CHAPTER - I

THE MULTIVARIATE LACK OF MEMORY PROPERTY

1. INTRODUCTION :

1.1.THE UNIVARIATE LACK OF MEMORY PROPERTY.

Suppose a component, say an electric bulb has the ‘proporty
that the probability that the component will be operative for at
least (s+t) units given that it has already run for t units is the
same as its initial probability of lasting for at least s units.
This means that the future lifetime of the component has the same
distribution, no matter how old it is at present. This is called as
the "Lack of Memory" property. Formally speaking a continuous
random variable X is said to have the lack of memory property (LMP)
iff,

P(X > s+t |X > t) = P(X > 8), for s,t 2 0.
@r equivalently,

S(s + t) = 8(s8) S(t), for s,t 2 0. (1.1)
where 8(t) = P(X > t) is the survival function of X.

In the following sub section we present a characterization of

LMP.



1.2. CHARACTERIZATION OF LMP.

In this section we prove that a continuous random variable X
has LMP if and only if, X " e( » )}, for some X > 0 ( Henceforth
X ” e()x) means X has exponential distribution with parameter }).
This characterization follows from the two lemmas proved below.
Lemma 1.1 : The exponential distribution with parameter A for some
A > 0, satisfies LMP.

Proof : Suppose X ~ e(A). Then, S(t) = P(X > t) = exp(-At), t = 0.

Therefore,

S8(s + t) P(X > 8 + t}

exp(-N(s + t))

H

axp({~-A8) exp(-it)

S(s) S(t) vV s,t z 0.
Thus from (1.1) it follows that X has LMP. P

In fact, the exponential distribution is the only continuous
distribution which has LMP. This is proved in the following lemma.
Lemma 1.2 : Let the sur&ival probability 8 of a non-degenerate

continuous random variable satisfies (1.1). Then the underlying

distribution is exponential with parameter A, for some A > 0.
Proof : Let ¢ > 0 and m and n be positive integers. Applying (1.1)
repeatedly, we get,

S(c+c+c+...n-times c) = S(c) g(c)....n-times 8(c)



e

» S(nc) = (S(c{3 for all n eiiﬁ‘v c > 0, (1.2)
> s(c) = (Sle/m))" for all m e B (1.3)

We now claim that 0 < 8(1) < 1.

If S(1) = 1, then putting c

]

1 in (1.2), we get,

3(n) = (s(1™ ¥n

3 S{(n)

1 ¥n

Letting n » o this gives S(w) 1, which contradicts the fact that
S(w) = 0. This implies that,
S{1) = 1 {1.4)

Further if S(1) = 0, then putting ¢ = 1 in (1.3) we get,

8(1) = (s(1/m))" vV om
» s(i/m) = (s(an*/™ Vo
@ S{(1/m) = 0 Ym

Letting m + ® this gives S(0) = 0, which contradicts the fact that

S(0) = 1. Therefore,

S(1) = 0 (1.5)
From (1.4) and (1.5) it follows that, 0< S(1) «1.
Suppose 8(1) = e_x, 0< A <, &« A = - 1og(S(1)). Putting ¢ =1 1in

(1.3) it follows that,

(g(1))t/™
e—k/m

8(1/m)
‘o’meI+

Therefore taking c=1/m in equation (1.2), we get



S(n/m) = e / Ynmell .

i.e. 8(y) = e(-\y), for every positive rational number vy. (1.6)

Next, lé£{;5be a positive irrational number. Then, sincq{%) is
‘a limit point of the set of all rational numbers, there exists a
sequence { Yn } of rational numbers which decreases to x. That is
{ Yn } L X Since the function 8 is right continuous, it follows
that,

lim S(yn) = 8(x) . (1.7)
n+w

Since Yn are rational numbers, from (1.6) we have,
S(Yn) = 9(*>\Yn) vV n,

Since Yn* X, as na+ o,

1]

lim S(YH) lim e( - kyn)
N+ n-»o

-AX
= @

Using equation (1.7), this gives
S{x) = exp{-Ax)
for all positive irrational numbers x. Thus it follows that,
S{(x) = exp(-Ax) vV x 2 0,
which is survival function of an exponential distribution with
parameter A. Thus the lemma follows. .
In many situations the component lifetimes will be dependent

and will have some joint probability distribution. For example the
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failure of paired airplane engines, the registration of an event on
two adjacent geiger counters, and the failure of paired organs such
as lungs, kidneys and eyes. In order to study such situations it is
important to extend univariate LMP to higher dimensions.

In section 2, we discuss some extensions of LMP for Bivariate
and Multivariate case and its interpretation. 1In section 3, we
present characterizations of BLMP given by Marshall and Olkin

ot Jrarsect
{1967), Block and Basu (1974) and Kulkarni (199éﬂ. In section 4, we

PUIRREER L E MR
.

discusg characterizations of MLMP given by Ghurye and Marshall
(1984) and Kulkarni (1998). In section 5, some supplementary
results are presented. It is shown that the only distribution
having BLMP with exponential marginals is BVE given by Marshall and
Olkin (1967). Conditions on marginals of a bivariate distribution
having BLMP are also discussed and some distributions having BLMP
are presented.

In the next section we discuss some extensions of LMP for
bivariate and multivariate case.
2. EXTENSION OF LMP TO BIVARIATE AND MULTIVARIATE CASE.
2.1 A NATURAL EXTENSION OF LMP:

For bivariate case a straightforward extension of LMP (1.1)
is,

= =
8(51+ t1,82+ tz) S(s‘,sz) S(ti,tz), v si,sz,ti,tz_ 0. (1.8)
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However the following lemma shows that the only distributions
satisfying (1.8) are those having independent exponential
marginals, which are not of any use in modeling joint behavior of
dependent components.

Lemma 1.3 : If (1.8) holds then,

S{(s ,8 ) = exp{(-(9 8 +8 8 )) A4 g > 0,8 >0.
1 2 11 2 2 1 2
Proof : Suppose (1.8) holds. Setting s? = t2 = 0, in equation (1.8)

vields,
S(se+ t)=8(s) S (t) vV s.,t > 0,
1 1 1 1 1 1 1 1 1

where S1 is the survival function of marginal distribution of first
component. Thus S1 gsatisfies univariate LMP. Hence by Lemma 1.2 we

have,
-6 X
Si(x) = e ¢+ , for some 91 > 0, Vx=2z 0.
On similar lines it follows that,
...QY
Sz(Y) = e 2, for some 82 >0, Vy20,
where S2 is survival function of marginal distribution of second
component .
By choosing t1 = 82 = 0 in equation (1.8), we obtain
S8(s ,t ) =8 (s ) 8 (t) vV s,t>0
1’ 2 1 1 2 2

-8 -6t
8 t 18 2 2

which proves the lemma.
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Thus under (1.8), the joint surv{val function is the product
of marginal survival functions. This‘means that the requirement of
(1.8) is too ﬁffiggenF to yield a useful version of Bivariate Lack
of Memory Property and needs to be weakened so that some bivariate
distribution having meaningful dependence structure would satisfy
the new modified definition.

In the next subsection we discuss a weaker form of bivariate
LMP proposed by Marshall and Olkin (1967). 1Its extension to
multivariate case is also given. Henceforth we 7refer to this
version of bivariate LMP as bivariate lack of memory property

. {ﬁ§? (BLMP), and its multivariate extension as Multivariate Lack of

% T
R =
up 4~ Memory property (MLMP).

2.2. THE BIVARIATE AND MULTIVARIAE LACK OF MEMORY PROPERTY:

Let (X,Y) be bivariate random variable having survival
function S. Then (X,Y) is said to have bivariate LMP if and only
if,

S(s+ t,8+ t) = S(8 ,8 ) S(t,t), VvV 8,8 ,t 20 (1.9a)
1 2 1 2 1 2

Note that, This is same as,

P(X > 8 +t,Y > 8 +t]X >t,Y>t) =P(X>8,Y>8), V8,8 ,t20.
1 2 1 2 1’2

Therefore the condition (1.9a) can be interpreted as the

conditional probability of both components each of theqsame age t,
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surviving an additional time s = (81’82) is equal to the

probability of survival of s = (si,sz) time units of new

components. We further note that (1.9%9a) is also same as,

P(X>s + t,¥>s +t|X >s,Y>s)=P(X>t,Yy>t), Vs, s, t=0,
1 2 1 2 1 2

Thus (1.9a) can also be interpreted in an another way as
conditional probability of two components of ages s = (si,sz), both
surviving an additional time t is equal to the probability that
they survive t time units gstarting at the origin.

