
CHAPTER 2

POINT AND INTERVAL ESTIMATION 

OF PROCESS CAPABILITY INDICES

2.1 INTRODUCTION

All the PCIs discussed in Chapter 1 depend on the unknown 
parameters viz, process standard deviation a and/or the process 

mean fu. The true values of these indices can only be estimated. 

Por estimation purpose we suppose that a random sample of size n 

giving values Xi ,X2,....,Xn is available on the quality 

characteristic which is normally distributed with mean y and 
variance <y2. The value fjt is then estimated by

- 1 n X = - .1 Xi n i = i

and the value a is estimated by
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wp.ch is independent of X..1
‘ > The estimates of Cp, Cpk and Cpm obtained by replacing p by 

X and a by S have been discussed by Chan et al.(1988), Marcucci 

and Beazley (1988), Cheng and Spiring (1989), Bissell (1990), 

Boyles (1991) and Pearn et al.(1992) among others.
Though Montgomery (1996) and others have recommended minimum 

values of Cp, CPL, and CPU, we can not compare the estimated 

index with the minimum recommended value. Because the recommended 

minimum values are for the true indices and not for their 

estimates. Therefore, evenif the estimated index is larger than 
or equal to the minimum recommended value for the true index, one 

can not be 100% sure that the true index is larger than or equal 

to the minimum value. Rather, we can only claim that the true 

index is larger than or equal to the minimum value with a certain 

level of confidence. Chan et al.(1990), Boyles (1991), Kushler 

and Hurley (1992), Subbaiah and Taam (1993), Franklin and 

Wasserman (1992) consider the confidence bounds for the PCIs.

In this chapter we will discuss the point and interval 

estimates of the indices Cp, CPU, CPL, Cpk, and Cpm in details.
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2.2 ESTIMATION OF THB INDEX Cp

2.2.1 Point Estimation of Cp

Since Cj> = ^ , a natural estimate of Cp is

d
- «Cp = —

3S
(2.2.1)

Lemma 2.2.1:

B(Cp) =
Cp

bn

and

where bn

Proof:

Var(Sp) . g}4-j -*?)*

r-i- .Jn - 1 fn - 2) Cp*r[—J
Since Xi's are independent and identically normal,

s2
2a

Y,

where Y is a random variable having chi-sguare distribution with 
n - 1 degrees of freedom (d-f.).

S a
n - 1

S &

4n - 1
|Y
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3S
d

3a

d_
3S

djn - 1 

d 4n - 1
3 a Jy

^ ~ „ 4n - 1 _That is, Cp 2----  Cp (2.2.2)

i/2Therefor®, E(Cp) = Jn-l Cp I(Y )

and since E(Y 1/2)
- ■*—* .......

nTm*
Cp

we have E(Cp) = — ,
bn

(2.2.3)

where bn

Similarly, variance of Cp is given by

Var(Cp)

(2.2.4)

(2.2.5)

Thus, the estimate Cp is biased for Cp. An unbiased estimate
** A

can be obtained as Cp = bnCp. A few values of bn are presented in 

Table 2.1. An accurate approximation for bn when n > 15 is
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bn ^ 1 3
4(n - 1)

Table 2.1: Values of hr, for some n.

n bn n bn

5 0.798 40 0.981

10 0.914 45 0.983

15 0.945 50 0.985

20 0.960 55 0.986

25 0.968 60 0.987

Since S is a consistent estimate of a, it follows that Cp is 

consistent for Cp.

2.2.1 Interval Estimation of Cp

Lemma 2.2.2:

A 100<1 - «)% confidence interval for Cp, based on Cp is given by

* 2 2 ^
yn-1,a/2 Cp , V

r>- 1, l-Ct/2 Cp
. < n - 1 n - 1

where x ., 2is c quantile of x

Proof:
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From (2.2.2) it follows that

(n -1) 2
Xn-i

Hence,

1 - a P 2
X < < Xn-l,l-a/2

2

2 2
« p 1 ,Ck/2 Cp < Cp < Vn- 1, i-a/z Cp

<■ n - 1 n - 1

That is,
* 2 2 ^ ”

*n-i'OS2 Cp , *n- 1, t-a/2 Cp
. - n - 1 n - 1

is a 100(1 -ot)% confidence interval for Cp.m

Lower and upper 100(1 - cx)% confidence bounds for Cp are, 

ofcourse,

2
*n-t,« Cp 
n - 1

and X*n-1, i-ot Cp respectively. 
< n - 1

2.3 ESTIMATION OF THE INDEX Cpk 

2.3.1 Point Estimation of Cpk

d - |#i - T|
Since Cpk = ------------ , the estimate of Cpk is given by

3 a
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d - | X — T |
Cpk = ------ —.

3S

if « _ ILzJElSu)
__ jrv, J

S/a

If d 1 Jn|X - T| I a 
31 a ~r a IS

(2.3.1)

(2.3.2)

Lema 2.3.1:

E(Cpk)

and

Var(Cpk)

+
(ju - T)2 ]

- [E(Cpk ) ]Z .

