
5.QUASI LIKELIHOOD MODELS
3.1 Introduction :

In chapter 2, the method of obtaining least square estimates 
of the parameters in case of clafsical linear model was 
discussed. Least square method of estimation does not require 
form of the distribution of response variate, but it only assumes 
th3t variance of the response variate does not depend on on its 
mean and the systematic effects are linearly related. In chapter 
3, fitting generalised linear modal to the data is discussed. 
While fitting generalised linear model it is assumed that, 
distributional form of the response variate is known and is a 
member of one parameter natural exponential family.

When distributional form of the response variate is not 
hnown and variance depends on the mean or when we are- not sure 
about the linearity of the systematic effects, we are unable to 
fit either ‘Classical linear model or generalised linear model by 
using the procedures discussed in chapter 2 and chapter 3. In 
such situations, when there is insufficient information to 
construct likelihood function, but the relationship between mean 
and variance is known, a new class of models called ’quasi 
likelihood models' (QLMs) can be fitted to t>he data. This new 
class of models was introduced by Uedderburn<^1974). This chapter 

is devoted to the discussion of this model. Purpose of this 
chapter is to

(1) define the quasi likelihood function and study its
properties, 1

(2) describe the model and the procedure^ of model f ittl-ng,
t(3) study the method of obtaining least Absolute deviations

estimates of the model parameters in. quasi likelihood 
model, ,
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(4) define extended quasi likelihood function,
(5) describe general quasi likelihood model and model 

fitting procedure,
and

<6) model fitting for over dispersed and underdispersed 
grouped binary data.

5.8 i Quasi likelihood function l
The introduction of quasi likelihood function by Uedderburn 

<1974) widened the scope of generalised linear models. To define 
the quasi likelihood function some assumptions are needed.

- Suppose that observations Y <i«l,2,...,n> on the response 
variate Y are independent with mean ^ and variance ^iL <aO • 
where the variance function V.. c#j.) is some known function whichU l
depends on ju only and 4> is the nuisance parameter. in addition 
to this the following two assumptions are made.

(i) is some known function of the parameters Q in the 
model;

(il) Vu<. ) are identical functions, though their arguments 
and hence their values are different,

Ciii) the dispersion parameter 4* is constant for all the 
observations.

To make the meaning of first two assumptions more clear, 
below one illustration is given.
1 1 lustration; Consider n Independent observations Y < i*,l, 2, . . . r n) 
on the binary response variate. The logistic link function 
corresponding to Y <i=1,2,...,n) is,

T. ■ inG-i. /<1 -v )). <1)L 1. I.

Equation <1) along with the definition of the linear predictor T
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gives,

• xp(/J ♦ E X- •/?■>' o . l | |
fj. a-------------J----------f (2)

1 l+exp(rt+ E X. ./3,> - IO . I J J J
where the notations have their usual meaning. From equation (2)

i

it is clear that ju ( i = l, 2, .. ., n) is a function of Q. Further, 
as pointed out in table (3.2), we have

V.. (fu.) = **. (i-fj. >. (3)U l t l

%

Then, the variance functions are identical, though their 
arguments and hence their values are different. Further 
discussion in this section is made by taking into account all the 
three assumptions. Now we define the quasi likelihood function.

Definition-It Quasi 1ikelihood function CNedderburn <1974)3* 
If there are n independent observations <i=1,2,...,n), on the 
response variate, the quasi likelihood function for ilh 
observation Yt is defined as,

Q. c/j. , Y. )I t L *cy.~ dt + h<y.Jft tt * t
j
Y.

<4)

where h(y) is some function of y alone. Equivalently equation 
(4) can be written as

9 Q. (p. , Y. ). <Y -p. ) <S)t t t t t
"* "" " "* "* "** "* *" *

9fj. 4>V. . <#i. )l u i
Moris (1982) has shown that if there is a distribution from 

natural exponential family with the same variance function, there 
exists an equivalent log likelihood (£) corresponding to the 
quasi likelihood (Q) based on single observation. To verify this

•)
Si'•A

_ i
‘ i4

\
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result, some illustrations are given below. in all the 
illustrations, a single observation on the response variate is 
denoted by Y.
11 lustration i. Normal distribution

Suppose the response variate has N<jLi,o’ ) distribution. 
Hence the log likelihood of (/j,*?2) is given by,

t<fj,er* | Y) = -lnC2no-2) /2 - <Y-ju>2/(2o'*l. (61

For N(^,«y2) distr ibution, we know

Hence equation (5) gives,

9Q(fitY) (Y-*j)
» 2 £/j a

(?)

(8)

Differentiating equation (6) w.r.t. fj implies,

9t _ (Y-y)
~ajf ~ 2 "" *^ a

Comparison of the equations (8) and C9) show that,

(9)

\

at <?q
ajf ~ ~ajj~m (10)

One can obtain an expression for quasi likelihood function 
<Q) by using equation (4). For example, in case of NCji.o'2) 
distribution,

Q(/i, Y) = j i<y - tl/o-2} dt + h(y),

Y
= -<Y-*i)/(2o-2). (11)
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Equation (11) is obtained by taking h(Y) = 0. Similarly in other 
cases also quasi likelihood functions can be obtained. The table 
below gives quasi likelihood functions for the distributions in 
table 2.2.