2.3. MULTIVARIATE EXTENSION:

Let X = (Xi,Xz,....,Xy) be multivariate random variable having

survival function 8. Then X is said to have multivariate‘ LMP if,

f

[ 1

W}iLEA@’
and only if,
S(s+t,...s +t) = 8(s ,s ,...8 ) S8(t,t,...t), ¥ 8,8 ,...8, t=20
1 k 1 2 | 1 2 k
(1.9b)
t.e. 8(8 + te) = S(s) S{te) YV s,t > 0. {1.9¢c)
Y, i /
where e = (1,...,1). ﬂg S = Co by o mgtﬁ)
> o

Interpretations similar to those given in (1.9a) for bivariate case

also hold for multivarite case.

In the next section we present some characterizations of BLMP.

3. CHARACTERIZATIONS OF BLMP.
3.1. CHARACTERIZATION DUE TO MARSHALL AND OLKIN (1967):

Marshall and Olkin (1967) give the following characterization
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of bivariate distributions possessing bivariate 1lack of memory

A - e =3

property (BLMP).

Theorem 1.1: BLMP (1.9a) holds iff,

IV
g
by
o

e S (x~y) if X z
8(x,v)= { ' (1.10)

e Sz(y~x) if Yy > x

v
[en]

where the marginal survival function 8(t,0) and 8(0,t) are denoted

by Si(t) and Sz(t) respectively.

Proof : Suppose (1.9a) holds. Setting s1 = 82 = 5 in (1.9a) vields,
S{s+t,s+t) = 8(s,s) 8{(t,t) Vs,t2>¢.

Therefore, since Sz(t; = 8(t,t), t # 0 is the survival function of

the univariate random variable 2 = min(X,Y), by Lemma 1.2, we must

have,

S(8,8) = exp(-68), for some 68 > 0, V¥ s > 0.

Now putting s2 = 0 in (1.9a), we get,
S(sl+ t,t) = S(si,O) S(t,t)

= 31(31) exp(-6t), 8 > 0 V¥ si,t > 0.

letting x = 81+t’ Yy = t, this gives

-8y

S(x,y) = o Si(x—y), for x 2y 2 0. (1.11)

Similarly putting s1

i

0 in (1.%a), we get,

S(t,sz+ t) S(O,sz) S(t.t)

- >
Sz(sz) exp(-6t), 6 > 0 V¥ sz,t = 0.
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letting y = sz+ t, x = t this gives,

S(x,y) = e~8x Sz(y*x) Vy2x220

Hence from (1.11) and (1.12) we have,

e—ey Si(x~y) for x
5(x,y) =

v
n<

v
<

e—ex Sz(y~x) for v 2 x

v
o

Conversely, let (1.10) holds. Then

eﬁe(sz*t)s {s -8 ) for s 2 s, t
1 1 Y4 1

S(sl+t,sz+t) = { ~6(s +t)
e 1 S

(8 -8 ) for s 28 , t
2 2 1 2

Putting t=0 this gives,

e_esz 81(51_82) for s1 .
S(s ,8 ) =
1 2

e 1 8 (8 -8 ) for 8 > s
2 2 1 2

v
2]

v
Len]

v
<

Also, S(t.,t) = eﬁet, for t 2 0. Therefore,

eqe(sz+t)8 (g8 -8 ), for sz s ,hb t
1 1 2 1 2

e 1 S

(s ~s ), fors>s , t
2 2 1 2 1

FProm (1.14) and (1.15), we have,

S(s +t,s +t) = 8(s8 ,8 ) 8(t,t) s ,8 ,t =z 0.
1 2 1’ 2 1 2

Thus S has BLMP.
<«

? .
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e

Some more results related to Marshall and Olkin's
characterization of BLMP are discussed in section 5.
3.2. CHARACTERIZATION OF BLMP GIVEN BY BLOCK AND BASU (1974):

An another characterization of BLMP established by Block and

Basu (1974) is presented it in this section. The main result is

. , AN A G
g&ﬁbglven in Theorem 1.2. Befor%kthe proof of the Theorem, we prove two

oy

1
i

relevant lemmas namely lemma (1.4) and (1.5).

Lemma 1.4 : kg;ﬂizéxjmgggg%nonwnegative bivariate distribution with
marginal densities which are absolutely continuous on (-o,») and
suppose (X,Y) have BLMP. Then there exists a positive number @ > 0
such that,

a) min(X,Y) = e(8)

P (t) + 81f1(t) if t >0,
b) P(X-Y < t)

1-F(-t)-6 "f(-t) if t < 0,
2 2

L]

where Fi and fi i 1,2 are respectively the marginal distribution
functions and marginal densities of X and Y.
Proof: Let S be the survival function of (X,Y). Since (X,Y) have
BLMP, we have from (1.9a),

S(si+ t,sz+ t) = S(si,sz) S(t,t) v si,sz,t > 0.

Letting s1 = s2 = 8, we get

S(s + t,8 + t) = 8(s,8) 8(t,t) ¥V s,t

v
(e}
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2 S {s+t) = 8 (s) 8 (t) Y s,t> 0,
z Z z
where S is the survival function of the random variable
Z = min(X,Y). Now by Lemma 1.2 it follows that there exist & > 0,
such that Z 7 exp(8). Thus part (a) is proved.
Now, Since (X,Y) have BLMP, by Theorem 1.1, (1.10) holds. For
X ®% vy, Bince f; and f; exist, (Note that by hypothesis f1 and f2

are absolutely continuous which means that f; and f; exists,

Zz
integrable and f (z) = | f,(t) dt, j=1,2.) differentiating (1.10)
-0

partially with respect to X and y, we get,

a*s(x,y)

3% 3y = f(x,y)

exp(-9y) [fi(x~y) + 6 fi(X*Y)] if x>y =2 0,

{ (1.16)

exp(-9x) [f;(y—x) + 6 fz(y-x)) if y>x=20,

i

In order to prove part (b), first we obtain joint distribution
of min(X,Y) and (X-Y) and then obtain the marginal distribution of
(X-Y), by integrating over the range of min(X,Y). We have,

P{min{(X,Y) £ 8, X-Y £ t)

= Plmin(X-Y)

g
n

X-Y = t, X>Y]

+ P[min(X-Y)

A
e+

X-Y < t, X =Y ] (1.17)

+ Plmin(X-Y) £ s, X-Y < t, ¥ > X ]

To obtain P(min(X,Y) = 8, X-Y £ t, X > Y), we integrate (1.16)

over the region, 0 £ v < s and vy £ x £ y+t. We get,

18



Pimin(X,Y) < 8,X-Y = t,X > Y)

s y+t

J J e”sy[f;(x~y) N efi(x—y)]dx dy t = 0

0y

sy[f(t) + OF (t) - £ (0) - QF(O)]dy t> o0,
1 1 1 1

Ie
{o
0 t <0,

{(1 ~e 9%, 9-1[f1(t) + OF (t) - fi(O)] t > o0,

1}

(1.18)

i

0 t < 0.

Next, P(min(X,Y¥) £ s, X-Y £ t, Y > X} is obtained by
integrating (1.16) over the region 0 < x < 8, X <y <w for t = 0

and the region 0 < x < 8, x-t <y < w, for t < 0. This gives,
P(min(X,Y) <€ 8,X-Y £ t,¥Y > X)

s
J J e [ f' (y-x)+0f (y-x)| dy dxt 2 o0,
o x 2 2

=

it

8 4 4] .
.._8}( -1
j j e £f' (y-x)+of (y-x)jdy dx t < 0,
2 2
0 x-t .
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s
i -8%
e [8 - f (0)ldx ‘
OJ 2 if t > 0,

(
-i ® —ex
J e [6 - £ (-t)-8F (-t)ldx if t < O,
0 2 2

(1-exp(-6s8)) 8—‘[6«f2(0)1 if t 2 0.
- 4 (1.19)
{1-exp(-88)) B [8—f2(~t)~8F2(«t)] if t < 0.
Further it is easy to observe that,
P(X = 8,X =Y) if t=0,
Pimin(X,Y)<s,X-Y<t,¥=X) = { {(1.20)
0 if t<o,
From (1.17),(1.18),(1.19) and (1.20), We get,
PImin(X,Y) £ 8,X-Y < t)
. -e8] [ -1 1
_lil-e Fx(t)+9 fi(t)+1~~§{f1(0)+fi(0)} +P(X=Y<s) t20,
“ - (1.21)
. 17
1-e P81 l1-F (-t) - X £ (-t) ] t<0,
| 1 2 e 2z

Letting s + ® and noting from the proof of Marshall and Olkin
(1967) Theorem 5.1 that, P(X=Y) = e“{fl(O) + £(0)] - 1, we get

1 £ (t) if t > 0.

