
CHAPTER 3

PROCESS CAPABILITY INDICES 
FOR NON-NORMAL PROCESSES

3.1 INTRODUCTION

The process capability indices discussed in the previous 

chapters are designed under the assumption that the quality 

characteristic under investigation is normally distributed. All 

the statistical properties of the PCIs discussed earlier are 

dependent on this assumption. Especially crucial is the tie to 

process yield. If the data are even slightly non-normal, the tie 

to process yield is broken. For example, suppose the process is 
perfectly symmetric with Cp = Cpk * 1.0, but the process is 
actually t-distributed with six degrees of freedom then instead 
of 2700 parts per million out of specification for a normal 

process, there will be 10000 parts per million out of
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specification. Further if the data are actually logistically 

distributed, there will be 82840 parts per million out of 

specification. Hence before estimating the process capability of 
a certain process we must first assess the normality of the 

process measurements. Though process is in statistical control 

but the output does not give normally distributed data, then we 

can not use any of the indices Cp, Cpk or Cpm etc. Situations of 

these kind usually occur in practice. See, for example, Sarkar 

and Pal (1997). In such situations there are several indices 

available in the literature. In this Chapter we discuss some of 

them.

In section 3.2, we discuss some wellknown tests for testing 

normality of process measurements. Section 3.3 describes 
Clements' technique for process capability estimation of 

non-normal processes. Section 3.4 discusses Munechika's approach 

to assess process capability of such processes. In Section 3.5 

the two approaches are compared. Further approaches are given in 
Section 3.6.

3.2 TESTS FOR TESTING NORMALITY

In this sectiom we first discuss the graphical method of 
assessing the normality of process measurements and then the
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wellknown chi-square test of goodness of fit. One can get an idea 

about non-normality by plotting the histogram of the data, when 

it does not come from symmetric distribution. However, if the 

data comes from symmetric distribution histogram fails to 

conclude about non-normality.

3.2.1 Graphical Method

Graphically assessing normality of process data is usually 
done by means of a so called Q-Q plot. This is in effect a plot 
of the sample quantile verses the quantile one would expect to 

observe if the observations actually were normally distributed. 
Data normality is suspected if the plotted points deviate from a 

straight line. In addition, the pattern of the deviation provide 
vital clues as to the nature of non-normality.

Let Xi, X2, ... ,Xn represent n observations on any single 
characteristic X. Let xa>, x<2>, ... x<n> represent these 

observations after they are ordered according to magnitude. The 

xcj>'s are the sample quantiles. The proportion j/n of the sample 
to the left of x<j> is often approximated by (j - 1/2 )/n for 
analytical convenience. For standard normal distribution the 
population quantiles q<j> are defined by the relation
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Look at the pairs of quantiles (q<j>, x<j>) with the same

associated cumulative probability, (j - 1/2)/n. The first member 

of the pair is the population or theoretical quantile q<j> and 

the second is the sample or observed quantile x<j>. If the data 

arises from a normal population, the pair (q<j>, x<j>) will be

approximately linearly related; That is, if we plot x<j>'s 

against qcj>'s, the plotted points will fall along a straight 

line.

To clarify the ideas, we provide an example in the 

following. Suppose that a sample of size, n : 10 observations is 

available. These observations are written in ascending order and 

are given in Table 3.1.

We construct the Q-Q plot for the given data of x<j>. The 

Q-Q plot is as shown in Figure 3.1. The points (q<j>, x<j>) lie 

very nearly along a straight line and we would not reject the 

notion that these data are normally distributed.
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Table 3.1
Observed
observations

X(j>

cumulative 
probabilities 
(j - 1/2)/n

standard normal 
quantiles

q<j>

2.00 0.05 - 1.645
2.90 0.15 - 1.036
3.16 0.25 - 0.674
3.41 0.35 - 0.385
3.62 0.45 - 0.125
3.80 0.55 0.125
4.26 0.65 0.385
4.54 0.75 0.674
4.71 0.85 1.036
5.30 0.95 1.645

-2 -1. -1 -0. 0 0.5 1 1.5 2 
5 5

m

Figure 3.1
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Another wellknown test for testing normality is chi-square

test of goodness of fit, which is discussed below.