Proof:

On assumption of normally, S and •fnlx - T|
a

are
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independently distributed. The statistic -fn)x ~ T1 has a folded
a

normal distriution. Therefore we have

E

+ ■Np - Tl_i*L OlLii) }
(2.3.3)

and

)') 1 + n~ T> (2.3.4)

(Refer Leone et al. (1961) for details of (2.3.3) and (2.3.4).)

Also since

(n -1 )- 2 a
Y, where Y is a chi-square random variable

having n - 1 d. f., we have

or

5 
a

6 
S

jTT^T Y"1/2

Hence

E(|) =
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Hence, using (

a

E(Cpk) =

and

Var(Cpk)

(2.3.5)

.3.2) expectation of Cpk is given by

k [ I - |5 9!tp {
\» - Tl f j

n(fj - T)‘

2 a
}

2$ _1
bn

. . .(2.3.6)

= E(CpkT - [E(Cpk) ]2

’(!) |= ** {-aejr£}

- CE(Cpk)]2 ■ (2.3.7)
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Some numerical values of E{Cpk) and Var(Cpk) are given in 

Table 2.2 and corresponding values of Cpk are given in Table 2.3.
Note that Cpk is a biased estimate of Cpk. The bias arises 

from two sources:
i) E(S_1) = bn1#"1 * e?*1. This bias is positive since 

bn < 1.

ii) E ^ .T-l j > I ^ ~ . This leads to a negative

bias, because has a negative sign in the

numerator of Cpk.

The resultant bias is positive for all cases shown in Table 2.2 

for which fj * T. When fj = T the bias is positive for n = 10 but 
becomes negative for larger n. Ultimately, as n —* a> the bias 

tends to zero.

Also Cpk is a consistent estimate of Cpk. This follows from 

the fact that X and S are consistent for p and a respectively and 

d - | (j - T| is a continuous function of ju.

2.3.2 Interval Estimation of Cpk

In this section first we shall find the lower confidence 
bounds for CPU and CPL and then the lower confidence bound for 

Cpk. Recall that when only a single specification limit is given,
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Table 2.2: Moments of Cpk

r = (/j - T)/cy
0.0 0.5 1.0 1.5

EV Var EV Var EV Var EV Var

n = 10

2 0.637 0.035 0.542 0.034 0.365 0.024 0.182 0.017

3 1.002 0.079 0.906 0.073 0.729 0.054 0.547 0.036

4 1.367 0.143 1.271 0.131 1.094 0.103 0.912 0.076

5 1.732 0.226 1.636 0.209 1.459 0.171 1.277 0.135

6 2.096 0.329 2.001 0.307 1.824 0.260 1.641 0.213

n = 20

2 0.633 0.014 0.520 0.014 0.347 0.010 0.174 0.007

3 0.980 0.031 0.867 0.028 0.695 0.021 0.521 0.014

4 1.327 0.055 1.215 0.050 1.042 0.039 0.868 0.029

5 1.674 0.086 1.562 0.079 1.389 0.064 1.215 0.050

6 2.022 0.124 1.909 0.115 1.736 0.096 1.563 0.079

n = 30

2 0.635 0.009 0.513 0.009 0.342 0.006 0.171 0.005

3 0.977 0.019 0.856 0.018 0.685 0.013 0.513 0.009

4 1.319 0.034 1.198 0.031 1.027 0.024 0.856 0.018

5 1.662 0.053 1.540 0.048 1.369 0.039 1.198 0.031

6 2.004 0.076 1.882 0.070 1.711 0.059 1.540 0.048

12 = 40

2 0.637 0.007 0.510 0.006 0.340 0.004 0.170 0.003

3 0.977 0.014 0.850 0.013 0.680 0.009 0.510 0.006

4 1.317 0.025 1.190 0.022 1.020 0.017 0.850 0.013

5 1.657 0.038 1.530 0.035 1.360 0.028 1.190 0.022

6 1.997 0.055 1.870 0.050 1.700 0.042 1.530 0.035

* EV - B(Cpk), Var = Var(Cpk).
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Table 2.3: Values of Cfrk.

d/a

ii tT i T )/a
0.0 0.5 1.0 1.5

2 2/3 1/2 1/3 1/6
3 1 5/6 2/3 1/2
4 4/3 7/6 1 5/6
5 5/3 3/2 4/3 7/6
6 2 11/6 5/3 3/2

one uses either CPU or CPL to measure the process capaility. We 
define them as

USL - uCPU = ---£ and CPL =3 a
Their estimates are

_ LSL
3 a

~ USL - X _ ~ X - LSL . _CPU = —^--- and CPL * —--- respectively.

