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CHAPTER I
INTRODUCTION AND SUMMARY

1.1 Chapterwise Summary:

This dissertation is devoted to the problem of subset 

selection in regression analysis. It consists of five chapters. 

First, we present chapterwise summary of the dissertation.

Chapter I contains some basic concepts of regression 

analysis and some important results which are relevant for in 

later disscussion. Section (1.2) gives an introduction about 

linear regression model. In section (1.3) we discuss different 

methods of estimation of parameters and its properties. Residual, 

types of residuals, its properties and some results based on 

residuals are discussed in section (1.4). Distribution properties 

and ANOVA table which are discussed in section (1.5). Finally in 

last section, we discuss the problem and need of subset 

selection.

Chapter II is devoted to various selection criteria for

subset selection. In section (2.2), we discuss coefficient of
2determination of R . Also in this section, we discuss, Aitkin’s 

(1974) test procedure for selecting subset by using R -statistic 

and in the next section we give another criterion based on
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2adjusted R -statistic. Lastly we give Haitvosky (1969) test
2procedure for selection of subset by using adjusted R -statistic. 

Mean square error of prediction criterion is discussed in Section

(2.4). In Section (2.5), Mallows C -statistic is discussed inp
detail. All the above techniques are suitably illustrated with 

real life data as well as simulated data.

It is difficult to select a subset by using above selection 

criteria when the number of independent variable is too large. In 

this situation several other suitable methods of subset selection 

are aviTable and these are discussed in Chapter III.

We have discussed a recent method based on principal 

compontents in the Chapter IV. This method is proposed by Bonesh 

and Meditra (1994).

Chapter V deals with effect of subset selection on estimates 

of parameters, estimates of error variance . After studying the 

effect of dropping variables, the question arises as to how many 

variables should be included in the linear regression equation 

which is discussed in the section (5.4). In the last section of 

this Chapter, we discuss the bias reduction methods, namely.

Is Jackknife statistic 

2: Bootstrap method

and compare estimators value by generating random samples.
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1.2 Introduction and notation.

For various types of data, various techniques have been 

developed for extracting relevant information from that for 

determining what the data "mean". One common type of data occur 

when the value of several variables are measured for each of 

several units. For example, in medical study, age, weight, height 

and blood pressure of a group of 100 subjects might be recorded. 

Here observations are taken on four variables correponding to 

each of 100 subjects recorded.

Linear regression analysis is commonly used statistical

technique for dealing with such data. This technique is

frequently used in almost all fields. In the linear regression

technique a variable of main interest Y is called the criterion

variable (also called the dependent variable, regressond,

responce variable, the predictant) and the set of other variable

X, X . ,X are called the explanatory variables (also called 12k
the regressors, predictors, independent variables )

1.2.1 Linear regression model :

Before we discuss the linear regression model in detail,

consider the following example:

Suppose Y is the concentration of Vitamin B in a plant2
called Turnip plant.and X , X and X are respectively the12 a
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sunlight, soil mixture measurement and air temperature- Let the

data (y,x ,x ,x ), i = 1,2,...,n on (Y, X, X, X) beii.li.2i3 123

available from n plants. Here one can easily see that the

variable Y is dependent on other variables. So variable Y can be

called the ’dependent variable* or ’responce variable*. As

opposed to that the variables X ,X ,X can be called ’independent12 3

variables’.

1.2.2 Formulation of the model :

In above example, the concentration of Vitamin B in the2

leaves of a turnip plant (Y) is, approximately a fuction of

sunlight (X ), soil mixture (X ) and temperature (X ). In a real 12 3

life processes, the Y is a function of X , X , X but not exactly12 3

mathematical function of X , X , X and hence we can write a12 3

model as

Y » F(X ,X ,X )+ s 12 3

where F is a suitable function and s is a random error.

