
CHAPTER - I

THE MULTIVARIATE LACK OF MEMORY PROPERTY

1. INTRODUCTION :

1.1.THE UNIVARIATE LACK OF MEMORY PROPERTY.

Suppose a component, say an electric bulb has the property 

that the probability that the component will be operative for at 

least (s+t) units given that it has already run for t units is the 

same as its initial probability of lasting for at least s units. 

This means that the future lifetime of the component has the same 

distribution, no matter how old it is at present. This is called as 

the "Lack of Memory" property. Formally speaking a continuous 

random variable X is said to have the lack of memory property (LMP) 

iff,
P(X > s+t |X > t) = P(X > s), for s,t > 0.

®r equivalently,

S(s + t) = S(s) S(t), for s,t > 0. (1.1)

where S(t) = P(X > t) is the survival function of X.

In the following sub section we present a characterization of
LMP.
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1.2. CHARACTERIZATION OP LMP.

In this section we prove that a continuous random variable X 

has LHP if and only if, X ~ e( X ), for some ,\ > 0 ( Henceforth 

X ~ e(X) means X has exponential distribution with parameter X). 
This characterization follows from the two lemmas proved below. 

Lemma 1.1 : The exponential distribution with parameter X for some 

X > 0, satisfies LMP.

Proof : Suppose X ~ e(X). Then, S(t) = P(X > t) = exp(-Xt)., t > 0. 

Therefore,

S(s + t) = P(X > s + t)

= exp{-X(s + t))

= exp(-Xs) exp(-Xt)

= S(s) S(t) V s,t > 0.

Thus from (1.1) it follows that X has LMP. —

In fact, the exponential distribution is the only continuous

distribution which has LMP. This is proved in the following lemma.

Lemma 1.2 : Let the survival probability S of a non-degenerate

continuous random variable satisfies (1.1). Then the underlying

distribution is exponential with parameter X, for some X > 0.
Proof : Let c > 0 and m and n be positive integers. Applying (1.1)

repeatedly, we get,
S(c+c+c+...n-times c) = S(c) 3(c)....n-times S(c)

8



4

* S(nc) = (3(c)1) for all n €+I*^V c > 0,

in ■f** 3(c) = (S(c/m)) for all m^ € I.

We now claim that 0 < S(l) < 1.

If S(1) = 1, then putting c = 1 in (1.2), we get,
S(n) « (S(l))n V n

(1.2)

(1.3)

# S(n) =1 V n

Letting n -» co this gives S(oo) = 1, which contradicts the fact that

S(a>) * 0. This implies that,

S(l) 1

Purther if S(1) = 0, then putting c * 1 in (1.3) we get, 
S(l) = (S(1/m))m V m 

-► S( 1/m) = (S(l))i/m V m

•* S(l/m) =0 V m

(1.4)

Letting n •» oo this gives S(0) = 0, which contradicts the fact that 

S(0) = 1. Therefore,

S(l) ?: 0 (1.5)

Prom (1.4) and (1.5) it follows that, 0< S(l) <1.
Suppose S(l)=e\ 0< X < oo, X * - log(S(l)). Putting c = 1 in

(1.3) it follows that,

S(1/m) = (S(l)) 
-\/m= e

l/m

V m e I

Therefore taking c=l/m in equation (1.2), we get
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S(n/m) * e-nX/m ¥ n,m e I

i.e. S(y) = e(-Xy), for every positive rational number y. (1.6)

, 1: Next, letbe a positive irrational number. Then, sincefJX/ is

a limit point of the set of all rational numbers, there exists a

sequence { y } of rational numbers which decreases to x. That is n
{ y^ } ^ x. Since the function S is right continuous, it follows 

that,

lim S(y ) = S(x) nn-»co
(1.7)

Since y are rational numbers, from (1.6) we have, n
S(y ) = e(-Xy ) n n V n,

Since y -*■ x, as n -» oo , n
lim S(y ) = lim e( - Xy ) n nn->oo n-»oo

= e -Xx

Using equation (1.7), this gives

S(x) = exp(-Xx)

for all positive irrational numbers x. Thus it follows that,

S(x) = exp(-Xx) V x > 0,

which is survival function of an exponential distribution with 

parameter X. Thus the lemma follows. —

In many situations the component lifetimes will be dependent 

and will have some joint probability distribution. For example the
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failure of paired airplane engines, the registration of an event on

two adjacent geiger counters, and the failure of paired organs such 

as lungs, kidneys and eyes. In order to study such situations it is 

important to extend univariate LMP to higher dimensions.

In section 2, we discuss some extensions of LHP for Bivariate 

and Multivariate case and its interpretation. In section 3, we

present characterizations of BLHP given by Marshall and Olkin4 ,

(1967), Block and Basu (1974) and Kulkarni^( 1992^). In section 4, we
-'■‘'■-•I

discuss characterizations of MLMP given by Ghurye and Marshall 

(1984) and Kulkarni (1998). In section 5, some supplementary 

results are presented. It is shown that the only distribution 

having BLMP with exponential marginals is BVE given by Marshall and 

Olkin (1967). Conditions on marginals of a bivariate distribution 

having BLMP are also discussed and some distributions having BLMP 

are presented.

In the next section we discuss some extensions of LMP for 

bivariate and multivariate case.

2. EXTENSION OP LMP TO BIVARIATE AND MULTIVARIATE CASE.

2.1 A NATURAL EXTENSION OP LMP:

For bivariate case a straightforward extension of LMP (1.1) 

is,

(1.8)
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However the following lemma shows that the only distributions

satisfying (1.8) are those having independent exponential

marginals, which are not of any use in modeling joint behavior of

dependent components.

Lemma 1.3 : If (1.8) holds then,

S(s ,s ) = exp (-(8 s +6 & )) V 8 >0,8 >0.
12 1122 1 2

Proof : Suppose (1.8)'holds. Setting s = t = 0, in equation (1.8)2 2

yields,

S (s + t ) = S (s ) S (t ) V s ,t > 0.Ill 1111 11

where S is the survival function of marginal distribution of first 
i

component. Thus S satisfies univariate LMP. Hence by Lemma 1.2 wei

have,
S (x) = e ^iX, for some 0 >0, V x > 0.
1 i

On similar lines it follows that,
S (y) = e"02Y, for some 9 >0, V y > 0,
2 2

where is survival function of marginal distribution of second 

component.
By choosing t s = 0 in equation (1.8), we obtain 2

S(s,t) = S(s) S(t) V s ,t i12 1122 12

-9 s -8 te i ie 22 V s ,t > 0. 1 2
which proves the lemma.
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Thus under (1,8), the joint survival function is the product 

of marginal survival functions. This means that the requirement of 

(1.8) is too stringent to yield a useful version of Bivariate Lack 

of Memory Property and needs to be weakened so that some bivariate 

distribution having meaningful dependence structure would satisfy 

the new modified definition.

In the next subsection we discuss a weaker form of bivariate 

LMP proposed by Marshall and Olkin (1967). Its extension to 

multivariate case is also given. Henceforth we refer to this 

version of bivariate LMP as bivariate lack of memory property

variate extension as Multivariate Lack of

(MLMP).

2.2. THE BIVARIATE AND MULTIVARIAE LACK OP MEMORY PROPERTY:

Let (X,Y) be bivariate random variable having survival 

function S. Then (X,Y) is said to have bivariate LMP if and only 

if,

S(s + t,8 + t) = S(s ,s ) S( t, t), V s ,s ,t > 012 12 1 Z (1.9a)

Note that, This is same as,

P(X > s +t,Y > s +t|X > t,Y > t) s P(X > s ,Y > s ), V s ,s ,t > 0.i 2 1 1 2 1 Z

Therefore the condition (1.9a) can be interpreted as the 

conditional probability of both components each of the same age t,
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surviving an additional time s = (s ,s ) is — 12 equal to the

probability of survival of s = (s ,s ) time units of new

components. We further note that (1.9a) is also same as,

P(X>s + t,Y>s +t |X > s ,Y > s ) = P(X > t,Y > t), V s , s , t > 0.

Thus (1.9a) can also be interpreted in an another way as

conditional probability of two components of ages s = (s ,s ), both— 12

surviving an additional time t is equal to the probability that 

they survive t time units starting at the origin.