F (t) + 6
P(X-Y € t) { !

1 -F (-t) - 8 *f (-t) if t < 0.
2 2

Thus (b) is proved. -

REMARK 1.1: From equation (1.65) and (1.69) (cf section 5.2), it is

known that P(X = Y) = 8«1 [fi(O) + fz(O)} - 1. Therefore, if P(X =
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Y) = 0 then e”‘[fi(O) +£(0)]=1and P(X= ¥ £ s) = 0. Then
(1.21) becomes,
P{min(X,Y) <€ g8,X-Y < t)

[1-exp(-6s8)] [P1(t) + 8_1 f‘(t)]

if t 2 0,

[1-exp(-68)] [1 - F (-t) - 9”‘f2(~t)] if t <0,

P(min(X,Y) <€ s] P[X-Y < t] (This follows from
(a) and (b))

Hence U = min(X,Y) and V = X-Y are independently distributed.
Conversely, if U and V are independently distributed, then exactly
reversing the above steps, it follows that P(X = Y) = 0. Moverover
from the discussion page no. 1035 of Block and Basu (1974), it is
clear that the condition P(X = Y) = 0 is equivalent to (X,Y) being
absolutely continuous: From above discussion it is clear that U and
V are independently distributed if and only if (X,Y) are jointly
absolutely continuous. P
Lemma 1.5: Let (X,Y) have a non-negative bivariate distribution
with continuous marginal densities and such that U = min(X,Y) and V
= X-Y satisfy the following conditions: there is 8 > 0 such that,

1) U and V are independent. (1.22)

2) U7 e(8) (1.23)
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[P (t) + 8 f (t) if t>0,
= ) 1 1
!
L\

(1.24)
1-F (-t) -8 "f (-t) if t<0,

2 2
Then (X,Y) has bivariate lack of memory property (BLMP).

Proof : By Theorem 1.1, it 1is enough to prove that the ijoint

survival function of (X,Y) has the form

e Sl(x-y), if X2y
S(x,y) = (1.25)

Y
o

e Sz(y~x), if y

1Y
=
v
o

which is equivalent to BLMP,

First we consider the case 0 £ x £ y. We have,

S(x,Y) P(X > x,Y > y)

P(X>x,Y> v, X=Y)+P(X > x,Y > v,X <Y)

P(U+V > x,U > v,V 2 0) + P(U > Xx,U-V > v,V < 0) {(1.26)

Note that the last step follows since X > Y «» U = min(X,Y) = Y

and

A X-Y 9 X = Y+V = U+V. Also, when X < Y then U = min(X,Y) = X and

——

Y

1]
>l
{
<<
1]
o]
]
<3

First consider the first term in the R.H.S. of (1.26). Since U
and V are independently distributed (by (1.22)) and for v =2 x, the
event U + V > x is implied by the other two, we have,

P(U+V > x,U > v,V 2 0)

= P(U > y,V 2 0)
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= P(U > y) P(V 2 0)

= 4%p e ?

’ tat (1-P(V < 0 )) (by (1.23))

- G*GY [1 - lim [1-F (-t)-8 ‘f (-t)]] (from 1.24))
t-+0 z 2

e~6y[1 -1+ F(0) + 9“‘f2(0) ]

fl

e oY 9"f2(0) if y> 0. (F (0) = 0) (1.27)

2
Next consider the second term in the R.H.S. of {1.26). For v = x we

have,

P(U > x,U-V > y,V < 0) = P{U>x,U~-V>y,x-y<V«0) + P(U>xXx,U-V>y,VIx-vy)

= P(U > y+V,X~-y < V < 0) + P(U > x,v € x-v) {1.28a)
Consider,
0 0
P(U > y+V, X-y < V < 0)= j [ j dP(U £ u)} dP(V £ v)
XY Y+v
0 o —6u
= j {J 8 e ~ dul dP(V < v)
X~y y+v
0 -8 (y+v) -1
= J e b [fz(—v) + 8 "f'(-v)] adv
X-yY 2
= e"ey{a“’e“a(x“y’fz(y—x)-9"f2(o)}
=e“e'6xfz(y~x) - e“a‘eyfz(O) (1.28b)
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Next, for v > x, since U and V are independently distributed (by
{1.22)), we havs,

P(U > xlv S X"Y)

P(U > x) P(V = x-v)

03] —Bu X-y
= j 8 e ~ du J dP(V < v)
X -
X-y
= ¢ % | tf vy 6 15 (—v)] av
—0 2 2

- » X-y
= @ 1 - F(-v) -8 f (~v)]
2 2
. )

= e 1 - F (y-x) - 8—1f2(yﬂx)] (1.28c)
Therefore, from equation (1.28a),(1.28b) and (1.28c)., we get
-8 X -1 ~8Y
P(U > x,U-V > v,V < 0) = @ 1 -~ Fz(Y_x) -8 e fz(O) (1.29)

From (1.26), (1.27) and (1.29), we get

v
”
v
<o

s(x,y) = e‘e"uofz(y—xn if y

= e-ex Sz(y—x) if vy -

I
b
'
o

(1.30)

Next, We consider the case 0 < y = x. Recalling egquation (1.26) we

have,

S(x,y) =P(U+V>x%x,U>vy,Vz0)+ P(U>» x,U-V > v,V <0) (1.31)

Consider, the first term in the R.H.S. of (1.31).
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Since 0 £ y £ x, we have

P(U+V>x,U>y,V =2 0) = P(U+Vox,y<ULx,V 2 0) + P(U+V>x,U>x,V = 0)

Py <UL x,x-U<V<w) + P(U> x,V20) (1.32)

Since U and V are independently distributed, we have,

P(U > x,V 2 0) P(U > x) P(V 2 0)

(¢ )

e e ®%u [1 - P(V < 0)] (from (1.23))
X

= %1 - 1im[1-F (-t) - 87 (-t)]] (from (1.24))
t-+0 : ’

e P%r1 -1 4 F (0) + e"‘fz(O)]

o FX a7t (0) (Since F (0)=0 ) (1.33)

and

X [V4)
P{y<USx,Xx-U<V<w) = j dP(U < u) J dP(V < v)
b4 X-u

X -6u e -1
= fee 1 [ Uf(v)+67I(v)] av] du
b4
X -8u -
= J 6 e [1 - F (x-u) - 8 'f (x-u)] du
Y 1 1

= e_ey— e_ex— [- e_axF‘(O) + eﬁeyFi(x—y)]

e % [1 - F(x - y)] - o ¥ (1.34)

From (1.32) to (1.34) we get,
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ax

o B% 67 _(0) + e V1 - Fx-y)] - ¢ 0% (1.35)

P{U+V>x,U>y, V20 =
Next consider the second term in the R.H.S. of (1.31).
Since U and V are independently distributed and vy £ x we have,
P(U > x,U=V > y,V < 0) = P(U > x,V < 0)
= P{U > x}) P(V < 0)
-ax% ~1
= @ {1 -8 fz(O)} {from (1.23) & (1.24)) (1.36)

From (1.31),(1.35) and (1.36) we get,

8(x,yv)

e—ey[l - Fi(x - v)]

e—eysi(x~y), if x2y20 (1.37)

f

Thus from (1.30) and (1.37), we have

o PV 8 (x-y), if x2y

v
<

S(x,y) =

o 0% 8 (y-x), if y

v
=

i
o

Hence it follows that, (X,Y) has BLMP, and the lemma is proved. n

The main result is proved in the Theorem 1.2 below.

Theorem 1.2: Let (X,Y) have a non-negative bivariate distribution
which is absolutely continuous. Then the BLMP holds if and only if
for U = min(X,Y) and V = X-Y, there isqa € > 0 such that,

1) U and V are independent.