Let LSL = X - kiS and USL = X + kzS, where ki and k2 are such 

that a 100(1 - a)% lower confidence bound cu for CPU satisfies

P[CPU > cu ] = 1 - a (2.3.8)
From above equation we have

1 - a > Cu

= P[ X + k2S - fj > 3cuO ] 
= PC X - v > 3cuo - less ]
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P[ X - iJ < kzS - 3cuO' ]

■ p[ 

= p[

< 4-nta ♦ Mfp2 1

♦ % < H
P[Tn-i(<5) < Jnk2 ], (2.3.9)

where 6 = 3-fncu, k2 = 3CPU and Tk(x) is a non-central t-variable 

with k d.f. and non-centrality parameter x.

Similarly a 100(1 - a)% lower confidence bound cl for CPL 

satisfies

P[Trw(<5o) < Jnfci ] = 1 - a (2.3.10)

where ki = 3CPL and <5o = 3-fnci.

Since (2.3.9) and (2.3.10) are of the same form, it follows
a

that the relationship between cu and CPU is same as that between
A 4N

ci and CPL. Given CPU we can solve for cu from (2.3.9). Similarly 

given CPL we can solve for cl from (2 3 10). Chou et al. (1990) 

have provided a table which gives the 95% lower confidence bounds 

cu (or cl) for CPU (or CPL), for various values of n and CPU 

(or CPL).

Obtaining a confidence bound for Cpk is not straight forward
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since Cpk is minimum of the two functions that depend jointly on

X and S. A 100(1 - a)% lower confidence bound ck for Cpk 

satisfies

PCCpk > ck ] = 1 - a

Above equation can be written as

(2.3.11)

PE CPI, > ck, CPU > ck ] = 1 - a

since LSL = X - kiS and USE, X + taS, we have

X - k S - ul
3o- -ck

X + k S - u 2
3 a > Ck 0(

This equation is similar to the one given in Chou and Owen 

(1984). Therefore, it can be written as

PC Tn-i(<5i) < ti and Tn-i(<52) > t2 ] = 1 - at

(2.3.12)

where ti * ktjn , t2 = -k2^n , <5i = 3ckj"n and 6z = -3ckfn.
A S*

Given CPU and CPL, we can solve for ck from (2.3.12). Assuming
A A

CPU = CPL, Chou et.al.(1990) has provided lower 95% confidence 

bounds for Cpk. However, this assumption in general, leads to 

conservative lower bounds. Simulation study by Franklin and 

Wasserman (1992a) have shown that the actual coverage due to 

these bounds is about 96 to 97%.

Alternatively, since (2.3.9) and (2.3.10) provide exact
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lower bounds for CPU and CPL respectively and both are of the

same form, one can use either of them to find the lower bound for 

Cpk, because Cpk = min(CPU, CPL). Comparison of Table 4, in Chou 
et al. (1990), which is based on (2.3.9) or (2.3.10) and Table 5, 

in Chou et al. (1990), which gives lower 95% lower confidence
os A

bounds for Cpk assuming CPU = CPL and using (2.3.12), shows that 

every entry in Table 4 is larger than the corresponding entry in 

Table 5. Thus, Table 4 is less conservative than Table 5. 

Although this method has the disadvantage of requiring an 

algorithm for the non-central t-distribution or the use of 
tables.

Alternatively since CPL * X ■ -1-.!*^, we have
3S

3-fnCPL = *n(* - LSL) = |n(X - p) + fn(^ - LSL)
s s s

and it follows that 3^nCPL has a non-central t-distribution with 
n - 1 d.f. and non-centrality parameter fniy - LSL)/<y. Hence,

E(3fnCPL) =

and E(CPL) = (P - LSL) _ cpL
Xt

Johnson and Kotz (1970b) gave a simple asymptotic 

approximation to the variance of non-central t-distribution.
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Using the same (3, pp 204), we have

,, , _ r . . . 1 n(u ~ LSL)Var{34nCPL) = 1 + ■» ——------ -o2(n - 1)

Hence Var(CPL)
(/u - LSL)2 

18ctZ (n - 1)

1 ( CPL )2
9n + 2(n - 1)

Hence, use of normal approximation to the sampling distribution
a

of CPL yields an approximate 100(1 - a)% lower confidence bound 

for CPL as

CPL z
i-a

------------- *--- -
1 . (CPL )9n + 2(n - 1) (2.3.13)

where z is the (1 - <x)th quantile of the standard normal i-a
distriution. Similarly

CPU z t-a ,
1_
9n +

( CPU )2 
2(n - 1) (2.3.14)

gives an approximate 100(1 -ot)% lower connfidence bound for CPU.