2.3. MULTIVARIATE EXTENSION:

Let X = (X ,X X ) be multivariate random variable having12 k

survival function S. Then X is said to have multivariate LMP if,
..

and only if,

S(s+t,...s+t) = S(s ,s ,-..s ) S(t,t,...t), V s ,s ,•••s , t > 0Ik 12k 12k

(1.9b)
i.®. S(s + te) = S(s) S(t§) V s,t > 0. (1.9c)" / " " " .. x7

where e = (1, ... ,1). S = C '
>

Interpretations similar to those given in (1.9a) for bivariate case 

also hold for multivarite case.
In the next section we present some characterizations of BLMP. 

3. CHARACTERIZATIONS OF BLMP.

3.1. CHARACTERIZATION DUE TO MARSHALL AND OLKIN (1967):

Marshall and Olkin (1967) give the following characterization
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of bivariate distributions possessing bivariate lack of memory

property (BLMP).

Theorem 1.1: BLMP (1.9a) holds iff,

-eye s (x-y) if X IV IV o

S(x,y)= <
-exe

1

S (y-x)2 if y > x > 0

where the marginal survival function S(t,0) and S(0,t) are denoted 

by S (t) and S (t) respectively.i 2

Proof : Suppose (1.9a) holds. Setting s = s = s in (1.9a) yields,1 2

S(s+t,s+t) = S(s,s) S(t,t) V s,t > 0.

Therefore, since S (t) = S(t,t), t > 0 is the survival function of2
the univariate random variable Z = min(X,Y), by Lemma 1.2, we must 

have,

S(s,s) = exp(-0s), for some 9 > 0, V s > 0.

Now putting s = 0 in (1.9a), we get,2

S(s + t,t) = S(s ,0) S(t,t)1 1

= S (s ) exp(-et), 9 > 0 V s ,t > 0.
* i i

letting x = s^+t, y = t, this gives
-ByS(x,y) = e S (x-y), for x > y > 0. (1.11)

i

Similarly putting s^ = 0 in (1.9a), we get,

S(t,s + t) = S(0,s ) S(t,t)2 2

= S (s ) exp(-0t), 0>OVs,t>O.2 2 2
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letting y = s + t 2

S(x,y)

Hence from (1.11)

*

S(x,y) = -
k

Conversely, let

S( s +t,s +t) = • 1 2

Putting t=0 this

S(s ,s ) = 1 2

Also, S(t,t) = €

S(s , s ) S(t,t) = 1 2

Proa (1.14) and (

S(s +t,s +t) = 1 2

Thus S has BLMP.

\

, x = t this gives,

= e S (y-x) V y > x > 0 (1.12)2

and (1.12) we have,

e s (x-y)i
_/iy

3 S (y-x) for y > x > 0 2

(1.13)

(1.10) holds. Then

e-0(s2+t)g (s _s ) for s > s , t > 0 
112 12

e ^Si+t^S (s -s ) for s > s , t > 0 
2 2 1 2 1

(1.14)

gives,

e ®8?. S (s -s ) for s > s > 0 
112 12

ae i S (s -s ) for s > s > 0 2 2 1 2 1

— 0 ti , for t > 0. Therefore,

’ e ^ S2+^ ^3 (s -s ), for s > s , t > 0 
112 12

e 0( 8^ + t ) g ( g _g ) , for g > g t t > 0
2 2 1 2 1

(1.15)

L. 15), we have,

S(s,s)S(t,t) s ,s ,t > 0. 12 12
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Some more results related to Marshall and Olkin's

characterization of BLMP are discussed in section 5.

3.2. CHARACTERIZATION OF BLMP GIVEN BY BLOCK AND BASU (1974):

An another characterization of BLMP established by Block and 

Basu (1974) is presented it in this section. The main result is

given in Theorem 1.2. Before^the proof of the Theorem, we pr<pve two 

relevant lemmas namely lemma (1.4) and (1.5).

Lemma 1.4 : Let (X.Y) have non-negative bivariate distribution with
V. J •mm II  111 -■*— 

marginal densities which are absolutely continuous on (-00,00)^ and 

suppose (X,Y) have BLMP. Then there exists a positive number Q > 0

such that,

a) min(X,Y) ~ e(0)

9\^--

b) P(X-Y < t)
f (t) + e f (t)
1 1 if t > 0,

1 - f <-t) - e~if (-t) if t < 0,'2 2

where F^ and f^ i = 1,2 are respectively the marginal distribution 

functions and marginal densities of X and Y.

Proof: Let S be the survival function of (X,Y). Since (X,Y) have

BLMP, we have from (1.9a),

S(s+ t,s+ t) = S(s ,s ) S(t,t) V s ,s ,t > 0.12 12 12

Letting s = s = s, we get 1 2

S(s + t,s + t) = S(s,s) S(t,t) V s,t > 0
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V s,t > 0,

where S is the survival function of the random variable

S (s+t) = S (s) S (t) z z z

Z = min(X,Y). Now by Lemma 1.2 it follows that there exist 6 > 0,

such that Z ~ exp(0). Thus part (a) is proved.

Now, Since (X,Y) have BLMP, by Theorem 1.1, (1.10) holds. For

x ^ y. since f' and f' exist, (Note that by hypothesis f and f 
12 12

are absolutely continuous which means that f' and f' exists,1 2 z
integrable and f.(z) = f f'. (t) dt, j*l,2.) differentiating (1.10)

3 ** 3-oo
partially with respect to x and y, we get,

a S(x,y) 
dx dy = f(x,y)

exp(-0y) [f (x-y) + 9 f (x-y)) if x > y > 0,
1 1 (1.16)

= 1

»
'exp(-0x) [f (y-x) + 9 i (y-x)] if y > x > 0,2 2

In order to prove part (b), first we obtain joint distribution 

of min(X,Y) and (X-Y) and then obtain the marginal distribution of 
(X-Y), by integrating over the range of min(X,Y). We have, 

P[min(X,Y) < s, X-Y < t)

= P[min(X-Y) < s, X-Y < t, X > Y ]
+ P[min(X-Y) < s, X-Y < t, X * Y ] (1.17)
+ P[min(X-Y) < s, X-Y < t, Y > X ]

To obtain P(min(X,Y) < s, X-Y < t, X > Y) , we integrate (1.16)

over the region, 0 < y < s and y < x < y+t. We get,
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P(min(X,Y) < s, X-Y < t,X > Y)

s y+t

0 y
-$Y f (x-y) + 9t (

i 1
x-Y)Jdx dy t > 0

t < 0

s

= <0
i e-&Y i (t) + 9F (t) - f (0) - 9Y (0) 

1 11 1 dy t > 0,

0 t < 0,

. -6b . -1(1 -e ) 9 f (t) + 9F (t) - f (0)*

0
i it

t > 0, 

t < 0.
(1.18)

Next, P(min(X,Y) < s, X-Y < t, Y > X) is obtained by 

integrating (1.16) over the region 0<x<s, x<y<oo for t > 0

and the region 0 < x < s, x-t < y < oo, for t < 0. This gives,

P(min(X,Y) < s,X-Y < t,Y > X)

s oo

0
J I -dxe

S 00
II
0 X-t

-9xe

f' (y-x)+0f (y-x)Z 2

f' (y-x)+ef (y-x)
7. 2

]
]

dy dxt > 0,

dy dx t < 0,
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{ ~0x1 e [0 - f (0)]dxJ " z if t > 0,
s _
e [6 - f (-t)-0F (-t)]dx if t < 0,

0

0

(l-exp(-0s)) e [ 0-f (0)1 if t > 0.
=1 2 (1.19)

(i-exp(-es)) e [6>-f (-t)-d? (-t)] if t < o.2 2

Further it is easy to observe that,

P(min(X,Y)<s,X-Y<t,Y=X) I
P(X < s,X = Y) 

0

if t>0, 

if t<0,

From (1.17),(1.18),(1.19) and (1.20), We get, 

P[min(X,Y) < s,X-Y < t)

(1.20)

l-e~0SMF (t)+0_1f (t) + l-4(f (0) + f (0)} 
1 1 0 11

']['l-e"^8][l-F2(-t) fz(-t)

Letting s -♦ oo and noting from the proof

(1967) Theorem 5.1 that, P(X=Y) * 0 [f (0)
i

P(X-Y < t) = •
P (t) + 0 f (t)
1 l

1 - F (-t) - 0~1f (-t) 
2 2

+P(X=Y<s) t>0,
(1.21)

t<0,

of Marshall and Olkin

+ f (0)] - 1, we get 2

if t > 0.

if t < 0.

