
CHAPTER 1

INTRODUCTION TO PROCESS CAPABILITY INDICES

1.1 INTRODUCTIOH

In this Chapter we first introduce the first generation 
indices namely, Cp and Cpk. Section 1.2 and Section 1.3 are

t

devoted to introduction of Cp and Cpk, their relationship with 

the probability of non-conformance and their weaknesses. Though 

these two indices are being widely used in practice, they may 

give misleading results. Their limitations had motivated the 
development of the second generation index Cpm. The third 

generation PCI Cpmk- has been developed by combining the 
modifications to Cp that produce Cpk and Cpm. Section 1.4 
introduces the PCI’s Cpm and Cpmk. Relationships among the PCI's 

Cp, Cpk and Cpm have been reported in Section 1.5. Section 1.6 

discusses an unifying approach to the PCI's through the use of
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weight function due to Spiring (1997). The index Cpv given by 

Spiring (1997) generates the PCX's Cp, Cpk, Cpm and Cpmk for 
suitable choices of the weight function 'o>'. The Chapter is 
concluded by providing generalizations of the PCI's for the 

processes whose target is not the midpoint of the specification 

limits.

1.2 THE IHDBX Cp

Juran et. al. (1974) has introduced the first capability 

index Cp . It is defined as

USL - LSL
Cp = ----------

6a

d

3a
(1.2.1)

where USL is the upper specification limit, LSL is the lower 

specification limit, d = (USL - LSL)/2 and a is the process 

standard deviation. Process measurements outside the 

specification limits are termed as 'Non-Conforming' (NC).

While defining such an index following assumptions were
made.

1. The process measurements are normally distributed.
2. The target or nominal value is the midpoint of the 

specification limits.
3. The process mean is located at the target.
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That is, the process is as shown in Figure 1.1.

Figure 1.1

The motivation for the multiplier 6 in the denominator is 

that, since the process measurements are normally distributed 

almost all (99.73%) process data falls in the middle spread of 

length 6<y. While the numerator defines the allowable range of

process measurements. Hence Cp can be redefined as
allowable range of measurements

Cp = ----------------------------------------------
actual range of measurements

It is obvious that the above index will be smaller than one 

if a considerable portion of the product is not contained in the 

interval (US£,LSL). This is not a desirable situation as this
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indicates that a considerable part of the product is not

conforming to the specifications. On the other hand if the index 

is equal to one then it can be concluded that the process is 
capable in the sense that the product is conforming to the 
required specification to a significant extent. A larger value 

of the index is desirable as this indicates that a yet larger 

portion is within these limits.

In the following we discuss the relation between Cp and 
probability of non-conformance.

Lemma 1.2.1:

Let the random variable X denotes the quality characteristic 
and p be the probability of non-conformance (i.e. the probability 
of NC material) associated with Cp. Then

p = 2${-3Cp) (1.2.2)
Proof:

We have
p * P [ X > USL ] + P [ X < LSL ]

= 2 P [ X < LSL ] (Since X is assumed to be symmetric
about the target, T = (LSL + USL)/2.)

»2P
LSL -

< a
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■»(-s)
= 2f(-3Cp) ■

To illustrate the relationship between Cp and probability of 

non-conformance, Kocherlakota (1992) has provided Table 1.1 as 

follows:

Table 1.1: Probability of non-conformance associated 
with Cp.

USL - LSL Cp P = 2( -3Cp)

6a 1.00 0.2700 X io“2 (2700 ppm)
So 1.33 0.6334 X 10“4 (63 ppm)
10o 1.67 0.5733 X 10-* (0.57 ppm)

12a 2.00 0.1973 X 10"® (0.002 ppm)

The trend now is to report proportion NC in terms of parts 

per million (ppm) defective. Juran et. al. (1974) have noted 
that a reject rate of one part per million equals to Cp value of 
approximately 1.63.

Naturally one may raise an obvious question: why should one 
not resort directly to the observed proportion outside the 

specification limits? This would indeed a preferable and more
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easily understood measure for practioners. The difficulty with 

this approach is that if it is required to make this proportion 

small (e.g. in the vicinity of 0.27% or less), then a massive 
amount of data would be required to estimate this proportion with 

sufficient accuracy. The assumption of a specific parametric 
model (normality in the present case) enables one to estimate the 

proportion NC with far less data for a given precision by using 

the estimates of the parameters of the assumed distribution.

Montgomery (1996) has recommended minimum values of Cp as 
1.33 for an existing process and 1.5 for a new process. Also for 

the characteristic related to essential safety, strength or 

performance feature, the recommended minimum values are 1.5 for 

existing process and 1.67 for a new process.