Specifically, in linear regression model, the F is taken as

linear function and it is expressed as

Y = /? + ft X +/? X +/? X +£O 1 1 2 2 3 3

Note that the form of the function is specified to be linear 

but the coefficents ftQt ft f ft^t ft are not specified. They are 

unknown parameters and these are called regression coefficents or
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regression parameters.

1.2.3 General case of K- variables

Suppose data consisting of n observations on a response 

variable Y and k explanatory variables are available. The 

regression model is,

ft + ft X +ft X +ft X +. . .+ ft X + £ O 1 il 2 2l 3 3t k kl (1.2.1)
It can be expressed in terms of observed data.

Y -ft + ft X +ft X +ft X + . . ,+ft X, + £ i O i U 2 i2 3 13 k ik i
( 1 .2.2)

1,2,..,n

where ft is called intercept and ft , ft , ft , . . ., ft are called O 12 3k
regression coefficients or regression parameters. Further writing 

these equations in the matrix form, we get

Y * X ft* s , (1.2.3)

where

1 X X . . X11 12 lk
1 X X . . X21 22 2K

1 X X ni n2 nk

We note that the model (1.2.2) is a very general one. For
example, setting X. . = XJ , we have the polynomial.

»• J

ft + ft X.+ ft + + ft, xk+ e
O lt. 2i ki i
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which is also a special case. The essential aspect of (1.2.2) is

that it is linear.in the unkown parameter /?., (j = 0 1 2 k) and 

precisely for this reason, it is called a linear model.

In contrast,

Y -ft + ft exp l-ft X )+ £ (1.2.4)l O i 2 l l

is a non-linear model, being non-linear in ft . The following 

assumptions about linear model are normally made:

Assumption Cl.2.ID :
21) E(s) « 0 and cov(s) -a I- — n

and further analysis,
22) s is distributed as N(0, a I )n

1.3 Estimation of parameters :

In this section, we discuss a method of estimation of 

parameters for the model (1.2.3).

1.3.1 Least squares estimation :

A widely used method of obtaining an estimator of ft is the 

’Least square method*. The method is as follows:

Consider the model

Y - X£+ £ (1.3.1)

Then,

and

£' « Y - X ft,
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( 1.3.2)

£*£ = (Y - X ft )'(Y - Xft),

= Y’Y - 2 ft' X ’ Y + ft' X'X /?,

Differentiating (1.3.2) with respect to ft and equating it to zero, 

we get

- 2 X * Y+ X’X ft = 0 

which implies that

X’X ft « X* Y (1.3.3)

The equations (1.3.3) are known as normal equations. If 

(X’X) exists then (1.3.3) have the unique solution for ft and is 

given by

b = (X’X)_1X’Y (1.3.4)

If (X’X) 1 does not exist, then there is no unique solution 

for ft. In this case, generalized inverse of (X’X) is used to 

obtain a solution for (3.

Remark Cl.3. 1)j For the sake of completenes, we give qjTother 

method known as "maximum likelihood" method of estimation.

Suppose £, j i = I, 2, . . ., n are independently and
i

2
identically distributed normal variates having N(0,<? ) 

distribution, so that we can write the likelihood HQts) based on

n observation as
(Y-Xft)'(Y-Xft)

llftts) = -- log iln) - -log (o'")----------------- (1.3.5)
2 2 2 a

Taking partial derivatives on both sides of equation (1.3.5) with
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respect to ft and equating it to zero, we get the normal equation

- (X’X) b + X’Y - 0 (1.3.6)

This implies,

b - .

where

( X*X) Soy ; if (X’X) is non-singular

(X *X) + X’Y; if X’X is singular 

(X’X)+ is a generalised inverse of (X’X).

1,3.2 Mean and variance of LSE of ft :

Now, we obtain the mean and dispersion matrix of b. 

Property 1.3.1 : b is an unbiased estimator of (3.

Proof : We have
b - (X’X)_1X’Y

Hence
E[b] - E t (X’X)_1X’Y ) 

- (X’X)-iX’E [Y]

From the expression (1.2.3) we get.