TABLE S.1

Distribution Quasi likelihood function Q<ju;Y)
Binary (Grouped) m*4YlnC*Li/<l-M>> + in(l-#i)*

Poisson Yin(jLi> - P
Normal - <y-#j)*/<2tf*)

Exponential - In(fJ)

Gamma v[-(Y/fJ> -

Now, as n observations Y (1=1,2,...,n) on the response 
variate, are assumed to be independent, the quasi likelihood 
function Q({j;Y.) for the complete data set is given by,

HiytV = E Q.<^. jYt). (12)
l

Quasi likelihood function (Q) has many properties in common 
with the log likelihood function. These common properties along 
with some other Important properties are stated below in the form 
of theorems. The detailed proofs are also given.
5.2.1 Properties of quasi 1 ike Iihood function :

We club some properties of Q which are in common with the 
log likelihood function (l) in the form of the theorem and then 
give entire proof of the theorem.Now onwards whenever convenient 
the subscirlpt *1’ will be dropped for simplicity.
Theorem5.lt Let Y be the single observation on the response
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variate, and Q be as defined in equation (4). Then under the 
above mentioned assumptions, Q has the following properties.

(i> E(3Q/##j> = 0,

tin E(9Q/ap.i = 0,
J

(iii) E[ (051/^)*] ■ - EC*2!!/^*) » l/C*VCji>],

<iv) E[ <aQ/ap.) <aq/ap,)3 = -EiaPn/<ap.ap n*
and

E[ <aq/ap.naq/ap)} = <i/c*vcm>i>[ v] . *
J ■ i <) ^

Proof x From equation (5) we have,
t

eOQ.I . E/.<Y:y>4
l J \ *V(/i) /

■ _i{E(Y)-*J*

= 0. (13)

Secondly consider,

* 0. (14)

Further property (ill) can be treated as special case of the 
property (iv). Now to prove (iv), consider

E[ (9Q/ty.) (aqlMft)] » e[ (*q/**i)2] [ ta^/ap.) tayi/ap )j us)
J l J L
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1

Finally,

-E[ 3* Q/(9(3.99/9(3^}

= E
r (y - fj)

[ <4>V(fj))

2
2 C (9fj/9ftj (9fj/9ftL)]J •

< 3 )[ (9(j/9ft.J(9fj/9ft )J • (16?J *

( 9 r <Y - tJ) 9fJ I Y
l^L <*VC#i>) 9ft J J

-eJ
9 1 9fj

(4>\t(fj)) 9ft.
;]

w r i ^11
3^.[<*V4i)> 9ftl J J

i

i

i 9fj 9jj 

<^V(fi)) 9fti 9ft.
(17)

Equations (16) and (17) combinedly proves the property (iv). 
This property along with the equation (15) gives the proof of 
the property (iii).

To see another important property of the quasi likelihood, 
we prone the next theorem. iTheorem S. 2 : Suppose ’Qr and 'V denote respectively the quasi 
likelihood and log likelihood functions based on single

i

observation Y of the response variate. Then

9t _ *Q 
~bfj~ ~ ~9fj~

holds iff the distribution of Y belongs to one parameter natural
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X
exponential family.
Proof t- First we prove that the condition is necessary* 
is shown that the condition is sufficient.
Necessary : Suppose,

91 *Q
~aj*~ ‘ ~ap~

Hence by substituting value of <9Q./9fj) from equation (5) 
equation becomes,

91 _ (Y-fci)
~9jf " '

Integrating equation (19) w.r.t. fu and putting

d#i * 9*

we obtain

UQ,4>\Y) = <1/^)[Y0 - g<0)] +

= «(0) [ Y0 - g(0>] ♦ ,
where a(0) = (1/^) and pl4>i Y) is the function of 4> and
The log like 11 hood in the equation (20) corresponds
distribution which belongs to the natural exponential
Thus result (18) is true only when Y comes from
exponential family.
Sufficient i Suppose, the observation Y on the response 
comes from one parameter natural exponential family, 
equation (20) holds.
Differentiation of the equation (20) w.r.t. gives,

Then it

(18)- 

, above

(19)

(20)
Y only, 
to the 
family. 
natural

variate 
so that
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= «<*>[ V - g' <©)] (d©/dMh
Now, since g’(0) = ju, et(^) * <f> and (d^i/d©) = V(/w), above equation 
can be written as,

at <Y-ju)
~ajj~ ~ ~4>\iZiu)“

Thus, if Y comes from one parameter natural exponential family, 
resuIt (18) holds.

After studying the properties of quasi likelihood function 
<Q), in the next section we discuss the quasi likelihood model 
and the model fitting procedure.
5.3 i Quasi likelihood model i

Definition-2 s Quasi 1 ike 1ihood mode 1 s Suppose 
Y^C i = l,2, . .. ,n) are independent observations on the response 
variate. Under this assumption, .Wedderburn< 1974) defined the 
quasi llkeihood model as below.

