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CHAPTER - V
EFFECT OF DROPPING VARIABLES ON ESTIMATION OF

REGRESSION COEFFICIENTS
5.1 Introduction :

In the Chapter II. Ill and IV we have presented various 

criteria and sequential procedures for subset selection in 

regression analysis. We have also discussed the advantages of 

subset selection methods. The main advantage is that these 

methods help to identify relevant variables to be included in the 

model. On other hand, as pointed out earlier if variables are 
dropped from the model then estimator of regression coefficients

becomes biased and this is the main drawback of any subset 

selection method. For this reason, in this chapter we discuss

about the effect of dropping variables and bias.
In section (52) we discuss the two types of bias namely 1)

Omission bias 2) Selection bias. The effect of dropping variables

on estimation of ft and estimation of error variance which are

discussed in section (5.3). Now here question arises as how many

variables should be included in the model. The answer to this

question is given by Groman and Thoman (1966), which is discussed

in section (5.4). Since the estimation of bias can not be devied

and also it cannot be removed totally, a question is whether it
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can be reduced siginificantly. We address this question in the

last section. Wherein we discuss the two methods of bias 

reduction with illustration namely 1)Jackknife statistic and 2) 

Bootstrap method.

5.2 Bias :

In this section, we discuss various types of bias that arise 

due to subset selection.

We consider the full model

Y = X ft +£ (5.2.1)

We partition the matrix X and vector ft as follows,

X « (X : X ) and ft = (ft : ft )*,12 - -1-2

where X is n x k+1 matrix, X is n x p matrix and ft is k+lxl
i

vector and ft is the pxl vector. Then the least square estimatel

of ft is given by

Then

b = ( X* X )_1 X’ Y,
-l li l -

E(b ) — ft + (X* X ) 1 X* X ft , (5.2.2)
-t *-l 11 12—2

where ft and ft consist of the first p+1 and last k-p elements of -1 -2
/?. The second term of (5.2.2) is clearly the bias in the first 

(p+t) regression coefficients arising from the omission of the 

last (k-p) variables. Thus, we have the following definition
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Definition C5.2.13 Omission bias :The difference between E(b )
-l

and ft is called as the ’omission bias’ which arises when (k-p) 

variables are deleted, 

i .e.

Omission bias = E(b )- /? ,
-l -l

- (X’ X r1 X’ X ft , (5.2.3)
1 i 12-2

Further if the subset of variables is chosen from the same data 

which are used to estimate the regression coefficient and the 

prediction, it introduce the anthor type of bias which is called 

the ’selection bias’. It is formally defined as:

Definition C5.2.2): Selection bias : The difference between the 

expected values of regression coefficients when the data are such 

as to satisfy the condition necessary for the selection of the 

subset X and unconditional expected value of b is called the
i -l

’Selection bias’.i.e.

Selection bias = E(b /subset first selected )- E(b ) (5.2.4)
-l -l

The first term of the above expression is the expected value 

of b^ over all possible Y vectors which would lead to subset 

first being selected. The second term is the expected value over 

all Y irrespective of what subset is selected.

5.3 Some effects of dropping variables:

5.3.1 Effect on estimation of ft:

If some important variables are dropped from the true model
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then the estimator of the parameter becomes biased estimator of

ft. Let us consider the true model as in (5.2.1) and the partition

similar to section (5.2), then

Y - X ft + X ft + s (5.3.1)1-1 2-2

From model (4.3.1), suppose X is dropped out then we have2
Y - X ft + £- t'-i -

The least square estimate of /Ms given by,

b ■ (X’X )"V Y -l ii i -
E(b) - E (X * X' ) _1X * Y),

l l l -
-l.(X’X*) X’ X ft, 11 1 -

(5.3.2)

(5.3.3)

(x’x* rv
4 4 4

(X : X )
4 a <?,

ft 1 X X z

(x’x* rv (X ft + X ft ),
ii i 1-1 2- 2

tx’x’ rv X ft + (X’X • r1 1 2-2

■ ft + (X’X’ )“V X ft ,-1 11 1 2-2
Thus, the least square estimate of ft is obtained by least

squares after deleting X ft is biased by the amount2-2
(X’X*) X’X ft . Below, we give a condition for bias to be zero.11 1 2-2

Suppose X is orthogonal to X such that X’X * 0 2 1 12
Now

X’X - ( X :X )’(X :X ) 12 12
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fX’X X’X ' 11 12

X’X X’X'■2 1 2 2y

fX’X 0 11 1
X’X 2 ZJ

(X’X) =
f(X*X ) 0
[o (X’X ) 2 2

-1

(X’X) X’Y =
f(X’X ) 1 1

(X’X ) 2 2
-1

■v fX’l
i

J

Y,

f(X’X 1 1 rv

(X* X ) X’
• 2 2 ZJ

We know that ,

b = (X’X^X’Y,

'CX’X )_1X’
li l

(X* X )_1X’
2 2 Z'

Y,

'‘b-i
b

'■-2'

Hence
b * (X’X )*X’Y# 
-l lii-
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b = (X’X )*X’Y,
-2 2 2 2-.

and since X’Y = (X’ Y :X’Y).l - 2-

It shows that b is actually same as first p components of
-l

.Thus , if X and X are orthogonal, dropping X does not have any 12 2
effect on b . Of course, such a condition is quite unrealastic.