ElY] - Xft

Thus,
ElbJ * (X’Xl'Vx g

- a
Property 1.3.2 : The variance covariance matrix of b is given by 

Var(b) = CX*X)"1o'2
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Proof : Observe that
VartbJ « Varl(X’X)_1X’Y ),

= (X'X)_1X'Var[Y] X (X’X)"1,

= (X'X)_1X’ laZI ]X (X’X)"1,
n

» (X'X)_1X’X (X’X)~V
= (X*X)~V

Further here we note that b is the best linear unbiased estimator 

(BLUE) of ft. Moreover, if the underlying distribution is normal, 

then b is also M.L.E. of ft.

1.4 Residuals
In the Section (1.2) and (1.3), we developed multiple linear 

regression model and obtained the estimates of unkown parameters. 

In regression analysis, the major objective is to predict the 

future observations and this is given by

Y = x’ b (1.4.1)
i

where x is a given row vector of independent variables.i
Quite obviously, if the model is a good fit to the data, the 

difference between the actual value and the predicted value

i.e.Y- Y where Y is the observed value, must be 'small*. Oni i i
the other hand, if this difference is significantly 'large', 

there is enough scope to suspect the adequacy of the proposed 

model and one must search for alternative models. Thus, the 

difference Y -Y which is called 'Residual*, plays an importantt i
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role in determining adequacy of the model.

In this section we discuss the residual and its various 

properties, which are useful in the later discussion.

Examining the residual is one of the most important tasks in 

any regression analysis. It involves the careful inspection of 

the difference between the observed and the predicted values of 

the responce variable after a regression equation is fitted to 

the data . Many-time simple graphical tools are used to study 

residuals for observing pattern in the data. First, formally we 

define residuals.

Definition C4.1.1) Residual: Let the model be

Y = X (3 + £ . and Y = X b.

Then the ith residual is definied as,

e = Y -Y, i=1,2,...n. (1.4.2)
i i i

The residual vector is given by

e = Y - Y (1.4.3)

Using the experssion (1.4.1), we have

e = Y - X b

this yields ,

e = Y - X (X*X)_1 X* Y,

= Y(I - H) Y, (1.4.4)

where H= X (X’X)-1 X’

Now in order to use residuals in checking the adequacy of the
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model, we need the following relationship between ’Residual

vector* and ‘error vector’.

Result Cl. 4,15: e = (I - H) £

Proof : We have

e = (I - H) (X /?+£),

= X ft- HX ft+ £- H 
since H= X (X’X) 1 X’ we have

e * X ft- X (X’X)'1 X’X ft+e - H£,

-£ ~ H £t

Thus,

= (I - H) s • (1.4.5)

Hence the result.

From the experssion (1.4.5), it is clear that relationship 

between e and e depend only on the matrix H. Using this result,
we have the i1*1 residual as,

n
e = e - E H .£ for i=1,2,..n, (1.4.6)

1 1 j=i lJ J

The experssion (1.4.6) shows that if H is sufficintly small
ij

then the residual vector *e* is very ’close’ to the error vector

£.

Now for further study, we need to discuss the behavior of 

matrix H. The matrix H is also known as ’hat matrix *. It has the 

following properties.
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1: H is symmetric matrix

2: H is an idempotent matrix » since

Now below we give ordinary residuals- 

1: Ordinary residuals

The ordinary residual vector is given by 

e — Y - Y •

From the result (1.4.1), the vector e can be experssed as

e =(I — H) s •

This equation implies that the ordinary residuals are useful for 

checking the assumptions.

Result Cl. 4.23: 1 : E(e )* 0
2 : V(e)= <f (I - H )

Proof : From the assumptions (1.2.1), we have

EU ) = 0 V(£) =o2 I,

From the result (1.4.5) we have

e = ( I - H ) e

Therefore

E(e) - E ( I - H ) £

( I - H ) E( £)

( I - H ) 0

0

Now,
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V (e = V ( I - H )

= ( I - H )V( £)i I

= (I-H)o,I(I

- H )

- H )n
= ( I - H ) aZ

since ( I - H } is an idempotent matrix .