Thus (b) is proved. B

RBMARK 1.1: From equation (1.65) and (1.69) (cf section 5.2), it is
known that P(X = Y) = 0 * [f (0) + f (0)] - 1. Therefore, if P(X =»

1 2
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V < s) 0. ThenY) = 0 then 0_1tf (0) + f (0)] = 1 and P(X r
1 2

(1.21) becomes,

P[min(X,Y) < s,X-Y < t)

tl-exp(-es)] [P4(t) + 6~l f ^ (t) 3 if t > 0

tl-exp(-0s)] [1 - F (-t) - d~if <-t)3 if t < 0,
2 2

= P(mm(X,Y) < s] P[X-Y < t] (This follows from
(a) and (b))

Hence U = min(X,Y) and V = X-Y are independently distributed. 

Conversely, if U and V are independently distributed, then exactly 

reversing the above steps, it follows that P(X = Y) = 0. Moverover 

from the discussion page no. 1035 of Block and Basu (1974), it is 

clear that the condition P(X = Y) = 0 is equivalent to (X,Y) being 

absolutely continuous. From above discussion it is clear that U and 

V are independently distributed if and only if (X,Y) are jointly 

absolutely continuous. g

Lemma 1.5: Let (X,Y) have a non-negative bivariate distribution 

with continuous marginal densities and such that U = min(X,Y) and V 

= X-Y satisfy the following conditions: there is B > 0 such that,

1) U and V are independent. (1.22)

2) U “ e(d) (1.23)
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*4

3) P(V < t) f F (t) + 0 fI 4 4) 1Ivi- f <-t) - e

(t)

!f (-t)

if t>0,

if t<0,
2 2

Then (X,Y) has bivariate lack of memory property (BLMP). 

Proof : By Theorem 1.1, it is enough to prove that 

survival function of (X,Y) has the form

(1.24)

the joint

-0Ye S (x-y), if oA!►<Al$<
S(x,y) = . 1 (1.25)

-dxe S (y~x), if y > x > 0 •

which is equivalent to BLMP.

First we consider the case 0 < x < y. We have,

S(x,y) = P(X > x,Y > y)

= P(X > x,Y > y,X > Y) + P(X > x,Y > y,X < Y)

= P(U+V > x,U > y,V > 0) + P(U > x,U-V > y,V < 0) (1.26)

Note that the last step follows since X > Y U = min(X,Y) = Y and

V = X-Y * X = Y+-V = U+V. Also, when X < Y then U a min(X,Y) = X and

Y = X-V = U-V.

First consider the first term in the R.H.S. of (1.26). Since U 

and V are independently distributed (by (1.22)) and for y > x, the 

event U + V > x is implied by the other two, we have,

P(U+V > x,U > y,V > 0)

= P(U > y,V > 0)



= P(U > y) P(V > 0)

= /® 9 e atdt (l-P(V < 0 )) (by (1.23))

= 0 -By 1 - lim [1-F (-t)J (from 1.24))t.O 2 J

= e -By l - i + f (0) + e f (o) 2 2 ]
= e~°Y 9 *f (0) if y > 0. (P (0) = 0) (1.27)

2 2

Next consider the second term in the R.H.S, of (1.26). For y > x we 

have,
P(U > x,U~V > y,V < 0) = P(U>x,U-V>y,x-y<V<0) + P(U>x,U-V>y,V<x~y)

= P(U > y+V,x-y < V <0) +P(U>x,v< x-y) (1.28a)

Consider,
0 oo

P(U > y+V, x-y < V < 0)= ] [ f dP(U < u)3 dP(V < v)
x-y y+v

0 oo 11f [f 9 e du] dP(V < v) 
x-y y+v

0

x-y 1 e £(y+v)[f (v) + Q lf, (_v)] dy
2 2

e ay[0 *e 6{X Y)f (y-x)-e *f (0)]
2 2

-9xr . . .-i -0y.=9 e f (y-x) - 9 e f (0) 2 2 (1.28b)
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Next, for y > x, since U and V are independently distributed (by 

(1.22)), we have,

P(U > x,V < x-y) = P(U > x) P(V < x-y)

* x-y
= j 6 e Udu | dP(V < v)
x -oo

= e
-6x

x-y
f [f (—V) + e~Xt '(-V)] dv
J 2 2-00

= e -<9x 1 - F (—v) - 0 f ( 2 2

x-y

-oo

= e -Ox 1 - F (y-x) - 9 *f (y 
2 2

■X,] (1.28c)

Therefore, from equation (1.28a),(1.28b) and (1.28c), we get

P(U > x,U-V > y,V < 0) = e ■Ox 1 - F (y-x) 2
0 *e~dYf (0) (1.29)

2

From (1.26), (1.27) and (1.29), we get

^ X
S(x,y) = e [1-F (y-x)] if y > x > 02

__ y
= e S (y-x) if y > x > 0 (1.30)2

Next, We consider the case 0 < y < x. Recalling equation (1.26) we 

have,

S(x,y) = P(U + V > x,U > y,V > 0) P(U > x,U-V > y,V < 0) (1.31)

Consider, the first term in the R.H.S. of (1.31).
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Since 0 < y < x, we have

P(U+V>x,U>y,V > 0) = P(U+V>x,y<U<x,V > 0) + P(U+V>x,U>x,V > 0)

= P(y < U < x,x—U < V < ®) + P(U > x,V > 0) (1.32)

Since U and V are independently distributed, we have,
P(U > x,V > 0) = P(U > x) P(V > 0)

00 -rtu= j 9 e du (1 - P(V < 0)] (from (1.23))
x

=e"0Xri - limri-F (-t) - 0_if (-t) ] ] (from (1.24))
2 2 t-*o

Y= e ri - 1 + F (0) + 9 f (0)]2 2

_V — i= e 0 f (0) (Since F (0)=0 ) (1.33)2 2

and

00
P(y<U<x,x-U<V<oo) *= [ dP(U < u) f dP(V < v)yJ x-uJ

X 00-9 u.= [ 9 e [ f [f (v) + 9 1Z' (v) ] dv] du J x-uJ 1 iy
X

11 I= f 0 e [1 - F (x-u) - 0 f (x-u)l du yJ it

-0y —9x —0x -Qy^ . . .=e -e -T-e F(0)+e F (x-y)l
i i

-0y r„ _ . . , -0x= e [1 - F (x - y)] - e 1 (1.34)
From (1.32) to (1.34) we get,
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P(U+V>x,U>y,V>0) (1.35)= e -ex e f (0) 2
e-eyli 1 (X-Y)] -exe

Next consider the second term in the R.H.S. of (1.31).

Since U and V are independently distributed and y < x we have,

PfU > x,U-V > y,V < 0) = P(U > x,V < 0)

= P(U > x) P(V < 0)
_£| y . |

= e (1 - e f (0)] (from (1.23) & (1.24)) (1.36)2

From (1.31) ,(1.35) and (1.36) we get,
S(x,y) = e~0Y[l - F (x - y)3

i

= e~0YS (x-y), if x > y > 0 (1.37)
i

Thus from (1.30)
'

S(x,y) r -

and (1.37), we have 
e 0y S^(x-y), if x > y > 0

1 e 0X S (y-x), if y > x > 0 
2

Hence it follows that, (X,Y) has BLMP, and the lemma is proved. 

The main result is proved in the Theorem 1.2 below.

Theorem 1.2: Let (X,Y) have a non-negative bivariate distribution 

which is absolutely continuous. Then the BLMP holds if and only if 

for U = min(X,Y) and V = X-Y, there is a $ > 0 such that,

1) U and V are independent.

2) U ~ e(0).
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3) P(V < t)
f (t) + e jf f (t)i ~ i

1 - f (-t) - e~if (- 
2 2 t)

if t > 0, 
if t < 0,

where for i = 1,2 F (t) and f. (t) are respectively the marginal

distribution functions and densities of X and Y.