Again, since Cpk = min (CPU, CPL), we can use (2.3.13) or 

(2.3.14) to find lower confidence bound for Cpk. That is, 

100(1 -a)% lower confidence bound for Cpk is given by
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Cpk z
i-a

+
Cpk2

2(5.-'ll (2.3.15)

This approach was also proposed by Bissell (1990), who 

derived formula (2.3.15) using a Taylor series argument. Also 

using this approach, an approximate 100(1 - <*)% two sided 

confidence interval for Cpk can be given as

Cpk ± z 1-0/2 .
1_
9n + Cpk'

2(n - 1) (2.3.16)

While ease of use is an important consideration in choosing 

a method for determining confidence bounds, the performance of 

the method is also an important issue. For confidence bounds, the 

natural performance characteristic is the 'miss rate* of the 

method. If the derived confidence level is 100(1 -ot)%, then the 

nominal miss rate is a. The actual miss rate is the probability a 

random sample results in a computed lower bound that is greater 

than the true value of the index. For an exact method the actual 

miss rate equals the nominal miss rate, but when the method 

involves an approximation, the actual miss rate can differ from 

the nominal miss rate. An approximate method for which the 

difference is small can be said to perform well.

56



Simulation methods are often used to estimate the actual

miss rate when it can not be determined analytically. We have 

conducted a simulation study with various parameter settings to 
investigate the performance of the bounds of Cpk given by 

(2.3.15) and (2.3.16). 4000 simulated samples were generated for 

each parameter setting using MINITAB. For each sample (2.3.15) 

and (2.3.16) were computed. The proportions of the intervals 
given by (2.3.15) and (2.3.16), covering the true value of Cpk 

are as given in Table 2.4 and Table 2.5 respectively. It is 

observed from Table 2.4 and Table 2.5 that bounds using (2.3.15) 
and (2.3.16) are quite acceptable.

While doing this simulation study we could have also 
reported estimates of E(Cpk) and Var(Cpk), however, for brevity 
we have omitted these values.

2.4 ESTIMATION OF THE INDEX Cpm

2.4.1 Point Estimation of Cpm

The original estimate of Cpm in Chan et al (1988) is defined 
as

^ USL - LSL
Cpm = ---------- (2.4.1)

6STn-i
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Table 2.4: Coverage proportions of Bissell’s 100(1 -a)% 
lover confidence bounds for Cpk.

<3>k
0.10

a
0.05 0.01

n = 30

0.2222 0.893 0.944 0.989

0.3333 0.892 0.946 0.989

0.4444 0.890 0.944 0.989

0.6667 0.891 0.945 0.991

1.0000 0.942 0.976 0.996

1.3333 0.882 0.946 0.990

2.0000 0.917 0.962 0.993

2.6667 0.888 0.950 0.994

4.0000 0.902 0.957 0.994

n = 100

0.2222 0.896 0.946 0.986

0.3333 0.908 0.948 0.988

0.4444 0.897 0.954 0.991

0.6667 0.902 0.948 0.989

1.0000 0.950 0.979 0.998

1.3333 0.899 0.950 0.992

2.0000 0.923 0.963 0.993

2.6667 0.893 0.944 0.995

4.0000 0.912 0.954 0.990
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Table 2.5: Coverage proportions of Bissell's 100(1 -o)% 
confidence intervals for Cpk.

Q>k
0.10

a
0.05 0.01

n = 30

0.2222 0.896 0.951 0.990

0.3333 0.894 0.956 0.990

0.4444 0.894 0.953 0.989

0.6667 0.899 0.954 0.990

1.0000 0.896 0.942 0.989

1.3333 0.902 0.943 0.993

2.0000 0.903 0.942 0.991

2.6667 0.901 0.957 0.989

4.0000 0.896 0.953 0.989

n = 100

0.2222 0.905 0.955 0.990

0.3333 0.903 0.947 0.991

0.4444 0.906 0.955 0.988

0.6667 0.898 0.953 0.989

1.0000 0.889 0.954 0.988

1.3333 0.887 0.949 0.993

2.0000 0.900 0.955 0.992

2.6667 0.897 0.954 0.992

4.0000 0.902 0.952 0.989
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1 11
where S2 = ---- X (Xi - T)2t n - 1 i=ir»-l

Boyles (1991) has given an alternative estimate of Cpm as

USL - LSL
Cpm = ---------- (2.4.2)

6STn
1 nwhere S2 * - I (Xi - T)2

t n i=in

When sample size is large there is a little difference
A A

between Cpm and Cpm. However, the inferential aspects of Cpm 

and Cpm are different for small or moderate sample size.

Let B(-) and MSE(-) denote the bias and the mean square
A »

error of an estimate respectively. The biases of Cpm and Cpm are 

given by

A A

B(Cpm) = 3(Cpm) Cpm

and B (Cpm) =
**

E(Cpm) - Cpm , respectively.

The mean square errors of
A

Cpm and Cpm are given by
A

MSB (Cpm)
A

= Var(Cpm) +
A

B (Cpm )

and MSB (Cpm) = Var(Cpm) + B(Cpm), respectively.

60



Lena 2.4.1:

(i) B(Cpm) < B(Cpm)

(ii) B(Cpm) > 0

and (iii) B(Cpm) >

Proof:

^ (1 ■ ) •

(i) follows from the fact that

Cpm = Cpm I----- £ Cpm.*1 n

(ii) follows from Jenson's inequality, namely,

E(St* *) j =
. /<s2 . USL - LSL ,where g(S ) * —^----- is a convex function.T 05n T n

How from (i) and (ii) above, we have

I(Cpm) = jn n 1 E(Cpm) > j” ^-1 Cpm. 