We recall that all above discussion about Cp is true only 
when all the three assumptions about the process stated earlier 

hold good. Now let us see what happens when the third 
assumption is not valid. Consider the five process having 
distributions viz, N(/j. ,o2); i* 1,2,..., 5 as shown in Figure 1.2. 

Note that all the processes have same set of the specification 
limits. It is clear that all the five processes possess the same 

value of Cp, since they are having same value of variances. 
Because the variances of the processes appear much smaller than
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Figure 1.2: (Source: Chan et al.(1988), pp 163) 

the specification range, the corresponding value of Cp would be 

fairly large, suggesting that the processes are all capable. But 

it can be easily seen that as process mean deviates from the 

target value the capability of the process decreases. However, Cp 
fails to reveal this fact. That is, CP fails to take into account 

proximity to the target value in its assessment of a process 

capability . Also note that for the process whose mean is 

deviated from the target, relation (1.2.2) between the value of
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Cp and the probability of non-conformance does not hold. Hence

there is no exact interpretation for Cp value of such offcentered
✓

process in terms of probability of non-conformance. Due to this 

inherent inability of Cp it is useless to compare off-centered 
processes.

To overcome this drawback of Cp, several indices have been 

proposed that attempt to take the target value T into account. 

For example, when only a single specification limit is given one 
can use the indices CPU or CPL, which are defined as 

USL - fj
CPU = ------- : when only USL is given (1.2.3)

3<y

fj - LSL
CPL = ------- : when only LSL is given, (1.2.4)

3 a

where (j is the process mean which satisfies the condition 
LSL < (j < USL.

Minimum of these two is the another index, we discuss below.

1.3 THE INDEX Cpk

The index Cpk is defined as

Cpk = min(CPU,CPL) (1.3.1)

From (1.2.3) and (1.2.4) we have
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Cpk
min(USL - p , ju - LSL)

3o

d - Ijej - H
(where M (LSL + USL)/2)

3 a

{ - m|
d ) —J 3tfT

where k

* (1 - k)Cp

Im - 'M1
d

(1.3.2)

From (1.3.2) it follows that Cpk < Cp, with equality if and

only if ju = H.

Figure 1.3 illustrates how the indices CPU, CPL, Cp react to 

the departure of process meam from the target.

Unlike Cp, Cpk does not give exact probability of 

non-conformance but limit it. The following lemma gives limits on 

probability of non-conformance associated with given value of 

Cpk.

Lemma 1.3.1:

$(-3Cpk) < p < 2S(-3Cpk)
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LSL T USL
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Cn CPL CPU Cpk Cplfl

2 1.5 2.5 1.5 1.11

Cp CEL C£U Cpk Cpm

2 2.0 2.0 2.0 2.00

£pm

2 2.5 1.5 1.5 1.11

2 3.0 1.0 1.0 0.63

LSL T USL

2 3.5 0.5 0.5 0.43

Figure 1.3: (Source: Chan Bt al. (1988), pp 165)
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Proof:

we see that if M < fj - USL, then

„ . _ USL - fj Cpk-------35------

and LSL- y _ (USL - ju) - (USL - LSL) 
3a ~ 3a

= Cpk - 2CP

< -Cpk, (1.3.3)

which follows from the fact that Cp > Cpk,

Hence probability of non-conformance (p) associated with

given Cpk is

P

= 4 (-3( 2Cp-Cpk) ] + §(-3Cpk)

< 4(-3Cpk) + 4(-3Cpk)

= 24 (-3Cpk)

Also from (1.3.4) p > 4(-3Cpk) 

Thus, we have

4 (-3Cpk ) < p < 24 (-3Cpk)

(1.3.4) 

(using (1.3.3))

The case where LSL < fj < M can be treated similarly.m

It has been found that Cpk is not also an absolute measure 

of process capability. To demonstrate this we consider the
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following example due to Boyles (1991).
Let A, B, and C be the processes with the following

characteristic:

A : fj = 50 <7 = 5

B : p = 57.5 a = 2.5

C : p = 61.25 <7 = 1.25

The specification limits for all the three processes are, USL 
65 and LSL = 35. The processes are as shown in Figure 1.4.

Note that all the three processes have the same value of 

Cpk, that is 1, but the processes differ in capability. This 

shows that Cpk is also an inadequate measure of process 

capability. A large value of Cpk does not imply that the process

Figure.1.4: (Source: Kotz and Lovelace (1998), pp 49.)
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is really good. Observe that for any fixed value of fj in the 

interval from LSL to USL, Cpk depends inversely on a and becomes 
large as a approaches zero. This characteristic makes Cpk 

unsuitable.