Proof : Let (X,Y) have joint absolute continuous distribution.

IF part: Suppose (X,Y) have BLMP. Then joint absolute continuity of 

(X,Y) implies (X,Y) have marginal absolute continuity. Therefore 

Lemma 1.4 is applicable so that (2) and (3) follow from Lemma 1.4.

Next from the joint absolute continuity and Remark 1.1 it 

follows that U and V are independently distributed.

Only IF part: Suppose (1),(2) and (3) hold. Further the joint 

absolute continuity of (X,Y) implies that V = X-Y is absolutely 

continuous which in turn implies the absolute continuity of 

marginals f and f . Then Lemma 1.5 is applicable, which provesi 2

that (X, Y) has BLMP
3.3. CHARACTERIZATION OF BLMP GIVEN BY KULKARNI^199^):

Kulkarni (1993) give the following characterization of 

bivariate lack of memory property (BLMP).

Theorem 1.3: Let S(x,y) be a survival function corresponding to a 

bivariate random vector (X,Y) for which vector failure rate r =
(R ,R ) exists for all x,y > 0. Then S has BLMP if and only if 1 2

R (x,y) + R (x,y) = 9 for all x,y > 0, where 9 > 0 is a constant.1 2
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Proof : Suppose S has BLMP. Then from (1.10), it follows that

R(x,y) = -log S(x,y)

f 9y + R (x-y), if x > y > 0 - . x
' 6x + R (y-x), if y > x > 0Y

where 9 = f (0) + f (0) and R and R are marginal cumulative 12 X Y
hazard functions.

Differentiating partially R with respect to x and y respectively, 

we get
, r (x-y), if x > y > 0

R <x,y) = i V (1.38)1 l 9 -r (y-x) if y > x > 0
2

, 9 - r (x -y) if x > y > 0R (x,y) = ] 1 (1.39)
l r (y - x) if y > x > 0 

2

where r and r are failure rates of the marginal distributions of 12
x and y respectively. From (1.38) and (1.39), we have

R (x,y) + R (x,y) =6 V x,y > 0 (1.40)1 2

Conversely suppose for some 9 > 0,

R+R=0 V x,y > 0 (1.41)1 2
dR dRNoting that R a -— and R = —, it follows that the equation

i dx 2 dy

(1.41) is a first order partial differential equation (called as 

Langrange's linear partial differential equation) whose solution is 
given by r(u,v) = 0 where u = x-y and v = 9x ~R(x,y) (cf Miller
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(1960),pp.87). Assuming that r(u,v) = 0 can be solved for v as v =

g(u) we get,

9x - R(x,Y) = g(x-y), so that,

* R(x,y) = 6x - g(x-y)

where g is some function of u = x - y. This gives,
_. . -RS (x, y) = e

= exp(-£x) exp{g(x-y)).

Putting x = 0 and y = 0 in this equation respectively 

that S(x,0) and S(0,y) correspond to marginal survival 

get,

S{0,y) = exp(-R^(y)) = exp( g(-y)), V y > 0, and

S( x,0) = exp(-R^{x)) = exp(-0x + g(x)), V x > 0.

This implies that,

g{-F) = -Ry(y), V y > 0, and

g(x) = 9x - R (x), V x > 0.A

Thus,

g(z) ■

Hence from

9z - R (z) x
■«

-R (-z) v

(1.42) we get

if z > 0. 

if z < 0.

R(x,y)
9y + R^fx-y) if x > y > 0. 

9x + R^iy-x) if y > x > 0.

(1.42)

and noting 

functions we
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Now, S = exp( -R)

S(x,y)

i

exp(- 6y - R (x-y) ) x

exp(- (9x - R (y-x) )Y

-0x .e S (x-y)
1

e 0Y S (y-x)
2

x > y > 0,

y > x > 0,

x > y > 0,

y > x > 0,

Hence from (1.10) it follows that S has BLMP. fl

In the next section we discuss some characterizations of MLMP. 

4. CHARACTERIZATIONS Of MLMP:

In this section we discuss three characterizations of MLMP. 

Two of these are given by Ghurye and Marshall (1984) and other one 

by Kulkarni (1998).

4.1. CHARACTERIZATION OF GHURYE AND MARSHALL (1984):

Ghurye and Marshall (1984) gave following two 

characterizations of MLMP. One is given in Theorem 1.4 below and 

the other one follows from Corollary 1.1.

Theorem 1.4.: A random vector X satisfies MLMP if and only if the 

following conditions holds.

i) X = Ue + W.

ii) U and W are independent.

iii) min(W ,....,W ) = 0 with probability 1.i n
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iv) either $ has an exponential distribution, say with parameter 

9 , or U is degenerate at 0.

where U = min(X ,....,X ) and W = X - Ue.1 , n

Proof : If part: Suppose X has MLMP.

To prove (i):

Let U = min(X ......X ) and W = X - Ue. Then,1 n

Ue + W = Ue + X - Ue

= X
Thus (i) holds.

To prove (iii ):

Consider

min(W....,W ) = min( X - U,____,X - U)In 1 n

= min(X ,..,.,X ) - Ui n

= u - u

= 0 with probability 1.
Thus (iii) holds.

To prove (iv):

Putting in (1.9c) s = xe, we get

S(xe + te) = S(x,x,...,x) S(t,t,...,t)

+ S((x + t)e)= S(xe) S(te)

■* V*+1( ■ B„'*> 3„(t>
where U = min(X ,...,X ). Thus U satisfies univariate LHP.4 n Hence
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from characterization of univariate LMP, U has exponential

distribution with parameter 6, for some 6 > 0.

To prove (ii):

For real vectors a = (a ,a ...... a ) and b = (b,b,....,b).12 n ' 12 n

let a v b = (max(a ,b max(a ,b )). For any u > 0 and any w,11’ n n

let

k \I
First we prove that 0 c Q .k+l k

Let us consider

X > w+ (u+j2 k)e, (u+j2 k) < U < u+(j+l)2
/

[X>w+ue, u<U< u+2 k] U tK>w+(u+2~k)e, (u+2 k)<U<u+2

U tX>w+(u+2"k+1 )e, u+2'k+1<U< u+3x2~k] [)

where

and
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GO ,
fl, =U i X >w+(u+j2_k_1)e, (u+j2~k *) < U < u+(j + l)2 k~1

k +i I
j=o '

)

= fX>w+ue, u<U< u+2 k 41 U fX>w+(u+2 k Se, (u+2 k i)<U<u+2 k] 

U [X>w+(u+2 k)e, u+ 2 k<U<u+3 2 k 1] U ...................

= B y B U B Uik u 2k u 3k u

where B ={x >w+(u+---- ^ )e, (u+^~* - ^ ) < U < u+ —— 1 (1.44)
jk ( 2k + i 2k+i 2k+1J

j = 1,2................

Prom (1.43) and (1.44), we observe that

BjkU B(j+i)k C A((J+i)/2)k V J = 1,2............

* Y B C U A V j € I +
3 3

=» 0 c 0 V k e I +
k+i k

* °k 4, k
oo

Therefore lim Ok = q Ok.
k-*co k =i

=* lim P(f)k) * P(lim Ok ) 
k-»oo ktoo

oo
= P( fl Ok ) (1.45)

k =1

How consider

co , _ -
* U | X > w+(u+ j 2 k)s, (u+j2 k) < U < u+( ji+1) 2

j =o ’
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00 ( ■ -k \ 00 ( _k -k I
= U •! I > w+ (u+ j2 )e | fj U j u+j2 < U f u+( j+l)2 ,

j =0 l ) j =0 l '

■ I X >w + ue } n f U > U

CO CO , X
* nn, = n p + u— } n { u > u nk =1 k k *i l J

( X >w + ue, U > u j

= j W > w, U>u|
-► lim P(0 ) = P{ W > w, U > u } k-oo k

Consider

(1.46)

P(Qfc) = p| U j X > w + (u+j2 k)e, (u+j2_k) < U < u + (j+l)2 k j

<0
•l

3-o
P| X > w + (u+j2_k)e, (u+j2~k) < U < u+(j+l)2_k J

(Since the events are disjoint)
oo

X>w +(u+j2 k)e, U>u+j2 - P |x>w +(u+j2 k)e, U>u+(j+l)2 k)]
where U = min(X ,X ,.X ).12 n