(I) E(Y ) = fj i i = l,2.....
L l

'ii) ilh <i=l,2....n) component of the linear predictor T
is,

and

t. ■ n + E x, ./), ,
I O T «• J J

(iii) Var (Y ) * 4> V . ifj. ) j i = l,2,...,n,t IL1

(iv) approximate link between jj and T is given by
I = m(E(YJ>,

where the dispersion parameter 4> is assumed to be constant for
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t

ail obsevations and m(.) is strictly monotonic differtiable
f 'in 3 K f on.
F i i £ a. I model (.QLfO :

Fitting a quasi likelihood model means to estimate the model 
parameters (3 with the help of quasi likelihood function (Q). 
Wedderburn (1974) called these estimates of Q as quasi likelihood 
estimates.

The theorem below gives the direction of computing quasi 
likelihood estimates.
Theorem 5.3 s The quasi likelihood estimates are same as weighted 
least square estimates.
Proof *- Proof of this theorem is very much similar to that of 
theorem (2.1). Let Y be the single observation on response 
variate. From- theorem (5.1) we have the following two results.

EtdQ/9^ = 0. (1)
and

EC«d/«M>2 = -EC3ZQ/3]U*> * 1/C^ VCfJ)l. (2)

Using chain rule in differential calculus we can write

<9Q./9(3.) = (dQ/ay)(dy/dT>(3T/*/3.).

Substituting the value of (9Q/9/J) from equation (5.2-5) in the 
above equation, we have

9Q
9(3 j

As per equation (5.2-17),

(Y-y2 dy „ <TV(y) “dT~ j (3)
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1 w m L L
» *■

- —-i- r-ft-iY*.
*v<ji> L dT J J 1

= a<*)W X .X, .J L
here W is the weight given by

w = <v(jui>"4{-S[y~}*

Equation (3) can also be written in terms of W as,

*Q _ (Y-yJ dju 
9ft~ " _0"V(£j ”5f" j'

Equation (3) can also be written in terms of W as,

(4)

*Q
9ft

{d<^)W tX^fY-M) 3"I 
(dju/dT) J

(5)

The remaining proof goes in very similar way to that of
obtaining maximum likelihood estimates by using some numerical
methods in case of generalised linear models. Hence we repeat
few main steps of the remainder proof.

Suppose Yt<i=1,2,...,n> are n independent observations on
the response variate Y. Hence, similar to the equation (3) we 
get

atKyjY) f«(^)CX. .<Y.-#i. )31 d*i.c - J Util l



= T (say).J <6)

Generally, the equation T . * 0? <jB0,1,...,k) are non linearJin (?and hence these equations are solved by iteration using 
Newton-Raphson method. This method gives m approximation of 
the estimate of Q as,

[i m > _ ll m- 1 > _ r_* < m- i ) "| *«Q
,<m-4>

If the Fisher’s scoring method is chosen instead of 
Newton-Raphson-method to estimate (?, the equation <7) becomes

£<m> = + L f ’11Ill V. . (#i. ) J dT.
' it t * i

[a<*>E cw..«. .*. ,)1 .L r '“l'1 Je=(3 (6)

Equation (8) can be written in matrix form as,

[<X’W X)] * X’W

or in other way,

Qim’ = £<X»W X)J |x’W <91

where,
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(10)z = *G ♦ {*=•"*<!-«>

Thus estimates of (3 can be obtained by using equations (9) 
and iterative weighted least square technique.

Note 1. Here it is necessary to note that,the standard 
errors of the quasi likelihood estimates and those for weighted 
least square estimates may be different.

2. The deviance function D(Yjy) can also be written in terms 
of quasi likelihood function as,

D(Y.jy> = -24> [QfyjY) - Q<Ii3M] . (ID
t

The values of deviance functions under generalised linear model 
and quasi .likelihood model may be different. This is because, in 
case of generalised linear models the value of dispersion 
parameter (flfr) is assumed to be known, whereas in case of quasi 
likelihood models, 4> is unknown nutsanoe parameter which is to be 
estimated. If the estimate of ^ is close to Its true value, 
Uedderburn (1974) suggested estimate of 4> as,

V . <Ai. ) J
iii

1Cn^l)

X2
(n-k'-l) ‘ (12)

Below we give one example to illustrate the fitting of quasi 
likelihood model.
Example 5.1 t This example is taken from Collett (1991). (For 
complete description about the data see pages 2-3.) For this 
exmple the linear logistic model is fitted to the data as all the
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required Information is available. In this example, suppose! the 
responses are proportions of the plants survived, instad of the 
the number* of plants survived. Further assume that, sample size 
is common, but unknown. In the example, two explanatory variates 
are time of planting and length of cutting respectively. Note 
that, responses are also binary. Thus, a quasi likelihood model 
to be fitted can be described as,

<i) E(Y ) = p 5 1-1,2,3,4.
L L

Cii) ilh <i=l,2,3,4) component of the linear predictor X. Is,

and

T - ft* £ X. .ft ,
i O T t | |

«J

till) Var < Y. ) )| i = 1,2, 3,4,

Now, if the canonical link

T , i=l,2,3,4;

is chosen then execution of the program given in Append!x-2(A) 
with minor changes gives following results under the model



TABLE-5.2

Sr.
No.(1)

Parameter
estimate

Standard
error Parameter

0 -0.3039205 0.17654
• i

INTERCEPT
1 -1.4275420 0•22069 TIME
2 1.0176910 0.21921 LENGTH
Deviance = 1.010284

Note : This data can be looked as a under dispersed binomial 
data.