-i

5.3.2 Effect on estimation of error variance

In this subsection, we discuss the effect of the dropping 

variables on estimation of variance of error. If we exclude the 

variables from the model, the estimate of variance of error

increases. From the discussion in Chapter (I), we have the
2estimator of a based on full model (5.2.1) which is given by

a2 « RSS, / (n-k-1), 
k+i

* (n-k-1 TV’ (I - H)Y ,
where H - XtX’XJ^X’.

Suppose we delete X^ in the full model. Then an estimate of
2
a based on p independent variables is given by

o’ « RSS / (n-p-1), p P
= (n-p-1) 1 (Y -Y JMY-Y ),

- -P - -P

* (n-p~1) Y*Y —2Y*Y +Y Y- - - -p -p-p ,
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(n-p-1 )_1 Y'Y —2Y*X b +b’X’X b
i-i -l 1 l-i

(n-p-1)”1 Y’Y -Y1X (X’X )1X’Y
l ii l -

(n-p-1) V I-H Y.

where H = X (X'X j'V and Y = Xb=HY.
11111 -p i-i l-

The Y is the predicted value of Y based on first P-p

independent variables. Here note that 

tr(I-H ) * n-p-1.

Now

(n-p-1 )~‘e YMI-H ) Y

(n- ( n-p-1)<72 + tr(I-H
l
)(x/mxgrj
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Hence

- (n-p-1) 4j^( n-p-1 Jo'2 +/?’X’(I-H^ )X£

*

E ( a) - a + ( n-p-1 )_1/?’X* (I-H )X(1 (5.3.4)
p i -

and E(<72 ) = o*2 .

It follows that,

E( o'2~<72) = (n-p-1 r^’X’ (I-H )X/?.
p - i -

We know that (I -H ) is idempotent matrix. Therefore1

X’(I-H JX" > 0 for all X . l

Hence,

(n-p-1)*X* (I-H^ )X/3 > 0

From above inquality,

E ( aZ-oZ\ > 0, 
p

E( cfZ)~£iaZ) > 0,
P

E( O'2) > Eto2) (5.3.5)
P

~ 2
The experssion (5.3.5) shows that a is biased estimator of

Z ~2a and equation (5.3.5) shows that E(o ) increases when variables
P

are deleted from the model.

5.4 How many variables in prediction equation ?

If we are planning to use a linear regression equation to 

predict a future observation, we are faced with a problem of 

selecting an adequate set of independent variables to include in
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the equation. Obviously the set of variables should be selected

such that it minimizes the variance of predicted value Y and bias 

of regression coefficents. This idea is used by Groman and Thoman 

(1966). In this section we discuss about the variance of 

prediction.

As pointed out earlier, if some variables are dropped from 

the model, then variance of Y decreases. In this situation a 

question arises as to how many variables should be used for 

prediction. Below, we attempt to answer this question. As usual, 

let
n

Y - (3 +£ n x.+ £ (5.4.1 )o i = 1
The least square estimator of the regression coefficent is,

b = (X*X)4X*Y

Now the predicted vector Y for a given vector x where

X* ■ (1 , X1,X2,...x, )- k

is given by

Y - x* b,

Further,

V(Y ) = V( x’ b),

■ x’(X*X)1X’V (Y)X(X*X)4x,

• aZ x*(X*X)4x.

Now, we find an upper triangular matrix R of order (k+l)x(k+l) by
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using the Cholesky Factorization of X’X such that
-1 -1 -T(X’X) « R R

where the superscript -T denotes the inverse of the transope.

Then it follows that,

V( Y ) - aZ x* (R_VT)x

= aZ x’r'1(x’R_T) ’ (5.4.2)

Note that x’R 1 is a vector of length (k+1) so that the variance 

of the predicted values of Y is the sum of squares of its 

elements.

Now consider Y using only the first p of the X-variables

where p < k. Write X = ( X : X ), where X consists of the12 1
first (p+1) columns of X and X^ consists of the remaining (k-p) 

columns. Then, it is well known that if we obtain the choslesky 

factorization,

X’ X = R’ R li ii

then R^ consists of the first (p+1) rows and columns of R and
“1that the inverse R is identical with the same rows and columns
i

of R 1. If x consists of the first (p+1) elements of x and b is
-l - -l

the corresponding vector of least square estimator of regression 

coefficents for the model with only p variables, we have similar 

to (5.4.2)

V(x’b ) - a2 (x’R_1) (x*R_i) * (5.4.3)
-i-i -it -ii
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From (5.4.3), we see that the variance of the predicted values of 

Y is the sum of squares of the first (p-H) elements which are 

summed to obtain the variance of x’b, and hence,

V(x'b) > Vtx’b ) (5.4.4)
- - -l-i

The relation (5.4.4) shows that, the variance of predicted 

values increases monotonically with the number of variables used 

in the prediction. Suppose if variables are deleted, the variance 

decreases but bias increases. If we consider the model without 

independent variables, the variance of prediction is zero but 

bias is probably large. Thus in such situation, one must seek a 

method to reduce the bias.