Hence,

B(Cpm) * E(Cpm) - Cpm

E(Cpm) = E g(St

> Cpm

Cpm,

61



= - Cpn, [ 1 - j .

Hence the proof of (iii). ■

Theorem 2.4 1.
A M A M

If |B(Cpm)| < B(Cpm), then MSE(Cpm) < MSE(Cpm).

Proof:

Since Cpm = - i ;- -  Cpm /n K

A 4 ~ WVar(Cpm) = " Var(Cpm) < Var(Cpm)

A

Therefore, MSE(Cpm) = Var(Cpm) + £b (Cpm

~ r ~ i2< Var(Cpm) + B(Cpm)

s
a*

MSB(Cpm) ,

r " iz r ~ i2 ~because |B(Cpm) < jB(Cpm)| , when |B(Cpm

Now since S2 =Tn H J,(Xi - T>* '
„2nS * r* r vn | XiJu1

(SI0 o J

B(Cpm ). ■
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And since Xi's are iid N{u, a2), it follows that nS2 /a2 has a
Tn

noncentral chi-square distribution with n d.f. and non-centrality
parameter n(fj -T)2/o-2 = n<52 = X. We denote this distribution by

#(X). In order to compute E(Cpm) we require following lemma, n

Lemma 2.4.2:

Let U ~ y2(X), then
n

E(U') = 2r X M(X) r(n/2 + J + r)
J“° r(n/2 + j)

-X/2
where Aj(X) = (X/2)J r-t— .

Proof: See Appendix A.

We shall use this result to prove the following lemma.

Lemma 2.4.3:

E(Cpm)
00

Cp E Aj(X)n _ ” .... „ r({n_1)/2 + j )
2 j=o r(n/2 + j)

E(Cpm) = .1 Aj(X) j )
2 F° r (n/2 + j)

(2.4.3)

(2.4.4)
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Proof:

nS
Since **(M,n

a

ST2 - Y, 
n n

where Y is a non-central chi-square random variable

n « A d.f. and non-centrality parameter X.

*

=4

2- Jy
|n

6STn
USL - LSL

USL - LSL 
6ST n

6o
USL - LSL

(USL - LSL 
6<y

- JY 
-fn

j£n y-i/2

That is Cpm ~ Jn Cp Y_1/Z 

Therefore,

E(Cpm) = Jn Cp E(Y~iy2)

= in Cp 2"i/2 I Aj(X) + 3 )
J=° r(n/2 + j)

and
.2E(Cpm) = nCp E(Y_1)

with
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= i mm mi2 J=° r(n/2 + j>

A I- ^"""V —From the relation Cpm = J—-— Cpm, we have following

corollary.

Corollary 2.4.3:

_ ~ V In - 1 _ * ,./vv 1"( < n-1 > /2 + j ) . c.E(Cpm) = I—=— Cp X Aj(X) —------------=—!• <2.4.5)* 2 J=° r (n/2 + j)

E(CPm* 2) * Cp2 I Aj(X) f(<n‘-^.j.- (2.4.6)
2 J=° r<n/2 + j)

Since both S and S are consistent for o' = .Je(X - T)2,
T Tn n-i

it follows that both Cpm and Cpm are concistent for Cpm.

2.4.2. Interval Estimation of Cpm

A number of approximate confidence intervals for Cpm are

considered in Subbaiah and Taam (1993). The approximations

developed are based on the large sample properties of the two
2 2estimates of Cpm. Using the fact that nST la has a noncentraln

Chi square distriution following confidence intervals for Cpm are 

considered, which are based on the estimate Cpm.
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Theorem 2.4.2:

A 100(1 - a)%, approximate confidence intervals for Cpm are 

given by

(i» [ Ro~ /; - *-R^IT/7)- (2-‘'7>
^ ~ n( 1 + 62 )2 : x - T . ..where v = —---- tt— , 6 = —=— /and % 18 the a(1 + 26*) s

quantile of central chi-square variable with v d.f.

and (ii) Cpm f 1 ± zr l 1-0/2

where z is the (1 - a/2) quantile of standard normalt-a/2
variable and v is large.