In the same way quasi likelihood model described above can 
be fitted by using different link functions like complemontory 
log-log function and log-log function. Execution of the program 
in Appendix-2<A) give the results corresponding to these two link 
functions also.

Bing (1993) gave some more* discussion on the deviance 
function for quasi likelihood models. Due to the time facing we 
have not studied it explicitly.

There are some other methods of estimating the model 
parameters in quasi likelihood model. Below we discuss one of 
them.

As discussed in section (2.3), ’least absolute deviation’ 
approach to estimate the parameters was introduced by Boscovich 
in the year 1757, nearly forty years before the introduction of 
least square approach. Hence, It is naturally quite interesting 
to see whether least absolute deviation approach can be used in 
quasi likelihood models Instead of usual least square approach to 
estimate the parameters. Horgenthaler (1992) discussed how least 
absolute deviation method can be used to fit quasi likelihood
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model. The next section Is devoted to study it explcitly.
S.4 Least absolute deviation method for fitting quasi 
likelihood model l

Suppose Y <i*l,2,...,n) are independent observations on the 
response variate Y with m. as the median corresponding to the 
distribution of Y^ Let jr <j=l,2,...,k> be the vectors of known 
values of the stimulus variates j = l, 2,. .. , k). Then the model
here is given by,

where

T, = G(m. ),\ «.
1=1,2,...,n,

U>

(1) G(.) is strictly monotonlc differentiable function and is 
a link function between nt and Qt 

(2> m <i=l,2,...,n> is median of the distribution of Yt5 

(3) Si<ml> is the user supplied measure of variation for 
median m .

I

As discussed earlier in section <2.3), in this method the
• *

parameters are estimated so as to minimise,

z . 
i U St(mi)J

<21

i»]
While fitting model <i) the question is whether it is 

suitable for the data to be analysed. When the responses are 
having discrete distributions, model (-1) is not suitable. The 
reason behind this is, for discrete distributions, median is not 
a good function to use. Hence this model is appropriate only 
when the responses are having Continuous distribution.

Consider gradient corresponding to the quantity in (2). it 
is given by,
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[S<nL>] ”“''*>|sgn<iL-!n)J.

Hence the estimating equations to estimate /3 under L -fitA
using least absolute deviation principle are

by

X’<wV‘~2>{sgn<z.-,n>} = S» ,

where,

W*. ■ [ S. (m.)]
l l t l m

(3)

(4)

Note that, as for any arbitrary response Y.

E^SgnCY.-noJ = Q,

estimates using equations (3) are consistent. Morgenthaler 
(1992) proceeds further to compute the variance of the estimates 
under the additional regularity conditions.

Since this approach is suitable only for continuous 
responses and we are more interested in discrete distributions, 
we terminate this discussion.

For Uedderburn’s (1974) original quasi likelihood function 
(Q) , tests like likelihood ratio tests <LR tests), score tests 
are useful for testing various hypotHeses about the model 
parameters and' link functions as in case of .generalised linear

I ""

models. But, none of these methods is useful for the comparison 
of different variance functions. Nelcfer & Pregibon (1987) 
introduced the new term, ’extended quas,i likelihood function 
(Q+)’. This function is useful for the comparison of different 
variance functions also.
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5.5 Extended quasi likelihood function t
Suppose there is a single observation Y on the response 

variate. Nelder & Pregibon (1987) constructed the extended quasi 
likelihood function (Q*l such that( for known dispersion 
parameter 0. it is same as original quasi likelihood (Q). Hence 
Q* must be of the form.

Q+(ju,^jy) = Q(/J,^iy> + £*(^iy)

--- ♦ ?•<*,„,. <n
Nelder Si Pregibon chosen the function ?*(^>}y) as,

' \

?*(*jy) = -<l/2)in{2TtyVCy)F, (2)
i

where V(Y) is the function of Y, obtained by replacing 'ju* by 'Y* 
in the variance function V(^t). Thus extended quasi likelihood 
function <Q+) is given by,

Q*= - Cl/2>in|2n^V(yi

It is easy to see that the estimates of y obtained by 
maximising the extended quasi likelihood function (Q+) coinsides 
with the usual quasi likelihood estimates of g. This is beaause 
the extended quasi likelihood function (Q-1’) is a linear function 
of the quasi likelihood function (Q).

