (2), we havg

] L ) »*
Var(?i) = EHVar(YiIPi)} + Var{E(Y{IPil}

Conslider,
E{Var(Y [P.})} = E{m P, (1-P,)
{VarcY [P} = Elm; P, R
= m{EC E(PZ)
= m {ECP, )-E(P} 1}
* L ] 2
= m i -[6 0 (L- )+A71}
" »
= mL{1-6" (1-1 1-1 ]}
= Il (1-1. )¢1-8"1,
L+ L %
and

Var{ECY; [P0} = Var(m P}

= m 2", (1-I.).
L % 1 %

With the help of equations (4) and (5), equation (2

written asg,

Var(Y:)

mI (1-M 1{c1-8")+m 0}
| 9 * + L 3

» LI
m,ﬂt(l-ﬂtl{1+9 (mi-ll}é

t

Hence,
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¢ = {149"({:-1)}. 33
i=4,2,...0 .
Note : 1If m: (i=}1,2,...,n) are equal and the common value Iis
m:. then from equation (7) we have, ]
¢, = ¢ = {140 -1} (8)
{=1,2,...1n

Thus in such situations extended quagsi likelihood model reduces
to a quasi likelihood model given by Wedderburn (1874). Thus
quasi likelihood model can be fitted to such type of data.

In the same fashion, the case of over dispersed Poigson
distribution can be handled by assuming unocbsevable random
varlablgs kb {i=1,2,...sn) having independent gamma distribution
with density function given in the equation ( 2.2-11) and for
given A, the responses Y (i=1,2,...,n) are independent Poisson
varjiates with respective parameters kv Then it can be shouwn
that the unconditional variance of Yt is,

Var(?i) = (;kilvkl + M (9
o ¥
In the next chapter, which {8 concluding chapter of the
dissertation we try to explain the procedure of data analysis by
fitting a model to {t by using the avalilable information.
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