2) U7 e(8).
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tﬁﬁ

-

F(t) +0 @£ (t) s
3) P(VEt) = { ! ' 1t 20,

1~ F (-t) - e“}fz(—t) if t <0,

where for 1i

i

1,2 Fi(t) and fi(t) are respectively the marginal
distribution functions and densities of X and Y.
Proof : Let (X,Y) have joint absolute continuous distribution.
IF part: Suppose (X,Y) have BLMP. Then joint absolute continuity of
(X,Y) implies (X,Y) have marginal absolute continuity. Therefore
Lemma 1.4 is applicable so that (2) and (3) follow from Lemma 1.4.
Next from the joint absolute continuity and Remark 1.1 it
follows that U and V are independently distributed.
Only IF part: Suppose (1),(2) and (3) hold. Further the joint
absolute continuity of (X,Y) implies that V = X-Y 1is absolutely
continuous which in turn implies the absolute continuity of
marginals f1 and fz. Then Lemma 1.5 1is applicable, which proves
that (X,Y) has BLMP. QMJ\?gtxﬁofi . om
3.3. CHARACTERIZATION OF BLMP GIVEN BY KULKARNIA5199#):
Kulkarni (1993) give the following <characterization of
biyariate lack of memory property (BLMP).
Theorem 1.3: Let S(x,y) be a survival function corresponding to a
bivariate random vector (X,Y) for which vector failure rate r =

(Ri,Rz) exists for all x,y 2 0. Then 8 has BLMP if and only if

Ri(x,y) + Rz(x.Y) = 6 for all x,y =2 0, where 6 > 0 is a constant.
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Proof : Suppose S has BLMP. Then from (1.10), it follows that

i)

R(x,y) -log S(x,Y)

AY
~

v
o

_ j Ay + Rw(x~y), if x
1 3

IV
[

ax + Ry(y~x), if vy > x:
where @ = f (0) + fZ(O) and Rx and RY are marginal cumulative
1
hazard functions.

Differentiating partially R with respect to x and y respectively,

we get
rl(x—y), if xX2>2y20
Ri(X,Y) = { (1.38)
a —rz(y~x) ifyz2x=20
g - rl(x ~-y)y 1fx2z2y20
R (x,7) = { (1.39)
rz(y - X) ifya2x20

where ri and r2 are failure rates of the marginal distributions of
x and y respectively. From (1.38) and (1.39), we have

Ri(x,y) + Rz(x,y) = g vV x,vy 2 0 {(1.40)

Conversely suppcge for some 8 > 0,

R + R =20 vV x,vyz2 0 (1.41)

Noting that R = QE— and R = 25—, it follows that the equation
1 ax 2 ay

(1.41) is a first order partial differential equation (called as

Langrange's linear partial differential equation) whose solution is

given by 7(u,v) = 0 where u = x-y and v = #x ~R(x,y)u (cf Miller
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(1960),pp.87). Assuming that tv(u,v) = 0 can be solved for v as v =
g(u) we get,

8x - R(x,Y) g(x-y), so that,

H

= R(x,y) x - g(x-y) (1.42)

where g is some function of u = x - y. This gives,

-R
e

Hi

S(x,y)

]

exp(-6x) exp(g(x-y)).
Putting x = 0 and v = 0 in this equation respectively and noting

that S{(x,0) and 8(0,y) correspond to marginal survival functions we

get,
8(0,y) = exp(—Ry(y)) = exp( g(-y)), YV y =z 0, and
S(x,0) = exp(—Rx(x)) = exp(-6x + g{(x)), VvV x 2z 0.

This implies that,

g{-y) = —RY(Y), ¥V y > 0, and
g(x) = 6x -~ Rx(x), V x2 0.
Thus,
8z - R (2z2) if z > 0.
X
g(z) =
-R (-2) if z £ 0.
Y
Hence from (1.42) we get
zy=220

6y + Rx(x~Y) if x
R(x,y) =

ax + RY(y—x) if yz x 2 0.
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Now, S = expl! -R)
exp(~- 8y - Rv(x-y) ) X2 y20,
S(x,y) =
exp{- Ox - RY(y~x) ) y2x= 0,
e-ax Si(x—y) XxX2>vy20,
o OY s, (y-x) vyZx2>o0,

Hence from (1.10) it follows that S has BLMP. -

In the next section we discuss some characterizations of MLMP.
4. CHARACTERIZATIONS OF MLMP:

In this section we discuss three characterizations of MLMP.
Two of these are given by Ghurye and Marshall (1984) and other one
by Kulkarni (1998).
4.1. CHARACTERIZATION OF GHURYE AND MARSHALL (1984):
| Ghurye and Marshall (1984) gave following two
characterizations of MLMP. One ig given in Theorem 1.4 below and
the other one follows from Corollary 1.1.
Theorem 1.4.: A random vector X satisfies MLMP if and only if the
following conditions holds.
i) ¥ = Ue + W.

—

ii}) U and W are independent.

iii) min(wl,....,w }) = 0 with probability 1.

™

30



iv) eitherfﬂ'has an exponential distribution, say
&, or U is degenerate at 0.
where U = min{(X ,....,X ) and W = X - Ue.
* 1 N
Proof : If part: Suppose X has MLMP.

To prove (1i):

Let I} = min(Xi,....,X ) and W = X - Ue. Then,
n
Ue + W = Ue + X - Ue
=X
Thus (i) holds.
To prove {iii}):
Consider
min(W ,.... . W) =min{(X - U,....,X - U)
1 n 1 n
= min{(X ,....,X ) - U
i n
:u-—U

= 0 with probability 1.
Thus (iii) holds.
To prove (iv):
Putting in (1.9¢c) 8 = xe, we get
S(xe + te) = S(x,x,...,x) 8(t,t,..., t)
- S8((x + t)e)= S(xe) S(te)

-»> Su(x + t) = SU(s) Su(t)

with parameter

where U = min(xi,...,x“). Thus U satisfies univariate LMP. Hence
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from characterization of univariate ILMP, U has exponential

distribution with parameter 2, for some 2 > 0.

To prove (ii):

For real vectors a = (a,a ,....,a ) and b = (b ,b,....,b ).
1 2 n 1 2 n
let a v b = (max(ai,bi),....,max(a b })). For any u > 0 and any w,
N n n
let
o )
L~k ok i , -k 1
Qk = | { X>w+ (u+j2 e, (u+iz ) < U Z u+(j+1)2 J
j=0 P

First we prove that c .
k+1 k

Let us consgider

2 4]
a = U { X > we (uti2 ¥)e, (urj2 ™ ) < U < us(j+1)27F }
TN
—k —k -k ~k+1
= [X>w+ue, uclUs u+2 ] | [Xow+(u+2 e, (u+2 )<U<u+2 ]
U [g>g+(u+2~k+i)g, u+2_k+1<U5 u+3x2~k] v ........
=A UA UA U ....o....
where A = {;g swt(u+(i-1)2 " )e, (u+(i-1)2%)<u<u+(i)2¥ } (1.43)
io=1,2,......
and
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{ X >wi(u+i2 S e, (urj2

-k
=[X>w+ue, u<iU< u+2

- -k -
U [X>w+(us2 e, ut 2 <u<us3 273U vennnn.