00
= ^ P |x>w +(u+j2 k)e v (u+j2 k)eJ-p|x>w +(u+j2 k)e v (u+(j + l)2 k)e)]
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(A
= -2 [S(f-+*U+32 k^®-1 v (u+^2 +(u+j2 k)Q] V (u+( j+1 )2 k)ejJ

00

■l [ S[ (w v/0 + (u+j2 k)e) ] - S[ (w v 2 ke+ (u+j2 k)f ] J

go
= ^ |s( (u+j2~k )e) S(w V 0) - S( (u+j2 k)e) S(« v 2 k)J (from (X.9c))

00

■ 1 [■.3-o L

(u+j2 k) S(w ^ 0) - S^(u+j2 k) S(w v 2 k)

(Since S{(u+j2 k)e)=S (u+j2 k) where U=min(X ___,X )
u in

and from { iv ), U is exponential with parameter Q)

oo

P(0 )
k

H

3=o 1

0(u+j2 k) , n> -9{u+j2 k) -k
e S(w v 0) - e S(w v 2 e) ]

e-6u
. ® „, . -k,

S(w V 0) - S(w V 2 ke) | S e-0(u+32 }]XAJ

i-

3-0

e -0u «/ nx „ k .If,- -02~k -202 k -302-k
S(ws/0)-3(wv2 e) l+e +e +e +.

e
-0u

S(w V 0) - S(M V 2 ke)J j 1 - e"02

lim P(Ok) = e 0U lim jjs(w ^ 0) - S(w v 2 ke)] fl - e 02

k oo k -*■ oo

■][■ -k -,-1n
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= P(U>U) lim 
k -> co IIS(wv0)-S(wv2 e) 1](■

(Since U - exp(0).)

Therefore from (1.46), we have

-kP(W> w, U> u)=P(U>u) lim \ |S(w s/ Q) - S(w v 2 e) | |1
k -♦ oo >](]

= P(U > u) P(W > w I U > u)

= P(U > u) P(W > w)

•v
►

J

(1.47)

Also if U<0, then P(U > u) = 1, so that P(W > w, U > u) = P(S > w)

+ P(U > u) P(W > w) = P(U > u) P(W > w) (1.48)

Thus from (1.47)and (1.48) it follows that U and W are independent. 

Hence (ii) is proved.

Thus MLMP implies (i), (ii ),(iii ) and (iv).

Only IF Part: Suppose conditions (i), (ii), (iii) and (iv) hold, 

where X = w + Ue and U = min(X ,X , ...,X ).12 n

Then S(x) = P(X > x)

= P(W + Ue > x)
oo

= J P(W > x -ue |U=u) f(u) du 
0

00 -du
= J P(W> x -ue ) 9 e du (by (iv) and (ii))

0

S (x - ue) 6 e ^Udu (1.49a)
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Note from condition (iii) that P puts the entire mass on the axesw
and is zero elsewhere

oo -0US(x) = J S^(x - ue) 9 e du
nun(x, ) i

Therefore, replacing x by x + te in (1.49a), we get

(1.49b)

oo
S(x + te) = f S (x +te -ue) 9 e du " " 0J » "

oo ^ 11S(x + te) = f S (x - (u-t)e) 9 e du 0J s:

t +mi r> < x >i 00
= f S (x - (u-t)e) 9 e Udu + f S (x - (u-t)e) 9 e Udu J w J w

t +min(x >

Note from condition (iii) that P puts the entire mass on the axesw
and is zero elsewhere.

Since (X - (u-t)e) > 0 for u <= (0, t + min(x )), the first integral
i

vanishes in the above equation and we have,

00
*(x + te) = J Sv/X ~ & -0ue du

1 +min < y > 
i

Putting u-t * z we get du = dz and range of z is min(x ) to oo. This
i.

gives,
oo

S(5 + te) = J S^(x - ze) 9 e 0^t+Z^dz 
min(x )

i.
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dz
00-et { « / e S (xJ w

min(x )

. ~6zze) 6 e

= S(te) S(x) (from (1.49b))

Thus X has MLMP property a

The second characterization of MLMP given by Ghurye and Marshall 

(1984). It follows from the following corollary to the Theorem 1.4.

Corollary 1.1. A random vector X has satisfies MLMP iff,
00

S(x) = [ S (x - ue) 0 exp(-0u) du, 0 < 6 <oo, x > 0oJ *

where X = Ue + W, here U = min(X ,X ,...,X ).12 n

Proof: In the proof of Theorem 1.4 we see that,
MLMP * Conditions (i) and (iv) + (1.49a) + MLMP, which shows 

that (1.49a) is equivalent to MLMP.

4.2. CHARACTERIZATION DUS TO KULKARNI (1998);

Kulkarni (1998) gave following characterization of MLMP which 

is an extension of the result given in section 2.3 for bivariate 
case. A detail proof of multivariate extension is provided because 

it is slightly different from the bivariate case.

Theorem 1.5: A necessary and sufficient condition for a random
vector S having vector failure rate r = (R ,R ,R ,....R ) to have — — i 2 a k

k

MLMP is that Y R (t) = c where c is constant.
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Proof: Sufficiency: Suppose

l-l
R . = ci. (1.50)

Here R. 1
dR— , so that (1.50) is a Langrange's linear partial
& r / *

differential equation in k variables (cf. Miller (1960), pp. 95) 

having subsidiary equation,

ds ds ds ds dR
c (1.51)

which has k independent Integrals u.(s,s,..,.,s) = a., j3i2 k 3

1,2,.... .k where u.(s ,s ,....,s ) = s -s , j = 2,3,J J ‘ 2 k
k and u

(cs - R(s)). Therefore its solution is given by (cf. Miller (1960) 1 —

pp. 95) <h(u ,u , . . . . ,u ) = 0, where <f> is any function of12k

u ,u , . . . ,u . Assuming that the equation <i>( u ,u , . . . . ,u ) = 0 can
12k 12k

be solved for u in terms of u ,u ,....,u , we get1 2 3k

u = cs - R(s) = g(u ,....,u ). This gives,l 1 — 2 k

R(S) = cs - g(s-s ,s -s ,...,s-s ).
— 1 1213 lk (1.52)

By putting s = 0 in (1.52) and noting that R(0,s ,s ,...,s ) is1 2 3k

the cumulative hazard function of the marginal distribution of 

X ,X , . . ,X, we get,2 3k

- g(-s ,-s ,...,-s )2 3 k
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R (s , s ,. . . , s ), s > 0, 1 = 2,...,k,X ,X.. . . X 2 3 k i2 3 k
(1.53)

where R is the marginal cumulative hazard function ofX ,X , . . . ,X 2 3 k

X ,X , ..,X . Therefore from (1.52) we get,2 3 k

R(s)= cs + Ri X ,X ,2 3
v((S -s ) , . , X 2 1k

.,(s -s )), s. > s , i = 2 , . . . , 3 k l li

Similarly, if s. = mm(s ,s s ). then by taking1 12 ko
■k *u. = b, - s., j = 1,2,3,....,k; j * i and u. » cs. - R(s), it can j l j oil —o o o

*be seen that u. * a., j = l,2,...k; are also integrals of thei 3

subsidiary equation (1.51). Then by similar argument, we get

R(s a cs. + R ((s -s_),...,(s. - s.),(s. - s .),..(s- s, )),— i o il i-ii i+ii kio o o o o o o

s. > s. , i = 1,2,....k.
o

(1. 54)

where R denotes the cumulative hazard o function of the marginal of

distribution of (X.... ,X. , X. ,..i 1-11+1o o
. . ,X ). Putting k = t, for

i = 1,2,3,...,k, in equation (1.54), we get R(t,t,.... ,t) = ct, so

that again from (1.54) we have,

R(s +t,s +t,..,s +t) = c(s,+t)+R ((s -s.),..,(s. -s. ),(s - s )12 k 1 O 1 1 1-1 1 1+11o o o o o o

■<sk - si >' 
o
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= cs. + ct 1o
R ((s -s.),.O 1 1o

, (S. ~S. , (S. - S8-3. )1-1 ll+il k 1o o o o o

= R(s) + R(t,t,___,t)

But S(t) -R(t)e Therefore we get,

S( s +t,s +t____ s +t) = S(s) S(t,t..... t), V s.t > 0.
12k— —

Thus S has MLMP.