3.2.2 Chi-Square Test of Goodness of Fit

Let the random variable X denotes a quality characteristic 
with unknown mean /l/ and unknowm variance a2. Let Xi, X2, .Xn 

be independent observations on X. Let hi, A2, Ak be a

collection of disjoint intervals that cover the real line and let

p. = x « * } > 0 ..
,0 ) v )

where P 2 is the probability distribution associated with
i\i,a >

2 A ^2N(/j, a ) and (j and a are maximum likelihood estimates of \i and 
oz respectively. Let (X denote the observed frequency of Ai and

Ei be the expected frequency of Ai, when X is normally

distributed. Clearly
A

Ei = np. . Then if X is normallyV
distributed, the statistic

v = z (Ql ~ Bi >2
k i=l Ei

is asymptotically distributed as chi-square random variable with

k - 3 d.f. We can use the statistic V to reject the hypothesisk
that X is normally distributed at a level of significance, if

k ,_. .2(Ot - Hi) v 2——-............. > yi=4 Bi k-3,1-0

#
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To use this test procedure for testing normality of X, first 

we have to choose the sets Ai, A2,..., Ak. Freguentely these are 

chosen to be disjoint intervals. As a rule of thumb, we choose 

the length of each interval in such a way that the probaility

^ (X € Ai), is approximately 1/k. Moreover, it is desirable 2
ifjt ,a >
to have n/k > 5 or rather Ei > 5 for each i. If any of the Ei's 

is < 5, the corresponding interval is pooled with one or more 

adjoining intervals to make the cell frequency atleast 5.

To illustrate the procedure we test the normality of the 

following data (the data is generated from N(0, 1) using 

MINITAB).

-2.884 -0.500 -0.158 0.151 -1.478 -0.366 0.578

-1.379 -0.879 -1.251 -0.582 1.293 0.038 0.586

0.478 -0.152 -0.270 0.625 0.619 0.747 0.955

-1.812 -0.125 2.259 -0.020 -0.327 0.730 -0.733

-1.047 -1.114 0.684 -0.868 0.446 0.389 -0.307

2.452 -1.526 0.758 0.042 -0.692

Here we have n = 40, ij = -0.116, a = 1.0358. The procedure

summarized in Table 3.2:
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Table 3.2

Interval Oi Ei

(—00 , -1.0) 8 7.8682
(-1.0, -0.4) 6 7.8106
(-0.4, 0.0) 8 6.1045
(0.0, 0.4) 4 5.8492
(0.4, 1.0) 11 6.7416
(1.0, co ) 3 5.6258

We have
V = 5.7995 and y* = 7.8147
k A3,0 . V5

Since V < % , we can not reject the normality of the data.

If applying these tests of normality it is found that the 
process output is not normal, then we have to adopt some 

non-normal process capability estimation technique. In practice 
there are two commonly being used techniques which are given by 

Clements (1989) and Munechika (1986). In the following we discuss 
Clements' technique.

3.3 CLEMENTS1 TECHNIQUE

Clements (1989) has proposed a simple technique for 
calculating Cp and Cpk for any shape of distributions, using the 
pearson family of curves. Consider the normal curve shown in 

Figure 3.2. For normal distribution with mean ^ and standard
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Figure 3.2

deviation a, 0.135% of the process data lie below {

the data lie below fj and 99.865% lie below (j +

99.73% of the data lying between the limits fj ± 3a.

notation, we define x asP

P [ X < x ] = p,p
where X ~ N(p, a ), so that

x = u - 3a0.00133

O. 3

x = u + 3<yO. £H>863

- 3a, 50% of 

3a, leaving 

In quantile
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For standard normal case, with variable Z,

P [ Z < 2 ] = 0.00135O. 00135

P [ Z < 2 ] = 0.50.5

P [ Z < 2 ]o. i>oe<s5 = 0.99865

The process capability indices can be redefined in terms of

the quantiles of the quality characteristic as

CP = USL - LSL
X “XO.Pi>8<55 0.00135

(3.3.1)

Cpk = min
USL - xO. 5

X — xO. PP8<55 0.5

x - LSLO. 5
0.5 0.00135

(3.3.2)

In non-normal case, if we can find a better distributional 

form for the data, one that provides a very good fit, we can 

obtain more accurate measures of the three required quantiles.

Clements' technique consists of the following steps for 

estimating non-normal Cp and Cpk:

1. Estimate the mean (X), standard deviation (S), skewness 
(Sk) and kurtosis (ku) from the process data. Also note 
the values of USL and LSL for the process.

2. Based on the estimates of skewness and kurtosis obtained

in (1), use either Table la or Table lb (in
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Clements'(1989)) to determine z'
O. 00195

and s'
O. 00655

where z' is the adjusted standardized normal variate forp
the non-normal data. For z' use

o. 00135
Table la for 

positive skewness and table lb for negative skewness.

Similarly for z* use Table lb for positive
O. 00655

skewness and table la for negative skewness.