As stated earlier, Mari's (1982) has shewn that, if there is 
a distribution from natural' exponential family with the same 
variance function, there exists an equivalent log likelihood (l) 
corresponding to the quasi likelihood (Q) based on single 
observation. This result remains true for Q* in case of normal

D(yiy) (3)
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and inverse Gaussian distributions. For gamma distribution, Q+ 
differs from log likelihood by a term depending on 0 only. For 
discrete distributions like Poisson, binomial we can show that Q* 
is approximately equal to the log likelihood. This fact will be 
explicitly justified below. For this suppose Y is the single 
observation on the dependent variable.
11 lustration i. Normal distribution s

Suppose Y has N(ju,o>*) dis-tribution. The log likelihood of 
</u,*y2) becomes,

f(ju,o>*sy) = - in<2n«y*)/2 - (y-/j)*/(2©'*) . (4)
For N(fjfe'X) distribution, teble (3.21 gives

4> = <y2, VC/u) = 1 and D(yip) = (y-p)*. (5)

Using results (5), equation (4) becomes

% 1 ■ -Cl/2>ln|2n^V(y) J D<y ffj) 
2j> ” (6)

which is same as Q+(^,^;y). Hence for N(#j,o-z) distribution,

I 11ustration 2. Gamma distribution :
Suppose Y has gamma distribution with density

for

(u/*j)v{exp(-i>y/*i)} y-t
f(y;^,v) = ------------------------

T<v)
</j.v > 0). Hence, the log likelihood 

H/j* i-”; y > = -in<r<v)) + vin(v) - vln(ju)

I (y 1 , (o.fib

function becomes

<vy/ju) + (i>-l)in(y)- I

144

l



where.

= - ( i/2) inCzriy2/i>} - i>t-ln(y/*i) + (y~fj)/fjJ + g*(v),

(6)

g*(v) » -v + (1/2) ln(2n/v> - lnCr<v)) + i>tn(v) „ <9J

From table (2.2) we have,

<t> = 1/u. V(ju) = fj* and D(ys/u) * 2{-ln(y/ju) + (y-ji)/^}-, (10)

With the help of (10), equation (9) can be written as

/(/i,<£;y) ■ Q+(Ai,«fr;y) + g*(l/^). dl)

Thus in case of gamma distribution, extended quasi likelihood 
(Q+) differs from log likelihood by a term depending on 4> only.
11 lustration 3. Poisson distribution :

Let the observation Y be having Poisson distribution with 
mean /li. Therefore the log likelihood of fj Is

Ufi|y) = -fj + ylrt(ji) - In(yl). (12)

Using Stirling’s approximation, namely,

n! S <2nn><*''*>Cnn>expf-r|, (13)

in equation (12) we get,

*(fijy> S -/li + yln(fj) - ln{(2ny),4y,2,y<y>exp(“y»}■

3S -/i + yln(/u) - (l/2)lnC2Tly> - yln(y) + y

2S - (1/2) ln(2fly) - {yln(y//J) - (y-ju)J. (14)

For Poisson distribution, the table (2.2) gives

145



$ B i» VC/J) ■ Vt D(yj^i) ■ 2{yln(.y/tO - (y-)i)h <151

From equations (14) and (15) It can be seen that, the quantity on 
r.h.s. of equation (14) is same as Q*<jLi,^;y). Thus for Poisson 
distrIbution,

y) = Q (16)

11 lustration 4. Binomial distribution’ s
*

Assume that Y has B(m ,p) distribution. Then the log 
likelihood based on single observation can be written as

<<m*,p}y) a ‘ln^m Cy^ + yln(p) + (m*-y)In(1-p) (17)

Using' Stirling’s approximation and readjusting the terms, 
equation (17)-can be written as

SE -Cl/2) £lnC2.n) + ln|-^---j---JJ 41 4ft
+ m tn(m ) - yin(y)

4ft 4ft 4» 4ft
- <m -y)ln(m -y) + yin(/J/m ) + (m -y)i

as -(l/2)lnj- —-fylnCy//j) + (m*-yUnf-a;=*“]}.

l m J v. !- m -ju -U
(18)

with fj = m p. For B(m ,p) distribution it can be shown that,

<P ~ 1, V(ft 1 = v(m -#i)

D<y;/j) = 2[yln<y/M) + <m*- y)in{(m*- y)/(m*- iu)ft] } (19)

Therefore, equations (18), (19) along with the definition of Q 
imply,

f(m,#ijy) = Q (m.iujy) (20)

Below in table (5.3), expressions for Q corresponding to
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above four distributions are written collectively.
TABLE-5.3

Di st.
Expressions for extended quasi likelihood

in case of single observation

B i iinm i a 1
-(1/2)lnC2ny(m*-y)/m*>

-[yln<y/m + (m*-y> inC<m*-y )/(ra*-)ui>]

Poisson -(1/2)ln(2ny)-4ytn(y/M)-<y-^)>
Normal -U°/2Hn(2rio'2)-(y-*i)2/(2«'* 1

» ,

Gamma - (1/2) lnC2riy2/v>-v|-ln(y/ju)+-C ty-fjl/fjJ }+g*<v)
i 1 I, '

Mote : While using Stirling’s approximation to replace factorial 
notations (y!, say), one has to remember that as y approaches to 
zero, Stirling’s approximation for factorial approaches to zero 
instead of unity. Hence it is better to use the following

nmodified form in place of usual Stirling’s approximation. ,T^e
a Inew formula is,

44 >9) vy! 3S -{211 (y + c )}■ Cy.)expC-y).
Nelder & Pregibon (1987) have mentioned that this approximation 
is better than Stirling’s approximation. ' •

Nelder & Pregibon (1967) have discussed the application; of 
extended quasi likelihood (Q+) . in estimating non linear 
parameters affecting the variance function. Here by ’non linear 
parameter’ we mean those parameters not included in the linear 
predictor.