Necessity : Conversely, suppose S has MLHP. Then,
S(s+t,s+t,...,s+t) = S(s ,...,s ) S< t 1) V s > 0, t > 0. (1.55) 12 k 1 k — —

Putting 8^=8, i = 1,2,3,...,k and noting that S(s,s,...,s) is same

as survival function of min(S ,...,S, ). and by characterization of1 k
““CSunivariate LMP, we must have S(s,s,...,s) = e for some c > 0.

Therefore, putting s = 0, in equation (1.55) we get,

S(t ,s +t,...,s +t) = S(0,s ,...,s ) S(t,t,t,...t)2 k 2 k

= e~Ct S (s , ...6 ), s > 0, t > 0.
A /A 2 k ■**2 3 k

or equivalently.

S( s , . . . ,s )=e CSi S v (s -s , . . .s -s ), s. > s ,
i k X,X,...,X. 21 k i l i2 3k „ „ ,i 3 1,2,...,k.

Taking logarithm on both sides and multiplying by -1 on both sides, 
we get
-log(S(s ,. . . ,st )) = cs - log(S v (s -s , . . . ,s -s ))1 k 1 X,X,...,X21 k 12 3 k
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X ,x ,... ,x
2 3 k

R(s ,...,b ) = cs + R
4 V 4

(s -s , . . . , s -u ), s > s ,
4 V 4 1 4
A K A -*• JL

i = 2.... ,k.
By similar arguments if s = min(s ,s s ) we have

1 12 k

R(s ) = cs. + R (s -s ,.. . ,s -s.,s . -s . , ..,s -s . ) , (1.56)l k l o l i i-i l x+i l k l

s > s , j= 1,..,i-i ,i+i,. .k
j <-

where R denotes the cumulative hazard function of the marginal o

distribution of (X ,X. ,X. X ).1 l-ll+l ko o

Differentiating both sides of (1.56) partially with respect to s.,l
i = 1,2.... ,k we get,

R = dR (s —s ,.,,s -s ,s -s , . . .,s -s. )/£w , j^i, j = l,2,...k.j Oil i-l 1 1 + 1 1 k 1 j

k
and R.= c -rdR(s-s,..,s -ss. -ss -s.)/dw., where i o i v ».-i i i+i i k i j1*1

w. =s . —s. , j = 1,2.... ,k. So that R + R + +R ■ c. (cf. CALCULUS
3 J 1 12 k

by Apostol (1969) Theorem 8.8 pp. 264)

Thus S has MLMP. , B

5. SOME SUPPLEMENTARY RESULTS.

5.1. THE DISTRIBUTION HAVING BLMP AND EXPONENTIAL MARGINALS:

Marshall and Olkin (1967) studied bivariate distributions 

having BLMP along with exponential marginals. They observed that 

the only distribution having BLMP and having exponential marginals
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is the bivariate distribution with survival function,

S(x,y) = exp(-X x - X y - X max(x,y)), x,y > 0, X ,X ,X >0 (1.57)1 2 12 1 2 12
I*-'"'

l i ^
This^is presented in the following theorem. Henceforth we refer to 

(1.57) as survival function of the bivariate exponential 

<distribution (BVE).
Theorem 1.6: The BVE is the only bivariate distribution with 
exponential marginals satisfying (1.10).

Proof: Suppose (1.10) holds. Since we demand exponential marginals,
let S (x) = e ^iX and S (x) = e ^2X,

i 2 6 >0,6 > 0 be the1 2
marginal survival functions.

Then from (1.10) we have,

S(x,y) = «
-By-6 (x-y)e i for x > y,
-ex-6 (y-x) r e 2 for y > x.

(1.58)

for some $ > 0.

Since S(x,y) is decreasing in,y, from (1.58), we must have

6 > 6 , so that X =6 1 2 6^ > 0. Similarly, since S(x,y) is

decreasing in x, we must have B > 6 , hence X = 6 - 6 > 0. Let2 12

X =6+6-0. To insure that X >0, we must show that12 i 2 12

6 +6 > 9. To show this, consider the univariate distribution1 2

corresponding to Z = min(X,Y). That is, G (x) = F(x,x)z
^ „ -6ix -62X -9x . „G (x) = 1 - e -e + e , x > 0
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Differentiating G w.r.t. x, we get, the density of Z min( X,Y),

f (x) = 5 e i + 6 e Z - 6 e . Since f(x)>0*xi0, z i 2 z
letting x tend to zero, we get, A = 6 + 6 - 6 > 0.12 1 2
From the choice A. = 0- 6, A = 0- 6 and A =6 + 6 - Owe1 2 2 1 12 1 2

get, 0 = A + A + A ,6 = A + A and 6 = A + A .1 2 12 1 1 12 2 2 12

Substituting these values in (1.58), we get,

. -(A +A +A )y - (A +A )x + (A +A )y for' x > y e 1 2 12 1 12 1 12

-(A +A +A )x - (A +A )y + (A +A )x for y > x e 1 2 12 2 12 2 12

-Ax-Ay- A x for x > ye i 2 12
-A x - A y - A y for y > x e i 2 12

-A x - A y - A max(x,y) , . .= e i 2 12 , for x,y > 0,

which is the survival function of BVE of Marshall and Olkin (1967)

Thus the theorem is proved.

5.2. CONDITIONS ON MARGINALS OF A BIVARIATE DISTRIBUTION HAVING

BLMP:
In this subsection, we show that the function given in

equation (1.10) need not be a bivariate survival function for any

arbitrary choice of the marginal survival functions S and This

is shown below in Example 5.2.1, taking S and S to be survival1 2

functions of the univariate Weibull distribution. Further,
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conditions on the marginal survival functions S and S are giveni 2

under which the function S in (1.10) is a bivariate survival 

function.

5.2.1. AN EXAMPLE.

Take the survival functions S and S as1 2-xPt
S(x)=e if x > 0, p >0 and

-XP2S (y) = e * 2 if y > 0, p > 0 .
2 2

Note that 3 and S are survival functions of . Weibull 1 2

distributions. Substituting these in equation (1.10) we get,

e-Sy -(x-y )Pi 
e x > y > 0,

S(x,y) = - -exeV -(y-x)P2 
e y > x > 0,

(1.59)

We examine below whether S in (1.59) is a bivariate survival 

function. Note that one of the necessary conditions for S to be a 

survival functionis S(x,y) ^ in x,y > 0.

Further S(x,y) , x V y > 0 and S(x,y) . y V x > 0, if —l*...?■ < 0
♦ *

<?S ( x y )V x,y > 0, and —— < 0 V x,y > 0, respectively.

Now, Differentiating equation (1.59) w.r.t. x we get,

dS(X,Y)
dx

~6y -(x-y) i p~ I-p e e (x-y) i1 __

-9x -(y-x) 2e e p (y-x)p2 - 0 
2

x > y > 0

y > x > 0

(1.60a)

(1.60b)
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and Differentiating equation (1.59) w.r.t y, we get

e~(* Y) 1 pjx-y)pr'_ qJ x > y > 0 (1.61a)

ax q-(Y-x) 2(y_x)P.f 1 y > x > 0 (1.61b)

Note that the r.h.s. of (1.60b) and (1.61a) is positive for some y

and x respectively which implies that S is not decreasing in x for

every y > 0 and y for every x > 0. Therefore condition (a) is not
satisfied, so that S is not a survival function. This shows that
for any arbitrary choice of S and S in (1.10) need not yield ai z
bivariate survival function S. Marshall and Olkin (1967) have 

obtained conditions on the marginal densities f and f (

381X,Y) 
dy

1 2

equivalently on the survival functions S and S ) under which the1 2
function S(x,y) in (1.10) is a bivariate survival function. We 

present these in the next Theorem.