(1-1)
7 2 2

where B,={§ >w+{u+
ik

From (1.43) and (1.44), we observe that

BJU Blisane € B((j+)/2)k

¢ ¢]
Therefore 1lim (k = n(m.
K+ k=t

= lim P((k) = P(lim (% )
K+ Ko
(44

=P )
k=1

Now consider

m -
Q = U { X > wt(u+i2 ), (u+j2 ) < U < u+(j+1)27% }

j=o

33
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U Tow (w2 e, (wr2 ) cusurz ™)

(1.44)

(1.45)



8

( T ) ® - - )
k t . ‘ k - . \
= U .‘ X > !+(u+j2 Je lHi U 'l u+ij2 < U = U+(]+1)2 J
j=01 J j=0 /
= { X >w + ue } N { U>u }
w w :
S ﬂgk = N {{ X >w + ue } N { U>u }}
k =1 k=g
= { X >w + ue, U > u }‘
= {W_ Zw, U>u }
< lim P(Qk) =P{WZ2Zw, U>ul} {1.46)
k0
Congider
© ~k -k -k
P() = p{ U {3 > w o+ (ui2 ¥)e, (ubi2 ™) < U < u + (§+41)2 ]}
j=o
®
cn—k Ak . -k
= ZP[ X>w+ (u+j2 ")e, (uti2 ") < U £ u+(j+1)2 ]
b
(Since the events are disjoint)
w0

= Z [P [3»4_ Huriz e, u>u+32"‘] - P{}pyg +(uri2 Mye, U>u+(j+1)2""}]
i*o

where U = min(X ,X ,....X ).
4 2 n

w0

= Z [P [zm r(uriz e v <u+j2"“)g}? [zm_«. r(utiz M)e v (g+(j+1)2”“)g]]
%o
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w0

- z [s{tx+<u+jz“*>g3 y (u+jz“k)§]~s{[u +(u+j2 ¥)al v <u+<j+1)2“*>g}]
j*¥o
Lk -k P ¢
{ S[(w v0 + (u+j2 )e) J - S[(w v 2 "e+ (u+j2 e ]]

[s o]
= 2 3((u+j2 ¥)e) S(w v 0) - S((u+i2 ¥)e) S(w v 2'*)] (from (1.9¢c))
- -

[s 4
- ZQ.S“(u+j2_k) S(wwv 0) - Su(u+j2—k) S(wW 2"*)]

(Since S((u+jz“k)g)=su(u+jz'k) where Usmin(X ,...,X )
N

and from ( iv ), U is exponential with parameter &)
o0

.k
P(Qp) e~9(u+32 )

R 4
[e'e‘“*Jz 's(w v 0) -

S(W v 2”kg)]
j:

L

84 .=k
e_su[S(ﬂ v 0) - S(w v ZMkQ)] 2 g Oluri2 1)

r - . ...k ___k
FUlgiwe 0) - S(we 2 %) |13 B2 4+ 67902,

L Jd1L

i
o
17,1
£

-3927% ]
e + ...,

wev0)-Swv2re)||1-e

-« L

]
o
——
)

T _92"}(]"1

“k a-1
lim P((x) = o Y jinm {{S(g v 0) - S{w ~ Z—kg)] [1 - o o2 ] }
k » @ k » @
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. -k -1
= P(U>u) 1lim {[S(ﬂ v 0) - S(w v Z—kg)][l - e~92 ] }

k » o

(8ince U ~ exp(8).)

Therefore from (1.46), we have

“x -1
P(W> w, U> u)=P(U>u) lim {{S(x v 0) - S(w o 2‘kg)][1 - e P2 ] }

kK + o
= P(U > u) P(W=w | U > u)
= P(U > u) P(W > w) (1

Also if U<0, then P(U > u)

1, so that P(W2 w, U > u) = P(W 2

- P(U > u) P(W 2

W)

P(U > u) P(W > w) (1

.47)

w)

.48)

Thus from (1.47)and (1.48) it follows that U and W are independent.

Hence {(ii) is proved.

Thus MLMP implies (i), (ii),(iii) and (iv).

Only IF Part: Suppose conditions (i), (ii), (iii) and (iv) hold.

where X = w + Us and U = min(Xl,xz,.‘.,X ).
15
Then S(x) = P(X > x)
= P(W + Ue > x)

= J P(W > x -ue |U=u) f(u) du

0
® -8
= [P(H> x-ue )6 e Ydu (by (iv) and (ii))
0
[44]
= J S (X - ue) 8 ewgudu “‘ (1.
o) ¥

36

49a)



Note from condition (iii) that Fw puts the entire mass on the axes

and is zero elsewhere.

0
S(x) = 8 (x-ue)e e PY4u (1.49b)

min(x )
i

Therefore, replacing X by x + te in (1.49a), we get

w

S(x + te) = J Sw(g +te -ue) O engudu
0 _—
® -6u
S(x + te) = J Sw(g - (u-t)e) 8 e du
0 =
Ldmindix )

L 6]

Gu fu

= J Sw(g - {(u-t)e) 8 e ~ du + J Sﬂ(x - (u-t)e) & e  du

0 .
ttmin(x )
L

Note from condition (iii) that Fw puts the entire mass on the axes

and is zero elsewhere.

Since (X - (u-t)e) > 0 for ue (0, t + min(x )), the first integral
1%

vanishes in the above equation and we have,

* -6u
S(x + te) = J Sw(z - (u-t)e) 6 e du

ttmind(x
i

Putting u-t = z we get du = dz and range of z is min(x ) to . This
L
gives,

[+ 4]

S(x% + te) = J s (x - ze) 6 e B (t42) 4,

min(x:)
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o

-8t -0z

= e [ s (x - 28) 8 e dz
J v
min(xt)
= S(te) 8(x) (from (1.49b))

Thus X has MLMP property B
The pecond characterization of MLMP given by Ghuryve and Marshall

(1984). It follows from the following corollary to the Theorem 1.4.

Corollary 1.1. A random vector X has satisfies MLMP 1iff,

(V3] N
S(x) = j S (% - ue) 6 exp(-Bu) du, 0 <8 <0, x 20
O —

where X = Ue + W, here U = min(xi,xz,...,x ).
n
Proof: In the proof of Theorem 1.4 we see that,
MLMP & Conditions (i) and (iv) =+ (1.49a) « MLMP, which shows

that (1.4%9a) is equivalent to MLMP.
4.2. CHARACTERIZATION DUE TO KULKARNI (1998):

Kulkarni (1998) gave following characterization of MLMP which
is an extension of the result given in section 2.3 for bivariate
cagse. A detail proof of multivariate extension is provided because
it is slightly different from the biva;iate case.

Theorem 1.5: A necessary and sufficient condition for a random

vector 8 having vector failure rate r = (Ra’Rz’Ra""’Rx) to have
k

MLMP is that Z R{(t) = c where c is constant.
13
-7
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Proof: Sufficiency: Suppose

k
z R = ¢ (1.50)
TR
dR ) \ . .
Here Ri = 5 so that (1.50) 1is a Langrange's 1linear partial
A o,
AR

/
differential equation in k variables (cf. Miller (1960), pp. 95)

having subsidiary equation,

1 2 3 k dRr )
—_ e = " =, .., —_ = -, .51
1 1 1 1 C (1.51)
which has k independent Integrals uj(si,sz,..,.,s}) = aj, 3 =
1,2,..... ,k wher2 u.(8 ,8 ,....,8 ) = s8-8, j=2,3,....k and u =
4} i1 2 k 1 1

(cs1 - R{(s8)). Therefore its solution is given by (cf. Miller (1960)

pp. 95) ¢(ui,u2,....,uk) = 0, where ¢ 1is any function of
U U Assuming that the equation ¢(u1,u2,....,uk) = 0 can
be solved for u1 in terms of uz,u3,....,uk, we get
u =cs - R(f) = g(uz,....,uk). This gives,

R(§) = cs1 - g(si—sz,siwsa,...,si*sk). (1.52)

By putting s1 =0 in (1.52) and noting that R(O,sz,sa,...,sk) is
the cumulative hazard function of the marginal distribution of

XZ,XB,..,Xk we get,
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= R X(s ,$ ,...,8), s T 0,1=2,,..,k, (1.53)

X .X, , 2 3 k i
Z 3 k
where Rx X X is the marginal cumulative hazard function of
2’3"y
XZ,XS,..,XF. Therefore from (1.52) we get,
R(s)= ¢8 + R {gs ~s }),...,(8 -8 , 8. 28, 1=2,...,3.
() 1 X X ,...,x(' 2 1) k 1)) 1 1
2 3 k
Similarly, 1if si = min(si,sz,....,sk). then by taking
0
* s - - * -
u, =g, -s8., 3=1,2,3,....,k; 3 1 and u, = cs., - R(s), it can
J 1 J 0 1 i -
0 0 0
*
be seen that ui x aj, j = 1,2,...k; are also 1integrals of the

subsidiary equation (1.51). Then by similar argument, we get

R(E) = csi + Ro((sl--si),...,(si o Si)’(si . si),..(sk— si Y),

[+ o a (¢ o o Q

8. 28, ,1=1,2,....k. (1.54)

where Ro denotes the cumulative hazard function of the marginal of

distribution of (xi,....,x. , X ,....,Xk). Putting si = t, for

i=1,2,3,...,k, in equation (1.54), we get R(t,t,....,t) = ct, so
that again from (1.54) we have,

R(si+t,sz+t,..,sk+t) = C(Si+t)+Ro((81_si)""(si—x-si ),(si ;181)
o o o o o o
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]

cs, + ct + RO((si—si),...,(s. -8, ),(s. —18.),..,(sk—si )})

(¢} o S RPN 0
= R(8) + R(t,t,....,t)
But S(t) = e_R(t). Therefore we get,
S(si+t,sz+t,...,sk+t) = S(E) 8(t,t,.....,t), v s.t > 0.