Quasi likelihood models introduced by Wedderburn (1974)
trequires variance function in the form Var(Y) = ^ V(^li). This

requirement can be relaxed by using Q+. Suppose variance
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function is of the form,

Var <y) = ^ Vg(/u).
With this new variance function we have.

<21)

y) = - Cl/Z)lnpn^V0<ylLn|zn^V0<ylJ -

where,
Vy!#J) = -zf-"*™- du. 

J 0

De<y
2$ (22)

(23)

Nelder & Pregibon (1987) considered the family of variance 
function as

Ve<*4> = ju® id > 0. <24)

It is easy to see that, for 0^0,1,2 the family (24) of variance 
functions gives variance functions corresponding to the normal, 
Poisson and gamma distributions respectively. Thus for these 
values of 9, form of the deviance function is well known. For 
other values of 9, an expression for deviance function can be 
obtained as below.

Using the form of variance function given in (24)*, equa'tlon 
(23) can be written as,

= du9 j ^9^

= -2
(1-0)_yy___

(1-0)

(2-0) u____
(2-0) y
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=2^[y<2"0) - <2-eiy*/1-01 4 ci-0)^<2"0,3 / [ <1-0) (2-eiJ

(25)

Thus for the family (24) of variance functions, formulae for 
variance functions can be summarised as below.

Vyf^

2
(.y-fj) ; for S = 0

2{yln(y//u)-(y-M)} I for © = 1 

2{ (y-ju)/ju-in<y/ju)} ; for 0 = 2

2[ y(2_0)-C2-0)yfu<1'0)4{i-0)p<2"0)] / {( 1-0X2-©)) i o.w.

To fit an extended quasi likelihood model by considering the 
family (24) of variance functions, we must be sure about 
existance of the distribution which is a member of exponential 
family for each possible value of ©. Tweedie (1981) has 
discussed the distribution of variance function. He proved that 
for non negative value of ©, exponential family exists. Thus 
family (24) Is one of the proper family of variance functions.

After discussing extended quasi likelihood function <Q*), 
the next step is to describe the respective model and the model 
fitting procedure.
5.6 Extended quasi likelihood model t 
5.6.1 Defining a mode 1 :

This model can be defined as follows.
Definitlon-4 s Ex tended quasi 1ike1ihood mode 1 : For n 

independent observations Y (i=l,2,.,.,n) on the response variate 
Y, an extended quasi likelihood model is same as joint model for 
mean and dispersion. Hence, extended quasi likelihood model has 
two parts, namely, model for mean and model for dispersion. Thus 
extended quasi likelihood model can be described as below.
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n> mean, model specification is,(A> For the l*’’ (1 = 1,2

(I) EtY^ =

(ii) ilh (i=l,2,...,n) component of the linear predictor X 
Is given by,

T. * ft * Ex../?. ■ m(/J. )t o “ if j i
and

(111) Var<Y. ) m 4> v (r ).i i ii i
Thus dispersion parameter ohanges. Changes in the dispersion 
parameter are taken into account by the model for dispersion.

<B) For the ilh <i=l,2,...,n) dispersion, model specification 
is,

<i) E(d.) ■=
(II) llh (i=l,2,...,n) component of the linear predictor (g) 

for dispersion Is given by,
«K”i = * EVl = h 'A1'

and
(ill) Var < d ) = S V <$. ),l D i

where V (^ ) is the variance function corresponding to d^.
In the model for dispersion, d. (i=l,2,,..,n> is a proper

measure of dispersion, h (,) is the link function and # is the
* * 1dispersion linear predictor. y. (j=0,1,. .,, k > are the model• Iparameters and U. ( j = l,2,.,.,k ) are the stimulus variates for) * dispersion model. Generally, the set U. (j=l,2,..,,k ) is the

J
subset of (j=l,2,...,k).
5.6.2 Fitting a mode 1 s

For proper fitting of extended quasi likelihood model., a
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choice of dispersion variance function is very important. In
dispersion model, the square of Pearson’s residual (r ) or ofpdeviance residual (r&> is taken as a measure of dispersion. As 
discussed in section (2.5) it is clear that, it is more suitable 
to use deviance residual among the two. In some applications 
Pearson’s residual is used because of computational simplicity. 
Now from equations (3.7-1) and (3.7-3) we have,

Cr*>.p i l vil<v j a)

and
Cr!>. * D. (y. w.in
D i L i L (2)

To fit an extended quasi likelihood model, expressions for 
mean and variance of the dispersion responses (d^ are required. 
So we obtain these expressions.