Theorem 1.7: Let F,.(x) be distribution functions with absolutely
continuous densities f.(x) for which lim f.(z) = 0, j=l,2. In orderj z-+oo 3
that S(x,y) given in (1.10) be a bivariate survival function, it is 

necessary and sufficient that,

i)0<f(O) + f(O)<20. (1.62)1 2

dlog(f , (z))ii) --- --- 1— > - 6, for all z > 0, j=l,2. (1.63)

46



Proof: Let us define a bivariate function

e-0y S (x--Y), for x > y > 0
S(x,y) = - -ex

1
-x), for y > x > 0

(1.64)
e s (y-7

where S.= 1- F., j = 1,2. 
1 3

It is required to obtain conditions on S and S under which S1 2

given in (1.64) is a survival function.

Suppose S is a survival function. By Lebesque decomposition 

theorem, every distribution function has a unique decomposition 

given by
F(x,y) = a F (x,y) + (1-ot) F (x,y), 0 < a < 1.a s

where F is absolutely continuous distribution function and F is3 S
singular distribution function. Equivalently,

S(x,y) = a S (x,y) + (1-ot) S (x,y), 0 < a < 1. (1.65)a S

where S, S and S are corresponding survival functions.Q S
First we determine S (x,y) and S (x,y) for the function Sa s

given in (1.64).

In order to find the absolutely .continuous part of S, we 

equate the mixed derivatives of S obtained from (1.64) and (1.65). 

This gives,
d2S(x,y) 
dx dy faU,y)
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(1.66)
—fi y« r f'e [f'(x-y) + fif (x-y)], for x > y > 0 t 1
—fixe [f' (y-x) + fif (y-x)], for y > x > 0 

2 2

where f (x,y) is absolutely continuous probability density function
cl

of x and y.

Consider
00 X

x>y
j a fa(x,y)dx dy = J | efiy

0 0
f (x-y)+9 f (X-y)t i dy dx

oo., _ nx x- J A'1-’ -M0 u Jo 0
-fiye Yf (x-y)dy + fi -fiy_ ..-e F (xi

-,r
-Jo

x02 j e 'y F (x-y) dy l dx0 1 J
°°fV K y(x)-e £ (0)-fil

-e ^yF (x-y) 
1

x x -fi

- fi2 f e yF (x-y) dy
0 oJ 1

+ fi F (x) - fi ei
-fix X XF (0) + fi2 fe y F (x-y) dy l dx

1 0 1 J
oo ,

f (x) - e"0Xf (0) - fiF (x) -t- fie“6XF (0) + 0F (x) \ dx
i it t Mx) J

00 00
= J f (x) dx - f (0) J e dx

0

= 1
f (0) 1
0 (1.67)

Similarly, it can be shown that
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(1.68)

00 00 /*} y ■( a f (x,y) dxdy a f f e [f (y-x) + Of (y-x)]dx dy j a j 2 2x<y 0 x

= 1 -
y°>
Q

From (1.67) and (1.68), we get,

00 00 f (0)
] J a faU,y) dx dy = 1--- 1--- + 1

0 0

f (0) 2
6

= 2 - [f (0) + f (O)]/0 1 2
Since f (x,y) is density, we havea

-00 ^00
0f 0f fa^X'Y) dX dy = 1

a * 2 - [f (0) + f (O)]/0 (1.69)1 2
From (1.65) and (1.69), it follows that the absolute continuous

part S (x,y) of S(x,y) has density f (x,y) given bya a

f (x,y)=<a

-i- e9y[f'(x-y) + 0f4(x-y)] for x > y > 0
1 -^v— e [f'(y-x) + 9i (y-x)] for y > x > 0Ot 2 2

(1.70)

where a = 2 - [f (0)+f (0)]/6i 2
Next, from (1.70), we have

S (x, x) = X00 /°°f (u, v) du dv
a x x a

00 00

a
II e-6 u

X u
1 f°° -3v+ — i 1e

f' (v-u) + e f (v-u)ldv du
2 2 J

a x v
f (u-v) + e f (u 1 1

">]du dv
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00 100

a J I zX 1
■I
Ju

( 9 0U [f (v-u)+0F (v-u) j du + — f e~ |f (u-v)+0F (u-v) | dv1 fVfi
a J fi 

x L

t
t-v\

CD

* i

MV
1 t oo

11« 0-f (0)
,°° -0v 

du + ea V 2 JX
e-f (o)i H

-5- e"0x I20 - [f (0) + f {o) j 1
Of a I -I 2 j

i -exe 0 aa 0 (from (1.69))

-0xz e
.XBut, from (1.64) we have S(x,x) * e x > 0

and from (1.65), we have

(1.71)

(1.72)

S(x,x)

•4 S (x,x) s

a S (x,x) + (1 - a) S (x,x) a s

S(x,x) - a S (x,x)
__

-0xe
__

-0xa e 
a)

—0X= e x > 0

From (1.64), it is clear that the 

concentrated on the line x = y.

if x > y, 
if y > x,

Therefore, we have,

S (x,y) s { S (x,x) s
s (y,y)s

singular part of S is
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■( -ex
-ey

e if x > y, 
if y > x,

Hence,
-0max(x,y)S (x,y) = e , x,y > 0s

Further we note that S given in (1.65) is survival function only if

0 < a < 1 and S and S are both survival functions. Now 0 'i a 5 1a s
together with (1.69) gives,

e<f(0) + f(0)<2e (1.73)1 2

Further S is a survival function if and only if f is densitya a
function. Therefore, we must have,

00 00
[ [ f (x,y) dx dy = 1
J J a-a -co

and f (x,y) >0 V x,y.a

(1.74)

(1.75)

Here (1.74) follows from (1.69) and from (1.70), it follows that, 

(1.75) holds if,

f# (z) + S f (z) > 0, j = 1,2 V z > 0.

f'j(z)

f j(z)

dlog(f.)
> -e + —s—- > -edz (1.76)

From (1.73) and (1.76) the theorem follows. B

As Corollaries of Theorem 1.7 Block and Basu (1974) proved the 

following results.

Corollary 1.2: Let F (x) and F (y) have absolutely continuous1 2
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densities f and f . Then S(x,y) given by (1.10) is an 
1 2

continuous bivariate survival function if and only if,

i) f (0) + f (0) = 0 for some 6 > 0.1 2

... dlog(f . (z)) li) ______ 3_
dz > -0, for all z > 0, j = 1,2.

Proof : From Theorem 1.7, it follows that S in (1.10) is

function if and only if

i)0<f(O) + f(O)<20. 1 2

ii)
dlog(f . (z))
________2__>

dz 0, for all z > 0, j = 1,2.

Further from (1.65) it is clear that S is an absolutely 

survival function iff ot = 1. Therefore, Putting o» = 1

gives

2 - [f (0) + f (0)] / 0 = 1 1 2

=» f (0) + f (0) = 01 2
Thus from (1.76) and (1.78) the Corollary follows

Corollary 1.3: Suppose (f ,f ) and (g ,g ) are marginal12 1 ’ 2
satisfying conditions (1.73) and (1.75).

Define,

h =yi + (1-^) g^, 0<^<1
h = yf + (1-y) g 2 2 2

it;
■%}.

absolutely

(1.77) 

a survival

continuous 

in (1.69)

(1.78)

densities
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Then h and h also satisfy the conditions (1.73) and (1. 1 2

. e~&Y H (x-y) if x > y > 0
hence the function S = <

l e“ex H (y-x) if y > x > 0 
2

is also a bivarivate survival function and has BLMP.