3. Calculate z* using Table 2 [in Clements (1989)] and
o. 5

the estimates of skewness and kurtosis derived in (1):
(a) for positive skewness reverse sign;

(b) for negative skewness leave positive.
Estimate x

O. 00195 

A

x and x as
0.5 0. 00855

x = X - z' S
0.00135 0.00135

x = X + z' S
0.5 0.5

x = X + z1 S
0.00655 0.00655

5. Estimate process capability indices using (3.3.1) and
(3.3.2).

Note that Clements defines kurtosis as m /S4 - 3,

where, m =
4

E (Xi - X)^ 
1 = 1

To illustrate the technique, we consider the following 
example.
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Example 3.3.1

The following 50 observations represent the output of some 

non-normal process. The specifications of the process are LSL = 

2.8 and USL ■ 29.4.

It has been found that the data do not come from normal

process, but from a skewed prosses. (see Figure 3.3. )

10.39 8.29 3.84 12.61 7.77 10.80 2.86
8.97 12.06 16.64 10.18 7.71 7.14 11.28
15.44 13.18 2.82 7.40 7.23 5.79 6.28
9.54 10.88 3.85 7.67 9.67 8.75 7.61
20.35 3.57 5.45 9.85 8.35 13.32 5.86
13.44 6.08 13.65 5.20 15.13 10.50 3.95
8.51 11.36 7.73 5.55 29.47 8.48 15.23

9.33

Figure 3.3
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We have X = 9.54, S = 4.764, skewness = 1.69 and kurtosis =

2.25. From Table la, Table lb and Table 2 of Clements (1989), we

have
z' = 0.7235, z' = -0.480 and z' = 3.85880.00135 0.5 0.00645

Using these values we get the quantile estimates of the PCIs as
A A

C 1.2185 and C ■ 1.0917.P = pk

Clements' technique has following merits:

1. When the distribution is normal, the indices are exactly the 

same as those given by the traditional method.

2. The only difference from the traditional procedure is the 

method of calculating the width and position of the top and 
bottom halves of the distribution relative to the tolerance 

limits.

3. It does not require mathematical transformation of the data.

4. It is easy to visualize graphically and explain to 

nonstatisticians.
5. It is relatively easy to calculate manually or by using 

hand-held calculator.
6. It could be readily used as a subroutine in most existing SPC 

subroutines. (SYSTAT 7.0 does not take an account of 

non-normality.)
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7. The system of Pearson curves on which it is based can be used 

to provide estimates of percenage out of specification for a 

wide variety of distributions.

Sundaraiyer (1996) utilized various bootstrap techniques to 

study point and interval estimates of Clements' Cpk, when the 
data are non-normal and has concluded that, the percentile and 

biased-corrected percentile bootstrap methods provide the best 

estimates of Clements' Cpk.

In the following we discuss another approach due to 
Munechika (1986).

3.4 MUITBCHIKA'S APPROACH

Manechika (1986) has provided a non-normal modification of 

Cpk using Cornish-Fisher expansion. Cornish-Fisher expansion is 
essentially an expansion of any continuous distriution into an 

infinite series in terms of standerdized normal random variables 

U with the d.f. #(• ). Almost any standardized random variable X 
(that is, with mean 0 and variance 1) can be expressed as 

X = U + Bi (U) + B2(U) + ... + Bk( U) 
where B*(U) > - k <U2 - 1)<S 3

B2(U) ■ -i k (U3 - 3U) - — k2(2U3 - 5U)24 4 3<S 3
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where k, i = 1, 2, ... ,6 are the cumulants related to thei
moments as follows:

k^ = fj (the mean)

k = u. (the second central moment)2 *2

k = u (the third central moment)3 3

k = u - 10u u 5 5 r9l2

Munechika (1986) truncates the expansion after Bi(U) and 

shows that if X is chi-square random variable with any number of 

d.f., the error in truncation is negligible.

Denote, therefore,

kg^(u) * u + (uZ - 1) (3.4.1)

and use g^ to correct normal Cpk. He defines

CpX = XCpk

where
k2 + 18k Cpk + 9 - 3

v _ 3 3A 3k Cpk
3

(For details refer Munechika (1986).)

k <* 0

(3.4.2)

(3.4.3)

Munechika's procedure is thus as follows:
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1. Calculate X = --- ,n

„ _ Xfxi - x)2
s - } —jt=~t •

^ = » X(Xi - X)*
[E(Xi - X)2]8'2

A

2. Calculate Cpk.
4% A

3. Calculate X using (3.4.3) with Cpk replaced by Cpk and
a

k3 by ka.
4. Calculate CpX = XCpk.

For the measurements in Example (3.3.1), we have
CpX ■ 0.4179.

It appears that though Clements* technique is being widely 

used in practice, it has not been compared with any other 

technique in the non-normal set up. In the following an attempt 
is made to compare Clements* technique with Munechika's 

technique.