It is easy to see that for any of the two forms of 
dispersion responses described in equations (1) and (2), E(dL)sO, 
(for I»l,2,...,n). This fact can be justified as below. 
Justification i

part-1 : Assume that the dispersion responses are of the
form given in equation (1). Then for any component (>*>.p 1(i=l,2,...,n) we have,

{(y. -ju )*

V. . <fj. )
11 ».

= Var (Y. 1/V.. (fJ. )
V U l

■ 4> . (3)i
Part-2 » Suppose, the dispersion responses are taken as 

deviance residuals (i = 1,2,...,n) as given in equation (2).
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Now to avoid confusions consider a single observation case. Note 
that to behave Q* like log likelihood w.r.t. we must have

E<dQ*fd4>) = 0, and = -E<0Q+/d<£)1 2. (4)

Equations (5.4-3) and (4) combinedly imply

> +I c *y J °’
whi -'.h gi ves

E[ D(Ysp)] - 4> (5)
• lhHence for n observations case we get for i dispersion response

E[D(Yiim1>1 = for i«1.2,....n. (6*
Since

[D<Y1iju1)1 = (r*>t for i=l,2,...,n,
the justification is copleted.

To obtain expressions for variance, from equations (i) and
(2) it can be observed that, for normal responses dispersion2 * 2 variable d has 4> X distribution. Hence, Var(d.) = 2<f>. , Fori i i i, i

non normal distributions this may not be the exact situation.
Thus if the responses are having non normal distribution, some
adjustment in responses (d ) of the dispersion model is

2necessary. If d ’ s are taken as r , adjustment is necessary for
1 2 ^ 2additional variability in r In case of r we show that nop oadjustment is necessary. Pregibon (1968) has discussed some 

adjustments. The same adjustments are discussed below in detail.
First we discuss about adjustment for additional variability 

in r* . Though we are taking
Varid^ = 2^* , i*l,2,...,n,

frequently the variance exceeds this value. To compute correct 
variance, consider
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>

V,r{Crp)J ’ CV.^^O^fv^CY.-„.)']
= CV..(R)>‘2 [ K + 2K* ]M. t 4 2

= CV.. <<li. O'* <2K*)[ 1 ♦ PJZ\ , (7)II I 2 4

where *,
2Cl) P4 = K4/Kz > is the standardised fourth cumulant.

(ii) K fr=l,2,...»> denote ' the respective cumulants 
corresponding to the response variate.

i

Since K = VarCY ), the equation (7) reduces to 42 i
Var^Cr*)L| = 2£*Cl+P4/2). CB)

For the variance in r* , the v^lue of P4 is necessary. For
the overdispersed binomial and Poisson distributions the 
adjustment can be made if the fourth cumulant of Y has some 
paiticular relation with the second cumulant. If the condition

K , = K'K. for r > 2 * (9) *<r+i» r 2

holds upto .fourth cumulant, then using
K = <t> V. CIO)2

we have
K. ■ {-!p-t }

* *2vc*v/*eJCde/dp>
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* *2C<m
Similarly, from the equation (9) we get,

K = K'K 4 a 2

* *’v{-f#-[-r<i,v/ae5]}

■ 4>\^y/0dz-). cizi
Using the equations (9) to (12), the third and fourth 
standardised cumulants ip and p l can be obtained as below.S 4

= av/#?>/<

= ^1X2CV' (13)
and

p4 =. <Ka2v/a©*vv2

t.

V*
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- ?M-HvVw]}.
* + 4p*. (14)

where V* (p) and Vf'(p) are repectively the partial derivatives of
*

V(p) w.r.t. p.

Below we obtain expressions for adjustment factor (l+p^/21, 
corresponding to some well known distributions.
11 lustration 1. Normal distribution s Suppose the response 
variate Y has N(p,<y2) distribution. From table (3.2) we have,

4> ■ c? and V(p) =1. (15)

Therefore from equations (13) and (14) we see that, p4 = 0, This 
implies,

(l+P4/2) = 1. (16)
11 lustration 2. Over dispersed binomial distribution i Let the

*
response variate Y is over dispersed B(m ,p) variate. Then the 
variance of Y is given by,

Var(Y) = (^*/m*)-(p(m,,l-p)>. (IT)

It is oleap from equation (17) that,

4> B ^*/m*f and V(p) = {p(m*-p)J-. i (18)

Differentiating the variance function V(p) in the equation (16) 
w.r.t. p successively, we obtain

V' (p) = (m*- 2p) 

V»»(p) = -2
(19)
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Hence from the equations (13), (18) and (18), we get

i (»*> L Jy

which with thw help of equations (14) gives

2
fj ( m -p)

}■

(20)
.<’• ' IV

Hence the value of (l+p^/2) becomes,

(l+P4/2) * 1 +
_2**_ fi:§p(_irP2_l 
m* I P<l-PJ J' (2U

The variance of deviance residual (r ) can be obtained asa
follows.