Thus § has MLMP.
Necessity : Conversely, suppose § has MLMP. Then,

S(si+t,sz+t,...,sk+t) = S(si,...,sk) S(t l) Y>>0, t> 0. (1.55)

Putting si=s, i=1,2,3,...,k and noting that S(s,s,...,s8) is same
ag survival function of min(si,...,sk). and by characterization of
univariate LMP, we must have 8(s,s,...,s8) = e‘cs for some ¢ > O,

Therefore, putting 8 = 0, in equation (1.55) we get,

S(+,8 +t,...,8 +t) = 8(0,s ,...,s ) S(t,t,t,...t)
2 k 2 k

or equivalently,

-C8
S(s ,...,8 )=e 1 8 (8 -3 ,...8 -8 ), 8. 2 8
1 k 2 4 k 4 h 1

Taking logarithm on both sides and multiplying by -1 on both sides,

we get

-log(8(s8 ,...,8 )) = c8 - log(8S (s ~8 ,...,8-8))
1 k 1 2 1 k ¢

X, X ,...,X
2’ 7a’ "y

41
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Ris ,...,8) = cs + R (s -8 ,...,8-u), s ~ 8,
1 v 4 X 2 4 1 4

.-_ 'y ’ F AR A & A ~ A l ‘«L
2 3 k
i= 2, .k
By similar arguments if s = min{(s ,.s ,....,sk) we have
i 1 2
R(s ,...,8) =¢s8s, +R(s8-8,...,8 -8 ,8, -8 ,..,8 -8.), (1.56)
1 k 1 0 1 t t-1 1 i+e 1 | 'S §

s 28 , j=1,..,1-1,1+1,..k
J i

where R0 denotes the cumulative hazard function of the marginal

distribution of (X ,....X, X, S P
1 i 1771 #1 k

Differentiating both sides of (1.56) partially with respect to s

(.

i=1,2,....,k we get,
R. =R (8~-8,..,8 -8.,8, -S.,...,8 -8, )/dw,., I®i, 3 = 1,2,...k.
3 o 1 L L4 1 i+1 1 k 1 J
k
and R.= ¢ -} OR (¢ -8 ,.., ~-8.,8. -8.,...,8-8.)/dw., where
i = "o s =1 1 141 1 I} 3
J®1
w.=s.-8,, =1,2,....,k. So that R+ R + +R = c¢. (cf. CALCULUS
J J 1 1 2 k

by Apostol (1969) Theorem 8.8 pp. 264)

Thus S has MLMP.

5. SOME SUPPLEMENTARY RESULTS.

5.1. THE DISTRIBUTION HAVING BLMP AND EXPONENTIAL MARGINALS:
Marshall and Olkin (1967) studied bivariate distributions

having BLMP along with exponential marginals. They observed that

the only distrikution having BLMP and having exponential marginals
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is the bivariate distribution with survival function,

S(x,y) = exp(-A X - Ay - A max{x,y)), x,vy 2 0, x ,x ,x >0 (1.57)
1 2 12 1 2 12

LN
A

ST S A T
2&= l Thig%}g presented in the following theorem. Henceforth we refer to

(1.57) as survival function of the bivariate exponential

Theorem 1.6: The BVE is the only bivariate distribution with
exponential marginals satisfying (1.10).

Proof: Suppose (1.10) holds. Since we demand exponential marginals,

let S (x) = e %* and 8 (x) = o 0% 6, > 0, & > 0 be the

marginal survival functions.

Then from {(1.10) we have,

e—QY*éi(X~Y) for x 2 v,

S(x.y) = (1.58)

e—ex—éz(y~x) for v 2 x,

for some 6 > 0.

Since 8S(x,y) is decreasing 1in,y, from (1.58), we must have

8 > &1’ so that kz =6 - éi > 0. Similarly, since S(X,vY) is

decreasing in x, we must have 6 > éz, hence xl =6 - éz > 0. Let

Kiz = 61 + éz - 8. To insure that xiz > 0, we must show that

6‘ + 62 > &. To show this, consider the univariate distribution
corresponding to 2 = min(X,Y). That is, Gz(x) = P(x,%)

-51X -5H2X -6x
+ e

G (x) =1- e - @ , x 2 0,
z
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Differentiating G w.r.t. x, we get, the density of 2 = min(X,Y),

.

f(x)=%e t+5e 2-"e .Sincefz(x)EOYxQO,
¥4 1

letting x tend to zero, we get, hlz = 61 + éz -8 >0,

From the choice A =8 - &8, » =8 -5 and) =6 + & - 6 we
1 2" 2 1 12 1

get, d =X + X + X , b5 = A + M and & = A + A .
1 2 12 1 1 12 4 2 12

Substituting these values in (1.58), we get,

- y - ‘ >
o (ki+xz+xiz)y (x1+k12)x + (k1+x12)y forx 2z vy

S(XpY) = _(K A 4N )x . (}\ +A )Y + (}\ +A )X for Y > X
e 1 2 12 2 12 2 12

“A X - A - A X for x =2
e 1 zY 12 b

{ AL X - ANy -2 ¥V for v 2 x
e 1 2 12 B

-A X - A - A max(x,
e 1 zY 12 ( Y), for x,vy 2 0,

which is the survival function of BVE of Marshall and Olkin (1967).
Thus the theorem is proved. -
5.2. CONDITIONS ON MARGINALS OF A BIVARIATE DISTRIBUTION HAVING

BLMP: | |

In this subsection, we show that the function given in
equation (1.10) need not be a bivariate survival function for any
arbitrary choice of the marginal survival functions Siband_sz. This
is shown below in Example 5.2.1, taking S1 and 82 to be survival

functions of the univariate Weibull distribution. Further,
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conditions on the marginal survival functions S1 and S2 are given

under which the function 8 in (1.10) is a bivariate survival

functiont
5.2.1. AN EXAMPLE.

Take the survival functions S1 and S2 as

—xp1
Si(x) = @ C if x> 0, pi > 0 and
p
S ({y) = e 2ot vy20,p >0
2 2
Note that 81 and Sz are survival functions of . Weibull

distributions. Substituting these in equation (1.10) we get,

p
gy e(xy)a

v

e zZ v 0,

S({x,y) = P (1.59)
e ox e (y-x)"2 y 2 x 20,

We examine below whether 8 in (1.59) is a bivariate survival

function. Note that one of the necessary conditions for 8 to be a

survival functionis 8(x.,v) n in x,vy 2 0.

Further S{x,y} , x Yy > 0 and S(x.,y) , v ¥ x>0, if 3S;§'Y) <0

a8(x,y)

V x,v > 0, and 3y <0 V x,vy > 0, respectively.

Now, Differentiating equation (1.59) w.r.t. x we get,

‘ P
o BY o (X-Y)1 (X_Y)p;’ X

. 2y20 (1.60a)
a8(X,Y) _ S
ax - p
o7 o p,(y-x)"2 ! 9} yZx20 (1.60b)
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and Differentiating equation (1.59) w.r.t v, we get

p
-6 - -
oY o (x-y) 1

v
<
v
o

p (x-y)F1i - e] X (1.61a)
33(X,Y) !

ay

p-t

p
-p © 6% e (y-x) 2(y~x) 2 vy2x20 {1.61b)

2

Note that the r.h.s. of (1.60b) and (1.6l1la} is positive for some Yy
and x respectively which implies that 8 is not decreasing in x for
every v 2 0 and y for every x 2 0. Therefore condition (a) 1s not
satisfied, so tha£ S is not a survival function. This shows that
for any arbitrary choice of Si and Sz in (1.10) need not yield a
bivariate survival function S. Marshall and Olkin (1967) have
obtained conditions on the marginal densities f1 and f2 (
equivalently on the survival functions S1 and SZ) under which the
function 8(x,y) in (1.10) is a bivariate survival function. We
present these in the next Theorem.