Proof:

S) (2.4.8)

Patnaik (1949) provided an approximation to non-central chi- 

square quantile with a constant multiple of a central chi-square 
quantile, namely, y2(X) a cy2 , where

n v

(1 + 2<52) n(l + <52)2 . , \i - Tc =  ------- - , v = —i------— and 6 *  ----1 + 6Z 1 + 2 <52 a

Therefore, we have
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nS[Tcy2 < ---- < cy
*v,a/ 2 2 ^a

2 1
v,i-<x/2 J

= P [*2
[ v,a/2

nST
. n . 2 < ■—.. . < y2 v,i-a/2O' c

= p . < ? f SE2 1 (1 + <52) < *2
v,a/2 C I J v ,1-01/2v Cpm '

r f Cpm ^2 Tn
{since I I = ------^ Cpm ^ O'2 (1 +U + 6‘)

P * <I v,a/2
f=£=l2v < *2 1
l Cpm J J

{ since 5(1 ♦ i2) =
C 1 + 262

if■ pi i C, /v *- < Cp" ' J *»,1-0X2 / V Cp” ]

The first result follows by estimating v and 6 by v and 
respectively.

The second result is based on the normal approximation of y2
V

for large v. That is, y2 % N(v, 2v), then
Vj y2 / v N(1, l/2v), because square-root is a monotone

transformation and a chi-square variate is nonnegative.■
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Simulation study done by Subbaiah and Taam (1993) shows that 

coverage probabilities of these intervals are very close to the 

nominal value and the miss probabilities on both the low and high 

sides are nearly equal. Also performance of these intervals is 

better than any other interval discussed by them.

CpmI The 100(1 - a)% lower confidence bounds can be given by

X I ~ and Cpm f 1*v,ot * v l

2.5 ESTIMATION OF THE INDEX Cpw

Spiring (1997) has suggested an estimate of Cpw as

USL - LSL
Cpw

6j? * u(X - T)2
(2.5.1)

where a
1 11i X (xi - x)2.n i = i

It follows that

z.. n 2 (i) — a 2 a
TV-1

(ii) X N( [x , - ) ^ n and

(iii) X and a are independent.

Since T is nonstochaic, it follows that — (X - T)2a

**(*■)
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with noncentrality parameter X n and if to is

nonstochastic, it follows that — (X - T)2 ~ to #2(X)
2 1a

Defining Q2 = ~ [ o-2 + to(X - T)2 | Q v becomes a n,X

linear comination of two independent chi-squared distributions

X . + ** **(Mr>- i i

Let Q2.(x) be a c.d.f. associated with Q2. , Press (1966) 
n,X n,A.

showed that the Q2. (x) can be expressed as a mixture of central
n,X

chi-squared distributions with general form

oo
Q2. (x) = .£ di x* „.<x>n,X t = 1 n+2 j

00
with the di's being weights such that Z di = 1, where the di's

V = i

are the functions of the d.f., the non-centrality parameter X and

the weight function o>. The functional forms of the di's are given
in Press (1966), which for Q2. are as follows:

n,X
■ “i/2 -X/2do = to e

di r «r f X 1 -1/2-j+k . -1 ,k+t-j.Z .Z e o •'(l-to)J=0 k=0 t i )■
r(i - j + 0.5) 
r(0.5) T(i -j + i) (V)

for i = 1,2,3,...
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Lemma 2.5.1

A 100(1 - a)% confidence interval for Cpv is given by

n,X,0l/2 ___ ___ -
n(l + — ) n

Cpv
r»,X, i-Os'2

«X . n(l + — ) n
Cpv

where Q . is the s quantile of Q . .
n,hr£ r\,K

Proof:

We have

1 - a ■ P[ < Q2 < Q2 
0./Z n,X n,X,l-0t/2

\o\
[ n,X,<

< ~[«yZ+a)(X-T)2 ] < Q2
.ay2 2a

1
rn,X,i-<X/2 J

■ P O 2 r 2 7^
— Q . < 4 a + o>(X -n n,\,a/2

T)2 <
2

- Q2n n,X. i-ayz

USL - LSL USL - LSL

2^ Q2 .n n,X,i-a/2
. r ~2j \ a + <«> (X - T)‘

USL - LSL

2
- Q2n r> ,X,a/2

”«1 ♦ £ >

n, X, l-0t/2

Cpv < Cpv <

/ 4 <«>X \n( 1 + — ) n

n,X, Ct/2

Cpv
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Since Cpv USL - LSL

1 +

Thus

r>,X,0t/2
wX . n( 1 + — ) n

Cpv Cpv n,X, i-0t/2
n(l + — ) n

Cpv

n,X,01/2
, „ o)X .n(l + - )

Cpv r»,X, 1-01/2
. « «X .nil + _ )

Cpv (2

is a 100(1 - a)% confidence interval for Cpv.m

For w = 0, Cpv * Cp with confidence interval

• 2 2
, 01/2 Cp ' yn-1,1 -01/2 Cp

. < n \ n

which is same as (2.2.6), with replacing n - 1 by n.

Similarly, for w = 1, Cpv = Cpm with confidence interval

*Z(X)
~Six ,0/2
n(l + - ) n

Cpm
**<>•> . 
n ,1-0/2

n(l + - ) n
Cpm

(2.

Applying approximation due to Patnaik (1949), it follows

this is same as the confidence interval given in (2.4.7),

wX
n~

5.2)

5.3)

5.4)

that

with
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replacing Cpm by Cpm.