Thus the ordinary residuals have zero mean and they are having 

unequal variances.
In particular, the variance of the ithresidual is,

V(e.) ■ (1- H ) o'2, i-1,2 ...n
i n

Where H is the ith diagonal element of H and the covariance
ii

between e and e (i = j) is,J
2cov( e ,e ) = - H o*i j ij

Result Cl.4.33: Rank (H) * k+1

Proof : Since matrix H is an idempotent matrix, we get

rank(H) = trace (H),

= trace -iX CX‘X) X*

= trace 

* trace

(X'X)"1 X’X

(I )k+l
» k+1,

1.4.2 Sum of squares :

In this section, we discuss various sum of squares and 

associated results, which are needed for later discussion.
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1 : Residual sum of squares :

The sum of squares of deviation of the observed Y 3 from
i

their estimated expected values is usually known as residuals or 

error sum of squares and it is denoted by RSS.

Thus,
n „RSS = r C y - Y )2,

l t1=1

= ( Y - Y )1(Y-Y ),

t
(I—H) Yj £ (I-H) Y 

= Y*(I-H)Y

since (I-H) is symmetric and idempotent matrix, we get 
RSS = YM I - X (X’X )_1 X’ )Y,

= Y’Y - Y*X b.

This is a convenient form for computing the RSS.
~2 2 Result Cl.4.4): a - RSS / (n-k-1) is an unbiased estimate of a .

Proof : We have

RSS = Y* (I - H )Y

Thus,
E(RSS) = E Jy* (I - H )Y

By using the results of matrix theory, we have 
E(RSS) - trj\l-H) aZ I + b* X (I-H) Xb 

where H is an idempotent matrix with rank (k+1) and also (I-H) is
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an idempotent matrix with rank (n-k-1).

Consider the matrix XM I - H. ) X ,

X*( I - H ) X * X* I - X (X’X) X’
-t

X,

X’X -X’X (X’X ) X’X, 

X’X -X’X,

0

Using the above results, we get,
E(RSS ) = (n-k-1) o-2, 

which yields ,
E(RSS / (n-k-1)) = o'2,

that is ,
. 2 . 2 E (o' ) = a ,

~2 2 Thus, a is an unbiased estimate of a .

2 :Total sum of squares CTSSDs

The sum of squares of observed Y ,a is usually known as
i

total sum of squares and denoted by TSS. Hence,

TSS = Y’Y,

3 : Regression sum of squares CSS3D:

The regression sum of squares is denoted by RSS .and it is 

given by,

SSR - TSS - RSS

- Y’Y - ( Y’Y -b’X’Y)

- b’X’Y.

15



.5 Goodness of Fit of a model:
Normally, the analysis of variance table is prepared for 

esting whether the proposed regression model is a good fit or

■ot- This is summarised below:

et the proposed model be Y = Xfi + s with the assumption s - N(0,

-‘‘I ). Thus the ANOVA table is given below:n
Table 1.5.1

«ou rce of 
variation

d.f. S.S M.S. F-statistic

egression k+1 SSR MSR=SSR/(k+1) F (R)=MSR/MSE

esidual n-k-1 RSS MSE=RSS/(n-k-1)

otal n TSS

able 1.5.2 ANOVA table (Showing a term mean )

urce of 
ariation

d.f. S.S M.S. F-statistic

ean 1 SSM MSS=SSM/1 F(M)=HSM / MSE

■egression k SSRm MSR=SSR /km F(R)=HSR /MSE m
esidual iIc 1 RSS MSE=RSS/(n-k-1)

•otal n TSS
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Table (1.5.3) ANOVA Table ( Corrected for the mean )

Source of
variation

d.f. S.S . M.S. F-statistic

Regression k SSRm MSR=SSR /k F(R)=MSR /MSEin m
Residual n-k-1 RSS MSE=RSS/(n-k-1)

Total n-1 TSS

where SSR denotes the corrected regression sum of squares.m
The table (1.5.1), (1.5.2), (1.5.3) all are summarizing the 

same thing as the table (1.5.3) is simply an abbrevited version 

of table (1.5.2) with SSM is removed from the body of the table 
and substracted from TSS to give TSS « TSS - SSM ■ Y’Y - n Y2, 

the corrected sum of squares of the Y observations.