Thus, both the indices Cp and Cpk, though are being widely 

used in practice, suffer from some or other drawback. This has 

motivated to develope second and third generation indices. Some 

of them have been discussed below.

1.4 THE INDICES Cpm AND Cpmk 

1.4.1 The Index Cpm

The first of second generation PCI's Cpm was introduced 
independently by Hsiang and Taguchi (1985) in a lecture at a 

meeting, and later formally by Chan et al. (1988). It is defined 
as

„ USL- LSL (1.4.1)upm = 1 11
&Ct1

where a'Z = E(X - T)2.

Note that Cpm is a minor alteration of Cp, essentially 

examining square-deviations from the target rather than from the
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process mean.
Since o'2 = E(X - T)2 = I(X - pi)2 + (pi - T)2 * o + (pi - T)2, 

we have

USL - LSL
Cpm = —

6J aZ + (pi - T>2 

Cp

1 + - T)2 
2 a

Cp
- ....................  , (1.4.2)n *4 1 + T

where r * |pi - Tj/cr.

Prom (1.4.2) it follows that, Cpm < Cp with equality if and 

only if p = T.

Apprantly it feels that Cpm will possess the necessary 

properties required for assessing the capability. If the process 

variance increases, the denominator of (1.4.1) increases and Cpm 

will decrease. If the process drifts from the target ( i. e. if 

pi moves away from T ) the denominator of (1.4.1) will again 

increase causing Cpm to decline. In the case where both the 

process mean and process variance will change, the Cpm index will
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reflect these changes as well.

Figure 1.3 (page 20) illustrates for fixed variance, how Cpm 

reacts to departures from the target value. It follows that Cpm 

reacts to the departure in a similar way as does Cpk. But it is 

more sensitive than Cpk for small departures and less sensitive 

than Cpk for large departures.

To illustrate how Cpm reacts to both the changes 

simultaneously, again consider the three processes A, B and 

C, discussed in section 1.3. It is clear that the processes are 

capable in the order C : B : A. The values of Cpm for the 

processes A, B, C are respectively 1, 0.63 and 0.44, perceiving 

that the order of capability is A : B :C, which is misleading. 

From this example it follows that while assessing the capability, 

Cpm gives greater importance to the departure of process mean 

than to the change in process variance.

The motivation behind the index Cpm came not from an 

examination of the probability of non-conformance of a process, 

but from the ability of the process to meet target values. Cpm 

attempts to take the attention away from conformance to 

specifications and refocus on the optimal product quality, 

achived only when critical dimensions are made to target. 

However, upper bounds of the probability of non-conformance can
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be estimated for specific values of Cpm.

Govaerts (1994) found that the relationship p < 2$(-3Cpm) 

holds only for sufficiently large Cpm and no longer holds at 

small values of Cpm.

Define, without loss of generality, USL + LSL = 0, where USL 

» -LSL * d. With these choices, Kotz and Johnson (1993) found 

that the probability of non-conformance associated with given 

value of Cpm is

-d - /j 1 r d - v
+ l- i

J X1 - *.* J 1.2 2 [Ik - fj

where

x . J_" 3Cpm *

In the following we introduce the third generation index

Cpmk.

1.4.2 The Index Cpmk

Pearn et al. (1992) have constructed a third generation PCI 

Cpmk, by combining the modifications to Cp that produced Cpk and 

Cpm as
min(USL - V LSL)

Cpmk * (1.4.3)
3a'
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a - l/i - T|

3 o'

Cpmk can be written in terms of Cpk and Cpm as

Cpk Cpk
Cpmk = (1.4.4)

(1.4.5)

2The term t in the denominator of (1.4.4) may be viewed as

an additional penalty to the process quality for the departure of 

process mean from the target. Same is the interpretation for the 

term k in (1.4.5). This penalty ensures that Cpmk will be more 

sensitive to the departures than Cpk and Cpm.

The following section reports relationship among Cp, Cpk and

Cpm.

1.5 SOME RELATIONS AMONG Cp, Cpk AND Cpm

Lemma 1.5.1:

Cp > max (Cpk, Cpm).

Proof:

Since Cp > Cpk and Cp > Cpm, we have
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Cp > max (Cpk / Cpm ). ■

Lemma 1.5.2:

For a fixed value of Cp, Cpk and Cpm have a one-to-one 

relationship.