The confidence intervals of various indices discussed above 

have been constructed using the results related to the normal 

distribution. However, it is possible to construct the 

approximate confidence intervals with required level of 

significance without using the normality of the process 

measurements. In the following we discuss such intervals.

2.6 BOOTSTRAP CONFIDENCE INTERVALS FOR PCIS

Franklin and Wasserman (1992) have proposed three 

nonparametric bootstrap confidence intervals for each of the 
three indices, viz. Cp, Cpk and Cpm. Although the practical 

interpretations of the indices are questionable when normality 

does not hold, it has been found that in the normal process 

environment, one of the bootstrap confidence intervals performs 

comparable to the confidence intervals based on normality.

Let X , ..., X be a sample of size n taken from a process.i n
ft ftA bootstrap sample denoted by X , ..., X is a sample of size ni n

drawn with replacemnet from the original sample. There are a 
total of nn such resamples possible. These resamples would then 

be used to calculate n values of Cp, Cpk and Cpm. Each of these
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would be an estimate of Cp, Cpk and Cpm respectively and the 
entire collectin would constitute the (complete) bootstrap

A A <A>

distrubution for Cp, Cpk and Cpm.

Bootstrap sampling is equivalent to sampling with 

replacement from the empirical probability distrubution function.
A A **

Thus, the bootstrap distrubution of Cp, Cpk and Cpm are
A A

estimates of the distriutions of Cp, Cpk and Cpm. In practice, 
usually only a random sample of the nn possible resamples is 

drawn, the statistic is calculated for each of these, and the 

resulting empirical distrubution is referred to as the bootstrap 

distribution of the statistic. A rough minimum of 1000 bootstrap 

resamples are usually sufficient to compute reasonably accurate 
confidence interval estimates.

We assume that 1000 bootstrap resamples are taken and 1000 

bootstap estimates of Cp, Cpk and Cpm are calculated and ordered
A*

from smallest to largest. Let the generic notations C and C (i) 

deonte the estiamte of a capability index and the associated 

ordered bootstrap estimates respectively. The three proposed 
confidence intervals are as follows:

1. The Standard Bootstrap (SB)

From the 1000 boostrap estimates C (i) Calculate the sample
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average
1000

1000
y C*(i)
v=i

and the sample standard deviation

*Sc
lOOO

555 21* i) - *,2 C ]
t = 1

The quantity Sc is actually an estimate of the standard deviation
A A

of C and thus, if the distribution of C is approximately normal, 

the 100(1 - ot)% SB confidence interval for C is

C ± z S? (2.6.1)
i-a/2

Note that the interval is centered at the value of C derived 

from the original data and the bootstrap method is only used to 

estimate its standard deviation.

2. The Percentile Bootstrap (PB)

Choose the a/2 percent and l-a/2 percent points of the 

distribution of C (i) as the end points of the confidence 
interval That is, choose.

[ C*(1000a), C*(1000(l-a) 3

as the 100(1 - at)% approximate confidence interval for C. For a
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90% confidence interval this would be
[ C*(50), C*(950) ]

3. The Biased-corrected Percentile Bootstrap (BCPB)

It is possible that bootstrap distributins obtained using

only a sample of the complete bootstrap distrubution may be

shifted higher or lower than would be expected (that is, a biased

distribution). Thus, a third method has been developed to

correct for this potential bias. First using the ordered

distribution of C , calculate the probability
P * P [C* < C] 
o

second, calculate
Z = $f4(P ) o o

P = §(2ZL O Z ) l-Ot/2

Pu $(2Z 4- z )O 1-0/2

Finally, the BCPB confidence interval is

[ C*(1000Pl), C*(1000Pu) ]

To compare the performance of the three proposed confidence 

intervals Franklin and Wasserman (1992) carried out a simulation 

when the underlying process is either normal, skewed or heavy
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tailed. Their simulation study had shown that when the

underlying process is normal the SB method is superior. The 
other two methods are conservative in the sen^e that their actual 

coverage probabilities are less than the nominal value (1 - <*)•
VsOVS-

If the underlying proecess is normal, it has been found that all 

the three methods are conservative. But since the practical 

interpretations of the indices are questionable when the process 

is non-normal, we needs not pay attention to this fact.

Our interest is now to compare the SB confidence interval to 

those based on normality discussed in the previous sections, in 

normal process environment. The performance of a confidence 

interval can be assessed using the two norms, namely, the extent 
to which the actual coverage probability meets the nominal value 

(1 - ot) and its average width. To compare the SB confidence 

intervals to the ones based on normality, we carried out a series
of simulation with different parameter settings. For each
parameter setting a sample of size n = 30 or 60 was drawn and
1000 bootstrap resamples (each of sige n) were drawn from that

single sample. A 90% SB confidence interval was constructed and 
its width was measured. This single simulation was then repeated 
400 times. Thus, we were able to calculate the proportion of 

times the SB confidence interval traps the true index value.
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This proportion then provided an estimate of actual coverage 

probability of the SB confidence interval.