By taking differtlatlon twice of the extended quasi 
lihood <Q+) given in the e 

expectation using equation, we get
+ - llikelihood (Q ) given in the equation (5.4-3) and taking

E(aV /*£2) a E{ 4"[ "c‘2f
0 + .D(Yiy)

2** 1}
{- • -i?,}

Consider
* -Cl/2* >• (22)
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i • Dfr.uT'vl^
1 ;* ‘ *.*}, X? l ■ 2^ ‘

f _9!<Vitf)„ 1 l **4 J + CIM*4) - Cl/Z^*). (23).

Now, according to the result (4), we have

E(0*Q/a**> = - EC*Q/W2.
Hence, from the equations (22) to (24) we obtain,*.

E(D*(Y|/J)> * 3**.

Thus the equations (5) and (25), it is dear that
Var(D(Y|*i)> = 2<p*.

(24)

y:i~ *•.
(25)

(26)

Thus gamma distribution with scale factor *Zr-is' appropriate --*foi 
dispersion model. By assuming this distribution to dispersion 
variates dt< i = l, 2,..., n), the estimating equations .for (3 and £ 
are respectively; . •\y ,Mv<■’- >' *V;

t {
for j=0,1,...,ki (27)

for j-0,i,...,k i (26)
W« :}

' ’-Equations (27) . and : (28) are the eati'ma'iihg' 'equations^*’ 
provided E(di) = ^ and atleast V^i^) = 24>*, regardless of the 
distribution of responses Y., For the dispersion model, most
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common link functions are Identity and log link functions.
Algorithm for fitting extended quasi likelihood model is

same as that given for fitting generalised linear model with
varying dispersion in section (3.10). As mentioned earlier.
actual programming for the same is quite complicated. The well
known software package ’GLIM' is available to fit this model.

As stated in section (4.3), for over dispersed or under 
* 1dispersed grouped binary responses quasi •likelihood model can be 

fitted. Below we discuss the initial steps of .this model
• l

fitting.
5.7 Model fitting for over dispersed and under dispersed grouped

* i ■binary data I
While fitting a grouped binary data, there are many causes 

giving rise to the problem of over or under dispersion. The main 
reason is, the model taken has fewer terms than requirement in 
its systematic part. For example, in case of ’factorial 
experiments’, deletion of significant interactions from the model 
may Indicate that the model is inadequate. Another reason is 
improper scale of the covariate. Final and very Important cause 
is the dependence of observations. Some times presence of few 
outliers in the data may indicate that the data is over or under 
dispersed. The under dispersion case occurs rarely. Hence we 
consider only the case of over dispersion.
5.7.1 Fitting a. mode 1 to over dispersed grouped binary data s

Suppose the unobservable random variable i = l,2,...,n> are 
independently distributed over the Interval CO,13 with mean and 
variance of P <i=l,2,...,n) are respectively,

E(P i = n. &. var(P ) = e*n. (1-n.). (1)
l i l L V

% *Assume that for given P ( = p., say), Y. (i = 1,2,..., n> has B(m.,p.)t V l I, t
distribution. For fitting a model, the unconditional variance-of

158



Y ti-sl.2..........n) is necessary. To compute the unconditional
variance following well known results In probability are to be! 
used (see e.g. Rohatgi (1988) page-170).
Result-1; If X and Y are two random variables, then

E(Y) ■ E(E(Y|X)} 'I
and l (2)

Var(Y) = E{Var(Y|X)} + Var{E(Y|X)} J

Using the above result in equations (2), we have

Var < Y*) = E-tVar (Y*|Pt)} + VerlECY*!?^} <3)

Consider,

E-IVar (Y* | Pt 1J- = ElnrV (1^

= m*{E(P. )-ECP? )}
t i i

■ m*^n.-[©*n. <i-n. >+n*]f
i i i i i

* m*n.u-0*u-n )-n ]*i i v t

■ m*n. (l-n.) d-e*) f <4)1.1 i
and

VaHE(Y*|PLH = Var (mV)

■ m*V*n.(l-n.).V V t

With the help of equations (4) and (5), equation 
written as,

(5)
- !
(2) can be

Var(Y?) = m?n. (l-n. >{(1-0* )+mW
V tv V V

■ m*n (l-n ){l40*(m*-l)}. (6)
t l I l

Hence,
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(7)» , » *= {1+0 <m.-l)}.i i
1*1,2,...n

*Note : If m, (i*l,2,...,n) are equal and the common value is• 1mo, then from equation <7> we have,
• .» ** »4>i = 4> - il+e <ra0-m. (0)

1*1,2,•».n
Thus in such situations extended quasi likelihood model reduces 
to a quasi likelihood model given by Uedderburn (1974). Thus 
quasi likelihood model can be fitted to such type of data.

In the same fashion, the case of over dispersed Poisson 
distribution can be handled by assuming unobsevable random 
variables X._ ( i = 1,2,..., nJ having independent .gamma distribution 
with density function given in the equation ( 2.2-11) and for
given Xt the responses Yt<i*l,2,...,ni are independent Poisson 
variates with respective parameters X^. Then it can be shown 
that the unconditional variance of is,

Var<Y. ) * ) + u., (9)l l V l
1

In the next chapter, which is concluding chapter of the 
dissertatfon we try to explain the procedure of data analysis by 
fitting a model to it by using the available Information.
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