3.5 COMPARISON OF CLEMENTS' AND MUNECHIKA'S APPROACHES

Consider the 5 processes as shown in Figure 3.4. All the 5 
processes are having same set of specification limits as LSL =
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Process (I)

ProcessOO

Procmsfiii)

Process(iv)

Process(v)

Figure 34
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3.6624 and USL = 30.8076. Distributions of the processes (i), 

(ii)/ (iii), (iv) and (v) are respectively % , x - 1.5, **
15 15 15

- s.d.(** ), x* + 2, X* + s.d.(x* ). The Clements' Cpk,15 15 15 15

Munechika's CpA, actual probabilities of non-conformance and the 

bounds of probability of non-conformance associated with Cpk 

given by (1.3.5), for all above processes are tabulated in Table 

3.3.

Table 3.:J

Process Clements' 
Cpk

Munichika's 
Cpk

prob. of non­
conformance (p)

bounds
using

of p 
(1.3.5)

i 1.0000 0.3334 0.0027 (0.00135 , 0.0027)

ii 0.8595 0.3334 0.0102 (0.0050, 0.0099)

iii 0.4870 0.3333 0.1301 (0.0720, 0.144)

iv 0.9110 0.3333 0.0026 (0.00314 , 0.0063)

V 0.7562 0.3355 0.0079 (0.0117, 0.0223)

From this example, it is clear that CpX fails to take into 

account the location of process data while assessing the process 

capability. On the other hand elements' Cpk is a better measure 

of process capability. As probability of non-conformance 

associated with the process increases (decreases), Clements'* Cpk 

increases (decreases). However, the bounds on the probability of 

non-conformance associated with Clements' Cpk, obtained using
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(1.3.5) are not true. It has been observed that if the process is

located left to USL, the actual probability of non-conformance is 

above or in the vicinity of the upper bound given by (1.3.5) and 

if the process is located right to LSL, it is below or in the 

vicinity of the lower bound given by (1.3.5). Perhaps, this 

happens because the underlying peocess is positively skewed. It 

will be perhaps possible to correct these bounds for such skewed 

processes by influncing them by some measure of skewness.

In the following we give some more indices which have been 

reported in the literature for non-normal set up.

3.6 SOME MORE INDICES FOR NON-NORMAL PROCESSES

3.6.1. The Index C __________________ ©

Pearn et al. (1992) proposed the index C for non-normal0
process as

USL - LSLC * ^_ (3.6.1)© BO

where © is such that the probability

P =P[/j-©o'<X<n+©o']0

is as insensitive as possible to the form of the distribution of 

X. For PQ s 0.99 Pearn et al. (1992) recommended the value 5.15
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for 0 as it is quite robost over a wide range of distributions.

(See Table 6 in Pearn et al. (1992)) Note that C does not depend

on skewness or kurtosis of the distribution of X.

C can be estimated ase

3.6.2 The Index dp

; USL - LSLc =----—-----0 es (3.6.2)

Bai and Choi (1997) have proposed the weighted variance 

method to adjust the capability index value to account for the

degree of skewness of non-normal process data. This technique

computes the standard deviations above and below the mean

seperately. The PCIs based on this method differ from the

original indices because the standard deviations above and below 

the mean are multiplied by two different factors: the upper 

standard deviation is multiplied by 4 2Px and the lower factor by 

|2(1 - Px ), where Px = P(X < px). Cp, the weight variance version 

of Cp, is defined as

USL - LSL
Cp - min-

USL - LSL

w 6ox|2P7 6ox42(1 - Px)
(3.6.3)

Similarly, the weight variance versions of Cpk and Cpm are
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respectively,

and

Cpk = min-
*

USL - #ix 

3oxf2Px

p»x - LSL
............... ....... . ' '

3ox<|2(l - Px)
(3.6.4)

Cpm USL - LSL 
6ox * min <

V

1
{2Pt

1
42(1 - Pt) } (3.6.5)

where Pt = P(X < T) and

Estimates of Cp, Cpk and Cpm can be obtained by replacing 

fix, ox, Px and Pt in (3.6.3), (3.6.4) and (3.6.5) by their 

following estimates.

= *

ox « R/dz

ox' = jsx + (X - T)

Px = number of observations < X

and

Pt = number of observations < T

where R is the mean range obtained from the X - R chart and dz 

is the constant for the skew population corresponding to d2 for 

the normal equivalent.

101



3.7 FUTURE IDEAS

After having gone through the latest literature on Process 

Capability Analysis, we propose to study the following in future.
(1) Comparison of various PCI's for non-normal set up, in 

the context of probability of non-conformance.

(2) In the current literature only the point estimates of 

the PCI's for non-normal set up have been suggested. 

We will try to investigate properties of these
estimates as well as confidence bounds for these indices.

(3) Process Capability Analysis by transforming non-normal 

process data to normality.
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