Theorem 1.7: Let Fj(x) be distribution functions with absolutely
continuous densities fj(x) for which %3£ fj(z) = 0, 3=1,2. In order
that S8(x,y) given in (1.10) be a bivafiate survival function, it is

necessary and sufficient that,
i) 6 < f1(0) + fz(O) < 26. (1.62)

dlog(fj(z})

ii) dz > - @, for all z > 0, j=1,2. (1.63)
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Proof: Let us define a bivariate function
-6
e Y Sl(x~y), for x 2 vy

o BX Sz(y~x), for vy > x

v
<

S(x,v)

(1.64)

v
o

where 8.= 1- FP., 3 = 1,2.
] J

It is required to obtain conditions on S1 and S2 under which S
given in (1.64) is a survival function.

Suppose S is a survival function. By Lebesque decomposition
theorem, every distribution function has a unique decomposition
given by

F(x,y) = a Fa(x,y) + (1-at) ?S(x,y), 0 £ac<1.
where Fa is absolutely continuous distribution function and FS is

singular distribution function. Equivalently,

14
1*
1A
[

S(x,y) = a8 (x,y) + (1-a) 8_(x,7), 0 = (1.65)

where S, Sd and S8 are corresponding survival functions.

First we determine Sa(x,y) and Ss(x,y) for the function S
given in (1.64).

In order to find the absolutely .continuous part of S, we
equate the mixed derivatives of S obtained from (1.64) and (1.65).
This gives,

2
g S(x,y) _
—ax oy falxY)
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-0y _
[ e [£f' (x-y) + 8f (x-y}], for x
1 i

(4

yzo0

ox (1.66)
e [f;(y—x) + sz(y—x)], fory>2x2>20

-

where fa(x,y) is absolutely continuous probability density function
of x and v.

Consider

w

X

J o £ (x,y)dx dy = J ] éey{f'(x-y)+9 £ (x~y)]dy dx
a . 1 1

X2y 00

o -a X X g -8 *
= J {[—e Yfl(x~y)] - 6 j e Yf_l(x—Y)dY + 9[-9 YF;(X‘Y)]
0 0 0 0

2 X -8 |
+ 0 J e Y Fi(x—y) dy } dx
0 .

© -6x -6 x * o
= J {f (x)-e f (0)-8 {—e Yo (x-y)] - 6% J o Yy (x-y) dy
0 1 1 1 0 0 1

-8X 2 * -8
+8 F (x) -6 e F(0)+6" [ Y F(x-y) dy ] ax
0

> -8 -6
= | {f (x) ~ @ °f (0) - 8F (x) + e °F (0) + OF (x) } ax
0 1 . i 1 { 1

o o 0%
= j f (x) dx - £ (0) j e dx
o * o

fi(O)
—— (1.67)

H
[
i

Similarly, it can be shown that
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® ® :
J a f_(x,y) dxdy = | J e PX[f (y-x) + 6f (y-x)ldx dy
a 0 x 2 2

X<y
fz(O)
=~1 "'—---é-‘*—-'- (1.68)
From {(1.67) and (1.68), we get,
0 W fi(O) fz(O)
j j a £ (x,y) dx dy = 1 - g 4+ 1 =
0 0
=2 ~ [£(0) + £ (0)]/8
1 2
Since fa(x,y) is density, we have
o 0
Of of fa(x,y) dx dy = 1
o= 2 - [fi(O) + fz(O)]/G (1.69)

From (1.65) and (1.69), it follows that the absolute continuous

part 8 (x,y) of S(x,y) has density fd(x,y) given by
a

1 Eeytf;(x—y) + efi(x—Y)l for x 2 y>0
fQ(X.Y)= 1 —ox (1.70)
= e {f;(y-x) + efz(y~x)] foryzx220

where a = 2 - {f1(0)+fz(0)}/e

Next, from (1.70), we have

S (x,%x) = 4% s®f (u,v) du dv
a X X a

1 w0 @ -6u
= — xjuj e [fz(v—u) + 8 fz(v-u)}dv du
®

1 -8v !
+ = XJVJ e [fi(u~v) + 8 fi(u~v)]du dv
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1 fm —-eu[
- | | = J
X u X

0 ow

- -9v | )
i { [ e eule—f(O)]du + e 6v{9~f(0)]dv {
8] x 2 X 1

)

= L g8 {2@ - L£(0) + £ (on}
a 8 1 2

T S P (from (1.69))
a 8
-6x

z e
-8% ]
But, from (1.64) we have S{(x,x) = e " x>0

and from (1.65), we have

S(x,x) = o Sa(x,x) + (1 - o) Ss(x,x)
S(X,X) - o 8 (X,X)
+ 8_(x,x) = 5]
~-8% -6x
_ e - o e
- (1 - o)
= e‘ex, x 20

Prom (1.64), it 1is <clear that the singular
concentrated on the line x = v.
Therefore, we have,

SS(X,Y) - { Ss(x,x) if x > v,

SS(Y.Y) if v > x,
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® o
f (v-u)+9F (v~u)] du + ~£ [ gev[f (u~-v)+9F (u-v)
z z [ 1

¢4
] av

Iy

(1.71)

(1.72)

]

is



_ { e if x > vy,
e FY if v > x,
Hence,
-Omax(x
5 (x,y) = e ( 'Y), X,y 2 0

Further we note that & given in (1.65) is survival function only if

0 £ <1 and Sa and Ss are both survival functions. Now 0 = = 1
together with (1.69) gives,
e = fi(O) + fz(O) < 28 (1.73)

Further 8 is a survival function if and only if f is density
4§ Q

function. Therefore, we must have,

o o

j j f (x,y) dx dy = 1 (1.74)
-0 —0 @ ’

and fa(x,y) >0 vV x,vy. (1.75)
Here (1.74) follows from (1.69) and from (1.70), it follows that,
(1.75) holds if,

f}(z) + 8 fj(z) >0, 3 =1,2V z2>20.

f'(z)

> —2 > -8
3
J(z)

2 -8 (1.76)

From (1.73) and (1.76) the theorem follows. .
As Corollaries of Theorem 1.7 Block and Basu (1974) proved the

following results.

Corollary 1.2: Let Fi(x) and Fz(y) have absolutelyﬂ continuous
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densities f and fz' Then S(x,y) given by (1.10) is an absolutely
1
continuous bivariate survival function if and only if,

i) f1(0) + fZ(O) = g for some & > 0.

i) dlog(fj(z))

P > -@, for all z 2 0, 3 = 1,2. (1.77)

Proof : From Theorem 1.7, it follows that S in (1.10) is a survival
function if and only if
i) 8 = fi(O) + fz(O) < 28.

dlog(f . (z))

ii) J > _ @, for all z 2 0, j=1,2.
dz

Further from (1.65) it is clear that & is an absolutely continuous
survival function iff o = 1. Therefore, Putting a = 1 in (1.69)
gives,
2 - [f1(0) + fz(O)] /6 =1
= f1(0) + fz(O) = 0 (1.78)
Thus from (1.76) and (1.78) the Corollary follows

Corollary 1.3: Suppose (fi,fz) and (giigz) are marginal densities

satisfying conditions (1.73) and (1.75).