Proof:

Since Cpk ■ Cp(l - k) and because Cp = CpmJ 1 + r2 

(See (1.3.2) and (1.4.2).), we have

Cpk * (1 - k) Cpnv| 1 77

Hence the relationship is one-to-one. ■

Lemma 1.5.3:

Cpk -t Cpm if and only if Cp > ----
9k(l

k
k)2

Proof:

Cp
Since Cpk * (1 - k)Cp and Cpm = —----- ,

Jl..‘

we have Cpk > Cpm
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(1 - k)
St ( \ 1 + T2 ]

4«* - 2 ^ 1 + T > 1

1 k )
1

(1 - k)2

1 - (1 - k)2 
k2(l - k)2

2 - k 
k(l - k)2

2 - k 
9k(l - k)2

In the following we discuss an unified way to define a wide 

class of PCI's as given by Spiring (1997).

1.6 UNIFIED APPROACH TO PCIs

Spiring (1997) has proposed a unifying approach that ties 

the various PCIs together while illustrating some of the 

statistical properties associated with each. Through the use of,
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what he calls, a weight function the relationship that exists

among the measures Cp, Cpk, Cpm and Cpmk can be illustrated. 

Consider the PCI Cpv as

USL - LSL
(1.6.1)Cpv =

where to represents a weight function. Allowing the weight 

function to assume different values permits Cpv to assume 

equivalent computational algorithms as those for Cp, Cpk, Cpm 

and Cpmk as well as a host of other potential measures of 

capability.

Lemma 1.6.1:

Setting

(i) w = 0, Cpv becomes Cp;

(ii) w = 1, Cpv becomes Cpm;

(iii) to = ■
' k( 2 - k)

(1 - k)V 0 < k < 1
(1.6.2)

0 otherwise

or
(6Cp - r )

to = - (3CP - t)2tZ 
0 otherwise

0 < t/3 < Cp
(1.6.3)

Cpv becomes Cpk;
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2 ,2t + 2k - k
(iv) to = « <1 - k)V ; 0 < k < 1

; otherwise,
(1.6.4)

Cpv becomes Cpmk.

Proof:

Proofs of (i) and (ii) are obvious.

Setting r = ^ ~ and k * ^ ~ we have

Cpk = (1 - k)Cp

= (1 - k) USL - LSL 
6cr

USL - LSL

a

(1 - k)‘

(1.6.5)

Now

a 2 2 a + a
(1 - kp (1 - k)'

o2 +
(1 - k)'

a

aZ + 1 - (1 - k)' 
(1 - k)2

0 / m >2 (JLI - T)
(^ - ty
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2 k(2 - k) 1
= a + —--------- - —

(1 - k) T
Substituting in (1.6.5), we have

(V

CPk = USL - LSL

2
a +

<

’ k(2 - k)
(1 - k)2r2 (*i - T)2

which results in Cpv with

« - *<2 - *> 

(1 - k)V
Now consider

_ 1^ ~ T|K - 3

- ~TI
USL - LSL

2t
(USL - LSL)

a

r
3Cp

substituting in (1.6.6), we get

6CP - r
(3Cp - t )2t

Hence the proof of (iii).

Now We have

(1.6.6)
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Cpmfc * (1 - k)Cpm

= (1 - k)- USL - LSL
No2 + (M - T)2

USL - LSL
2 . __. 2o + (ji - T)
U - k)2

(1.6.7)

Now,

a + iv - T f

(1 - k r
a 1 + Ml 2a 2 0+0

(1 - k)'

02(1 + T2)

(i - ky
2 2 0+0

21" 1 + T2 „ 1 . 2= a I---------1 I + oL (1 - k)2 J

-i^n t2 + 2k - k2 
(1 - k)2

(#i - T)2 + o2

t2 + 2k - k2
m A . v2 2(1 - k) t

(p — T)2 + o2

Substituting in (1.6.7), it follows that Cpmk results in Cpv with

w
t2 + 2k - k2

(1 - k)V
Hence the proof of (iv)
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Through the use of weight function a general measure of

process capability is promotted that ties together the most 

common measures. Cpv encompasses a large group of capability 

measures and permits comparison among the measures. For example, 

the relationship that exists among Cp, Cpk and Cpm is illustrated 

in Figure 1.5 for Cp = 1. As the process mean deviates from the 

target (in this case measured by r = |/j - Tj fa), the value of CP 

remains unchanged. Both Cpm And Cpk reflect the fact that the 

process is not on target and their magnitudes diminish.

i-er

ft-5

O"0

-Gp

Figure 1.5: (Source: Spiring (1997), pp 51.)