Proof: Suppose that (f ,f ) and (g ,g ) are marginal12 12

satisfying the conditions,

i) 6 < f(0) + f (0) < 26 and 6 < g (0) + g(0) < 26. 12 12

. dlog(f . ( z )) dlog(g.(z))
11 ----- _------------ > -6 and ------- -—------ > -6, i= i ,2

dz d z

How define

h (z) = yi <z) + (l-y)g (z)1 i i

h (z) = yf (z) + (1-y)g (z)2 2 2

putting z = 0 we get,

h (0) = yf (0) + (l-y)g (0)
1 l . i

h (0) = yi (0) + (1-y )g (0)
2 2 2

Now,

h (0) +h (0) = y[t (0) + f (0)] + (l-y)[g (0) +gi 2 12 id

but f (0) + f (0) > 6 and g (0) +g {0)> 6 12 12,

=» h ( 0 ) + h (0) > yd + (1-y )6 
12

h (0) + h (0) > 6 1 2

also f (0) + f (0) < 26 and g (0) + g (0) < 26 1 2 12

75), and

densities

(0)]

(1.79)
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*\/
i 2d + (i-r) 2d3 h (0) + h (0) <i 2

* h {0) + h {0) < 26 
i z

Prom (1.79) and (1.80) it follows that

0<h(O)+h(O)<26 1 2
Also, h, = yf. + (1-y)g., i = 1,2l i l

dlogf.(z)
If 1 -> - 6dz

1 dfi
i. e. 1 1 > 

f . dz1
-e

df .
__ 1 >
dz -H

<r>1

dgi
Similarly dz ~dgif

(1.80)

Now
dlog(h.) „ dh.l 1 l

dz h. dzl
1 d£i dgiIrs^' a-)') T— ]h. dz 1 dz

df. dg.
but -r-i > - 0f., and -r-i > -8g , i = 1,2 

dz 1 dz 1

dlog(h.)
1 > — rn-df.) + (l-rH-eg^ldz
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>_ - -t— 9 [yf. + (1-y ) g • 3r!, X XX

> - e h. hi 
1

> - e i * 1,2

Hence h and h also satisfy the conditions {1.73) and (1.75) i z

Therefore from Theorem 1.7, it is clear that the function,

, e~&Y H for x > y > 0
SU,y> = | 0 _l

I e H for y > x > 0 
2

where H = y? + (1-y )G and H = yF + (1-jOG is also bivariate 11 1 2 2 2

survival function and has BLHP. B

5.3. To check the conditions of the Theorem 1.4 for the Weibull and 

Gamma distributions.

Here we show that Weibull and Gamma distributions can not be 

marginal distribution of a bivarite distribution having BLHP.

5.3.1.WEIBULL DISTRIBUTION:

The p.d.f. of weibull distribution is

f(z) = f (z,0,6 ) = 06 1exp(-6 ), z > 0,0 > 0,6 > 0. (1.81)
11 1 1

Taking logarithm on both sides, we get
log( f ( z)) = log[06 ) + (0-1 )log( z) - 6 z^

Differentiating with respect to z, we get
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dlog(f(z )) 
dz

limZ -KB
dlog(f(z)) 

dz

(ft-l)/z -6 ftP 1
lim {ft-l)/z -6 ft lim z^ 1 
z -+C0 i z -»oo

and

* -oof if ft > 1

lim z -»o
dlog(f (z)) 

dz
lim (ft-l)fz -6 ft lim P * 
z -»o i z -♦o

= -00, if ft < 1

Hence condition (ii) of Theorem 1.7 is not satisfied. 

Therefore the function given by (1.81) cannot be a 

function when either of the marginals is Weibull. 

conditions of Theorem 1.7 are satisfied when ft = 

corresponds to the exponential distribution.

5.3.2. THE GAMMA DISTRIBUTION.

The p.d.f. of gamma distribution is

g(z) = q(z,ft,6z) -i— 6 ^expt-^ zyf z > 0,/? > 0,6 >0

W 2
Taking logarithm on both sides, we get

log( g( z)) = log (*]/? ) + ftlog (6^) + (/7-l)log(z) - 6zz

Differentiating with respect to z, we get 
dlog(g(z))

dz = (ft-l)/z -6

u. > , -6 , if ft > i
z-400 dz z

survival 

The two 

1, which

(1.82)
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and
dlog(g(z))_ /i0 xlim —------ = (/?— 1) lim (1/z) - lim oz-*o dz z-+o z*oo 2

= -00 if ft < 1

Hence condition (ii) of Theorem 1.7 is not satisfied.

Therefore the function given by (1.82) cannot be a survival 

function when either of the marginals is gamma distribution. The 

two conditions of Theorem 1.7 are satisfied when 0 * 1, which

corresponds to the exponential distribution.

REMARK 1.2: A result similar to the one given in Theorem 1.7 for 

bivariate case is obtained for multivariate case by Ghurey and 

Marshall (1984) we quote the result below.

RESULT 1.1: Suppose that (1.9b) holds for some 9 > 0. Then S is

survival function if and only if

i) S and S are both degenerate at zero.i 2
or

ii) S and S are both absolute continuous with right hand12
derivatives

S (u) - S (u+6) S (u) - S (n+6)
g(u) = lim ^--- , h(u) = lim -----------

6 -* co 6 <5-»oo 6

which are right continuous, are of bounded variation and have at 

most a countable number of discontinuities; further 

a) exp(-0u) g(u) is non-decreasing in u > 0.
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b) exp(-6u) h(u) is non-decreasing in u > 0.

c) S (u) + S (u) > (1 - exp(-0u)) for all u > 0.1 2
The proof of the above result is very lengthy and is omitted. 

5.4. SOME DISTRIBUTIONS HAVING BLMP:

5.4.1. Let S (x) and S (y) be the marginal survival function of XX Y
and Y given by,

X^ i 2S (x) = —-- exp(-(X +X )x) - —----- — exp(-Xx), for x > 0x X +X l 12 X +X1 2 1 2
and

X \2
S (y) = - exp(-(X +X )y)---rexp(-Xy), for y > 0Y X +X 2 12 X +X1 2 1 2

X ,X ,X >0 and X = X +X +X 1 2 12 1 2 12 .

we verify the conditions of Theorem 1.7 for S and Sx Y
First we find the p.d.f. of x and y.

f (x) = -S' (x)1 X

X(X +X )
--r-——r—— exp( - (X +X ) X )X +X 112

12
1 2 X +x1 2

X exp(-Xx), x > 0

Similarly,

f2(y) * -s^(y)

x(x +x ) x
xV* «p(-(\^ta,)Y> - ~rirx «xp(-\Y), y - o
1 2 1 2
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Now

f (0) 1

X(X +X ) 1 12
X +x 1 2
XX

X 12
x +x1 2

X

(X +X ) 1 2

and f (0) 2

X(X +X ) 2 12
X +x1 2

X 12
X +x1 2

X

XX
(X +X ) 1 2

f (0) + f (0) a X 1 2

Therefore S and S satisfy condition (i) of Theorem 1.7X Y

Also,
dlog(f (x))
_ > -X

=> f' (x) + Xf (x) > 0i l

X(X +X ) X
£* = —1 «xp(-(X +X )x) +     X exp(-Xx),l X +X l 12 X +X1 2 1 2

Now
X(X +X ) X

f' (x) + Xf (x) = —exp(-(X +X )x) + -■...X +X i 12 X +X1 2 1 2

X (X +X ) X1 12 ...... 12
'\+\ exp(-Ui+Xi2>x) -

1 2 1 2

X > 0

exp(-Xx)

2X exp(-Xx)
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X (X +x
= C - (X +X ) + X] 1 12

+X ) 1 12) exp( - (X +X )x) X +X 1 121 2

V (x) + Xf (x) > 0 * -(X + X )+X > 011 1 12

-X — X +X+X+X 5; 0 1 12 1 2 12

\z >0 V x > 0, which obviously holds

Hence condition (ii) of Theorem 1.7 holds

Therefore the function S given by (1.10) i.e,

S(x,y) = •
e S^(x-y) if x > y, 

e S (y-x) if y > x.
Y

has BLMP. B

Note that S given above is the survival function of the 

distribution proposed by Block and Basu (1974).

5.4.2. Let (X, Y) have bivariate exponential distribution with

parameter (X ,X ,X ). i.e. (X,Y) ~ BVE(X ,X ,X ).1 2 12 1 2 12

The joint bivariate survival function is

S(x,y) = exp(-X x - X v - X max(x.y)) V x,y > 0.1 2 12

Therefore

S(x+t,y+t) * exp(-X x -X t- X y -X t- X max(x+t ,y+t))1 1 2 2 12

= exp(-X x -X t- X y -X t- X (max(x, y )+t))1 1 2 2 12

expf-tX.^ +X^+ X ]t) exp(-X^x -X y - X max(x,y))
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= exp(-Xt) exp (--A. x -X y - X max(x,y))12 12

where X = X +X + X .1 1 12

S(x+t,y+t) = S(t,t) S(x,y) V x,y,t > 0

Thus the equation (1.9a) holds.
Hence the BVE has BLMP.

0X0
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