Define,

(=2
]

yfi + (1-y) 9, 0<y=1

=
H

rf, + (1-y) g,
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Then h1 and h2 also satisfy the conditions (1.73) and (1.75), and

oY ﬁi(x~y) if x2y=20
hence the function 8§ = { _ox
o

ﬁ;(y*x) if vy 2 x

v

0

ig also a bivarivate survival function and has BLMP.
Proof: Suppose that (fi'fz) and (gt,gz) are marginal densities
satisfying the conditions,

i) 8 £ ft(O) + fz(O) < 206 and & = gi(O) + 92(0) < 28.

ii) dlog(fi(z)) dlog(gi(z))

> - 2 - i=
P > -6 and 15 2 -8, i= ¢,2

Now define

hi(z) = yfi(Z) + (1-y)gi(2)

hz(z) = yfz(z) + (1—r)92(2)
putting z = 0 we get,

hi(O) = yfi(O) + (1—y)gi(0)

hz(O) = yfz(O) + (1—?)92(0)

Now,
hi(O) +h2(0) = r[fi(O) + fz(O)] + (1*r)[gi(0) +gz(0)]
but £ (0) + £ (0) > 8 and g (0) +g (0) = @&
1 z 1 2 :
> hl(O) + hz(O) Z y8 + (1-y)8
> h‘(O) + hz(O) > e (1.79)

also fi(O) + fz(O) < 26 and gi(O) + 92(0) < 26
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3 hi(O) + hz(O) <y 28 + (1-y) 28
3 h(0) + h {0) £ 28
1 2
From (1.79) and (1.80) it follows that

6 < h(0) + h(0) < 208
1 2

’ * = . - 'R i =1’2
Also h1 yfl + (1 y)g1 i
dlogfi(z)
— > =
If iz > 6
daf.
1 1
— > -
L. f. dz z -6
i
af .
— > - =
=» P Bfl, i 1,2
dqi
Similarly I 2 ~egi, 1 0= 1,2
Now
dlog(hi)* 1 dh.1
dz " "h, az
i
I Ol P B
= "h, Y az ¥ 3z
i
dfi dgi
— - —_— i =
but a2 efi, and o = Sgi, 1 1,2
dlog(hi)
> - - -
i > hi (¥ Bfi) + (1-p ) 891)}
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2 -6 i=1,2.

Hence h.1 and h2 also satisfy the conditions (1.73) and (1.75).

Therefore from Theorem 1.7, it is clear that the function,

e*QY

H for x :
8(x,y) = { —ox
e

1

Y
~

Iv
o

|
v
]
v
o

for v
2

where H = yF + (1-y)G and H
1 1 1 2

i
~

o]

+

(1~y)§2 is also Dbivariate
survival function and has BLMP. .
5.3. To check the conditions of the Theorem 1.4 for the Weibull and
Gamma distributions.

Here we show that Weibull and Gamma distributions can not be
marginal distribution of a bivarite distribution having BLMP.

5.3.1.WEIBULL DISTRIBUTION:

The p.d.f. of weibull distribution is
-1 3
f(z) = f(z,ﬁ,é‘) = Béiz exp(~é1z ), z 2 0,3 > 0,51 > 0. (1.81)

Taking logarithm on both sides, we get

log(£(z)) = log(pé ) + (A-1)log(z) - fsizf"’

Differentiating with respect to z, we get
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dlog(f(z))_ . _ f3-1
"= (pB-1)/2z 6iﬁz

dz
4. dloglf(z))_ .. B _ . -1
MR g = Hp (A-b)/z o f Min =
= —00, if 3> 1
and
orim 3092y (g-1)/z —6 8 lim 27T
z 40 dz Z 40 1" za0

-0, if 3 <1

Hence condition (ii) of Theorem 1.7 1is not ksatisfied.‘

Therefore the function given by (1.81) cannot be a survival
function when either of the marginals is Weibull. The two
conditions of Theorem 1.7 are satisfied when (3 = 1, which

corresponds to the exponential distribution.

5.3.2. THE GAMMA DISTRIBUTION.
The p.d.f. of gamma distribution is

g(z) = glz,3,62) = —— ézﬁzﬂ"lexp(~ézzy, 22> 0,3 > 0,5 50. (1.82)

IR

Taking logarithm on both sides, we get

log(g(z)) = log(3 ) + flog(6,) + (f-1)log(z) - & z

Differentiating with respect to z, we get

dlog(g(z))

iz = (3-1)/z “éz

Lip d10g(a(2))
Z -0 dz

—62, if 3> 1
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and

. dlog(g(z))_ . . a
%ig B (3-1) %ig (1/z) lim &

Za® 2

= - if f <1

Hence condition (ii) of Theorem 1.7 is not satisfied.

Therefore the function given by (1.82) cannot be a survival
function when either of the marginals is gamma distribution. The
two conditions of Theorem 1.7 are satisfied when [ = 1, which
corresponds to the exponential distribution.

REMARK 1.2: A result similar to the one given in Theorem 1.7 for
bivariate case is obtained for multivariate case by Ghurey and
Marshall (1984) we quote the result below.

RESULT 1.1: Suppose that (1.9b) holds for some & > 0. Then S 1is
survival function if and only if

i) S1 and S2 are both degenerate at zero.

or

ii) S1 and S2 are both absolute continuous with right hand

derivatives
S (u) - 8 (u+d) S (u) - 8 (u+d)
g{u) = lim ! ! , h{u) = lim 2 z
S+ w & S5+ w &

which are right continuous, are of bounded variation and have at
most a countable number of discontinuities; further

a) exp(-6u) g(u) is non-decreasing in u 2 Q.

57



b) exp(-8u) h(u) is non-decreasing in u > 0.

c) Si(u) + Sz(u) > (1 - exp(-Pu)) for all u 2 0.
The proof of the above result is very lengthy and is omitted.
5.4. SOME DISTRIBUTIONS HAVING BLMP:

5.4.1. Let Sx(x) and Sy(y) be the marginal survival function of X

and Y given by,

A
12
Sx(x) = S exp(—(kl+hiz)x) T exp(-AXx), for x > 0
12 1 2
and
S () = —— exp(~(A +A )¥) - —2 exp(-Ay) for y > 0
v ¥ E k1+k2 P TR x1+x2 PL=AY ), Y

NN LA Z2 0 and A = A HA A
1 2 12 1 2 12.
we verify the conditions of Theorem 1.7 for Sx and SY.
First we find the p.4.f. of x and v.

fi(X) = ~S;(X)

K(k1+k12) 12
= -ﬂ—— exp("()\i"‘)\iz))() - .—)—K-——-I'-T K exp(“KX), X 2 O
1 2 1 2
Similarly,
_a!
£,(y) = -8!(y)
X(K2+K12) 12
= '"X;?X:’ exp(—(k2+k12)y) - "X:?X: A exp(-Ay), v =z O
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Now

Mx1+)\12) KlZ
fi(O) = D N TR +A, A
TR 1 2
AN
-
(A +A )
1 2
K(kz+xzz) Ktz
and fz(o) = A +A S A
1 2 1 2
AN
= 2
TN )
1 2

~ £ (0) # £ (0) = X
1 2
Therefore Sx and SY satisfy condition (i) of Theorem 1.7.

dlog(f (x))

> .
Also, i > -A

» f'(x) + Af (x) 20O
1 1

4

K(K1+k 2) Kiz 2
Y = - _ >
. fi(x) T exp( (R1+k12)x) + TS X exp{-Ax), x =20
1 2 1 2
Row
“)‘1”‘12)2 o 2
fi(x) + hfi(x) = T exp(—(k1+x12)x) + e XTexp(-Ax)
1 2 1 2
2
A (k1+k ) sz 2
+ —"'""'7\"'1__"_"7'\-?‘“ exp("(ki“":\iz)){) - —-'X-;—K; )\. exp(‘)\X)
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£ (x) + Af (X) 20 3 -(A+X )AL 20
1 1 1 12

2 A -k +AX +A +AX 20
1 12 1 2 12

. Az >0 ¥ x 2 0, which obviously holds.
Hence condition (ii) of Theorem 1.7 holds.
Therefore the function 8 given by (1.10) i.e.
-AY

e Sx(x—y) if x > vy,

e_kx Sv(y—x) if v 2 x.

S(x,y) =

has BLMP.

Note that 8 given above is the survival function of the
distribution proposed by Block and Basu (1974).
5.4.2. Let (X,Y) have bivariate exponential distribution with
parameter (A ,A ,A ). i.e. (X,Y) ” BVE(A ,A ,A ).

1z 12 1t 2" 12
The joint bivariate survival function is

S{x,y) = exp(—kix - sz - )12max(x,v)) V x,vy 2 0.

Therefore

S{x+t,y+t)

i

X X -A t- A t- +t,
exp klx ) xzy xzt Alzmax(x t,y+t))

e - -A t- A -x t- A axtix, +t
xp( ’\;x A=Ay A 12(m (x,y)+t))

i

-[A A+ t - - - ,
exp({ [)\1 A1 Aiz] ) exp( kix Azy kizmax(x Y))
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= exp(-rt) exp(»klx *xzy - Alzmax(x,y))
where A = A +A + A .
1 1 12
S(x+t,y+t) = 8(t,t) 8(x,y) vV x,vy,t >0

Thus the equation (1.9a) holds.

Hence the BVE has BLMP.
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