Figure 1.5 can be used to compare the equivalency of Cpk and 

Cpm and their relationship with CP. If the process is centered at
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the target (r = 0), then the three measures are identical. If the 

process is centered one standard deviation from the target (r 

= 1), Cp = 1, Cpm = 0.707, Cpk = 0.667. Through the use of 

weight function and plots similar to Figure 1.5, it is possible 

to investigate the numerical relationship that exists between Cpk 

and Cpm. However, due to the dynamic nature of the relationship 

between Cpk and Cp, plots that compare the relationship between 

Cpk and Cpm will be conditional on the magnitude of CP.

Figure 1.6: (Source: Spiring (1997), pp 52.)

The general relationship that exists among the indices Cp, 

Cpk and Cpm is illustrated in Figure 1.6. The relationship 

between Cp and Cpm is unaffected by the magnitude of CP. If the
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process is centered at a point one standard deviation from the 

target, then Cpm will always be 70.7% of Cp. However, Cpk has 
a relationship that is dependent upon the magnitude of Cp, which 

is evident from its weight function (see (1.6.3)) and depicted 

in Figure 1.6. The relationship has been drawn for value of Cp =

0.5, 1, 1.5, 2, 2.5, 3,4 and 5 (i.e.Cpk(0.5) Cpk(l),..........in

Figure 1.6). To illustrate, consider a process centered two 

standard deviations from the target and where Cp * 3. The 

relationship between Cp and Cpm remains unchanged; for t = 2, Cpm 

will be 44.72% of Cp (Cpm = 1.34). Using the transect line 
associated with Cp * 3 (Cpk( 3)), it is easy to see that the 

associated Cpk is 2.33 (77.8% of Cp). If Cp was 2 in the example 
(rather than 3), the relationship between Cp and Cpk as well as 

Cpm and Cpk would be different. Again for t = 2 but now with Cp = 

2, Cpm would continue to be 44.72% of Cp (Cpm =0.8944), while the 

transect Cpk(2) indicates Cpk would be 66.7% of Cp (Cpk = 1.333). 

Figure 1.6 is helpful in displaying the dynamic relationship that 
exists between Cp and Cpk while allowing insights into numerical 

equivalencies for Cpm and Cpk.

Spiring (1997) also suggests some additional weight 
functions that may be of some interest to practioners. These 
include
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; 0 < r 

; otherwise

; 0 < r 
; otherwise

; 0 < c < oo 

; otherwise

(1.6.8)

(1.6.9)

(1.6.10)

where c is a constant used to adjust the effect of departure on 

the index.

The weight function in (1.6.8) would typically be used in 

those situations where minor departures from the target are of 

little consequences, but where major departures are considered 

critical. On the other hand the weight function in (1.6.9) 

applies greater weight to minor departures, while only a marginal 

decrease in capability index results once the process deviates 

from the target by more than one standard deviation.

1.7 CONCLUDING REMARKS

All PCIs discussed above are developed under the 

assumptions:

(a) The process is in control.
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(b) The target is the midpoint of the specification limits;

(c) The process measurements are normally distributed, 

and (d) The measurement system is ideal.

If the process is centered at the midpoint of the 

specification limits, the indices are equivalent. For those 

processes affected by special or assignable causes, process 

capability should not be assessed. Similarly, for any process 
whose target is not the midpoint of the specification limits or 

that exhibits non-normal characteristics or both, the above 

indices should not be calculated. Otherwise, misleading results 

will be obtained. However, Kane(1986) also defines Cp and Cpk 

for the process whose target is not the midpoint of the 
specification limits as

and

where

* , f T - LSL USL - T lCp . min [ -55—, -35— J
* , * , *Cpk = (1 - K )Cp

___- Tlmin(T - LSL, USL -T) '

Also, Chan et.al.(1988) have modified the index Cpm for such 
processes as

Cpm
minimum{USL - T, T - LSL) 

3a'
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where a' is as defined in section 1.4. These indices decreases as

the process mean moves away from the target and they have 

maxima at yt = T. Thus, they indicate that the process is 
optimal when it is centered at the target, which is a paradox 

because moving the process mean towards the target reduces the 

fraction of the distribution which is within the specification 

limits. We will not investigate these indices in details. Infact 

the target should not be considered as a process parameter while 

assessing the process capability. Customary (though not 

practically) it should be the midpoint of the specification 
limits.

In Chapter 2 we focus on estimation part of some of the 
PCI's introduced in this Chapter.
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