The procedure was repeated for each of three indices, viz, 

Cp, Cpk and Cpm. The simulation results for Cp, Cpk and Cpm are 

given in Table 2.6, Table 2.7 and Table 2.8 respectively.

Recall that the exact 100(1 - a)% confidence interval based 
on normality for the index Cp is given by (2.2.6). The expected 

width of this interval is

* 2 •2
n-1 ,1 -Os'2 An-1, 0/2

. 4 n - 1 < n - 1

<• 2 2
*r>-i,i-a/2 *n-i, 0/2

n - 1 h n - 1

E(Cp)

Cp
bn (2.6.2)

where bn is as defined in (2.2.4). Using (2.6.2) we calculated 

the expected width of the 90% confidence interval of Cp given by 

(2.2.6), for each parameter setting and the values are given in 

Table 2.6. Observing Table 2.6 it follows that the average width 

of the SB confidence interval is negligibly greter than the 

expected width of the exact confidence interval, based on 

normality. Also the coverage proportions of the SB confidence 

intervals is very close to the nominal value 0.90.
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In Section 2.3.2, we have seen that the roost favourable 

approximate confidence interval based on normality for the index 

Cpk is the confidence interval given by (2.3.16) due to Bissell 

(1990). To compare the SB confidence interval for Cpk with this 

we again carried out a simulation with the same parameter 

settings to find the average width and coverage proportions of 

the Bissell's confidence intrval. For each parameter setting 400 

random samples, each of size n = 30 or 60 were drawn. For each 
sample the Bissell*s confidence interval was found out and its 

width was measured. Also the actual coverage proportion was 

estimated. The results are given in table 2.7 Observeing Table 

2.7 it follows that the SB confidence interval for Cpk is as good 

as the confidence interval due to Bissell (1990).

The best available approximate confidence intervals based on 
normality, for the index Cpm are given by (2.4.7) and (2.4.8). 
To compare the SB confidence interval for Cpm with these 

intervals we again carried our a simulation with the same 

parameter settings to find the averge width and the actual 
coverage proportions of the confindence intervals (2.4.7) and 
(2.4.8). The result are given in Table 2.8. Observing Table 2.8, 

it follows that the performance of all the three intervals is 
almost identical.
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Table 2.6: Coverage Proportions and Average Widths of 90% 
Confidence Intervals for Op.

Confidence 
Interval Cp

n
coverage

= 30
avg. width

n
coverage

= 60
avg. width

SB* 1.000 0.885 0.463 0.915 0.310
exact 0.900 0.442 0.900 0.306
SB 1.333 0.905 0.619 0.905 0.420
exact 0.900 0.589 0.900 0.408
SB 1.667 0.900 0.772 0.893 0.516
exact 0.900 0.736 0.900 0.510
SB 2.000 0.905 0.922 0.905 0.625
exact 0.900 0.883 0.900 0.612
* SB - Standard Bootstrap.

Table 2. 7: Coverage Proportions 
Confidence Intervals

and Average 
for Cpk.

Widths of 90%

Confidence n = 30 n = 60
Interval Cpk coverage avg.width coverage avg.width
SB 1.000 0.878 0 .455 0.880 0.314
Bissell (p =0, o=l) 0.896 0.468 0.891 0.328
SB 1.333 0.918 0.660 0.815 0.441
Bissell (P =2, cy=0.25) 0.902 0.626 0.902 0.433
SB 1.667 0.905 0.799 0.888 0.543
Bissell (P=0.5, o=0.5) 0.905 0.766 0.901 0.531
SB 2.000 0.888 0.888 0.880 0.616
Bissell (P =0, o=0.5) 0.898 0.884 0.896 0.620

79



Table 2.8: Coverage Proportions and Average Widths of 90% 
Confidence Intervals for Cpm.

Confidence n = 30 n = 60
Interval Cpm coverage avg.width coverage avg.width

1.000 (p-0, a=l)

SB 0.888 0.437 0.898 0.304
Normal 1 0.894 0.434 0.896 0.303
Normal 2 0.897 0.436 0.896 0.303

0.496 {fj=2, <7=0.25)

SB 0.898 0.036 0.928 0.026
Normal 1 0.880 0.036 0.878 0.026
Normal 2 0.880 0.036 0.879 0.026

1.414 (fj~0.5, o=0.5)

SB 0.908 0.543 0.910 0.374
Normal 1 0.899 0.514 0.895 0.368
Normal 2 0.897 0.516 0.894 0.368

2.000 (p-0, <y=0.5)

SB 0.895 0.871 0.913 0.614
Normal 1 0.900 0.869 0.904 0.607
Normal 2 0.900 0.873 0.903 0.608

* Normal 1 and Normal 2 are the confidence intervals based on
normality, given by (2.4.7) and (2.4.8) respectively.

The simulation is carried out using MINITAB. The MINITAB

macros are given in Appendix B.
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