The general linear hypothesis: Some times, the following 

hypothesis are of interest :

H - C'ft • m ,

where (3 is the (k+1) order vector of parameters of the model, C*

is any matrix of order s x (k+1) and mis vector of order s of

specified constants. There is only one limitation on C* that it
#

has full row rank.

The F-statistic for testing the above hypothesis.

F (H )= (C'b - m )• 1 C* (X’X)"1 C (C’b-m)L J
with s and n-k-1 d.f.

"2 s a
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The particular cases of general hypothesis are given below:

1 : H :/?=0, the hypothesis that all elements in ft are zero

2 : H :ft~ftQ* the hypothesis that for i=0,1,2,.. . ,k

i.e each ft is equal to some specified value fti io
3 : H :l’f? =m that some linear combination of ft equals a

specified constant.
’ s4 : H =ft = 0 that some of the ft , q of them (q <k )are zero.-q i

1.6 Heed for selection of variables:

The purpose of this dissertation is to eliminate the 

irrelavent variables from the model. At the time of elimination 

or selection of the variables from the model, naturally the 

question arises is "which variables are to be deleted from the 

model or which variables are to be included in the model ?". The 

answer to this question is given in the dissertation. Now, we 

discuss need of subset selection.

A regression analysis may be carried out with one or more 

following objectives.

(a) To predict a variable which may depend on the regressors.

(b) To asses quantitatively the nature of dependence of the 

dependent variables on the regressors of the subset in the 

presence of other regressors.

(c) To build a working model to explain the association between 

the dependent variable and regressors.
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(d) To examine statistically certain empirical belifes regarding

the model.

In a study of regression analysis, sometimes the form of the 

model is known to the Statistician. In such a case, the problem 

of selection of variables is not serious problem. But in many 

practical situations model is not known clearly, only there is 

rough idea regarding the variable involved.

The object of analysis in above case is to arrive at a 

working model which may be adequate for the intended goal. For 

instance, consider an example: In official publication data, 

several variables are likely to be involved in collinear 

relationship with dependent variables. Building a model for such 

type of data involving a large set of variables is so difficult. 

In such a situation the problem of elimination of variables which 

exhibit insignificant effect on Y is more important.

The major advantage of selection of subset of variables is 

that a regression equation with fewer variables have the appeal 

of simplicity as well as economic advantages in terms of 

obtaining the necessary information to use the equation. In 

addition, other advantage in eliminating irrelavent variables is 

that the variance decreases for both estimation and prediction, 

if variables are deleted from the model.

Once the decision of reducing the number of variables is
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taken, the question naturally arises as to which subset to

select. The statistician may have some ideas regarding the 

regressors which are "absolutely" important. There are many known 

variable selection methods most of which falls in one of the two 

main categories.

1) Exhaustive search method: This method is based on examining 

all possible subset of predictor variables with respect to 

some criterion.These are discussed in detail in the chapter II.

2) Sequential (Systematic) selection algorithm such as the 

forward selection, backward elimination and stepwise method. 

These methods are given in the chapter III.

Other methods are also developed for subset selection in 

regression analysis. Kudo and Tarumi (1974) develop a algorithm 

for generating all subsets of p variables out of k. Beale 

etl.(1967) and Hocking and Leslile (1967) develop branch and 

bound technique for selection of the p variables subset out of k 

variables. Furnival and Wilson (1974) have described algorithm 

for branch and bound techniques.
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