5.5 Bias Reduction Methods :

One of the major problems which needs substancial attention 

in subset selection is that of handling bias. Since it cannot be 

made zero, a question arises as to whether it can be reduced 

significantly. Miller (1990) briefly gives some methods of bias 

reduction. We discuss in this section two important methods of 

bias reductions namely (i) Jackknife Statistics and (ii) 

Bootstrap Method.

5.5.1 Jackknife Statistic

Quenouille (1949) introduced a technique for reducing bias. 

The 'Jackknife* procedure is as follows *

Suppose N data points are grouped into n groups of k
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observations each. Let 8 be the biased estimator of 8 based on

all N observations and let 8 , i. = 1,2,...,n denote the estimator. i
of 8 obtained after deleting the i.th group observation. Define

8 — n 8 — (n— 1 ) 8 i = 1,2,...,n.i i
Definition C5.5.1) Jackknife statistic : The Jackknife statistic 

(or esimator) 8 to estimate S is defined as,

Note that

Thus,

- l n
8 = - y an L

i =i

I n
8 = - Y In e - (n-1) 0i u rI ■

l =1 L
- - 1 n „£ = n £ - (n-1 ) — S 8 .

n L ii =i

8 = n 8 - (n-1)8t

where
2 in~
8 m _ Y 8 n L wt=i

The estimator 8 is also called as "First order Jackknife 

estimator" of 8. The Jackknife technique is quite useful in 

subset selection. To see this, as usual consider the linear 

regression model of k variables

Y * Xft + £ . (5.5.1)
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The least square estimator of ft is

b = (X’xTVy
Mow, we consider the subset linear regression model containing p 

C p< k) variables

Y * X ft + £.— i-i —
The least square estimator of ft is— 1

b = IX’X )_1X’Y
-l ill-

The Jackknife estimator for ft is given as follows:”1

Let b be the estimate of ft obtained after recomputing
-1(0 -1

tHb with i pair (Y ,X ) deleted from the sample. Define p as
-1 '.i i

p = n b - (n-1) b i= 1,2,...n
-i -1 -1(0

The average of the p is the Jackknife estimator of ft that is,
„ n
b = I p / n
- l =1 i

The Jackknife estimator b eliminates the nth term from the bias

IGray & Schucany 1972 ) if
r nE (b - /|) = I a / nr for all n ( 5.5.2)

r1*1
Using the above, we get

ECb) - E [ E p./n 
L i=i

= S nb
uiL -1

n-1)b 1
-l<Oj /n

>

- n E (b ) - (n-1) E (b ), -1 -1(0
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n •»

ft +a /n+a /n‘‘+...
-11 2.

= ft +a - a + a /n - a /(n—1) +. ..-1112 2

•ft - a / n(n-l) +0(1 /n2) (5.5.3)
-1 2

On comparing (5.5.2) with (5.5.3), we see that the terms of 
order n 1 in the bias are eliminated, while those of order n 2 

are reversed in sign and incereased very slightly in magnitude.

Miller(1984) used the Jackknifed technique in subset 

selection. The discussion is given below:

Suppose b is the least square estimate of the regression
-i

coefficent for a subset of variables selected using a particular 

procedure such as forward selection. All-subsets, etc. for n 

observations. As seen earlier, this regression coefficent b^ is 

biased because some of the variables are deleted from the model. 

Let b be the least square estimate of the regression-id)

coefficent of ft obtained from (n—1) observations out of the n
-l

observations. Note that sample of (n-1) observations can be

obtained in n different ways by deleting one-out-of the n

observations. Consider all n such samples and apply the same

selection procedure to each selected sample.

Suppose that in m out of the n cases the subset of interest

is selected. Then we can use the m estimators of b for these-i<i>
cases in the Jackknife and average the results. In limited
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simulations, Miller (1984) has shown that the value of m has

usually been close to n and rarely less than n/2. The Jackknife

estimators nb-Cn-1) b may be fairly successful at removing 
-1 -id>

bias but the variance of Jackknife estimates is very large. The 

selection bias may be roughly proportional to n when the

predictor variables are orthogonal and are all equally good 

choices. To eliminate this types of bias, the Jackknife statistic 

is modified as

Below, we illustrate the use of Jackknife technique.

Example C5.5.ID We have generated five sets of random samples 

each of size 30 from N (u,E). where u = (10 15 20 25 ]’ and4 - -

'1 0.7 0.8 -0.5 '
1 0.2 -0.8

1 1-0.1

1
Further, we selected the best subset for each set by using

forward selection method of subset selection. Then, on applying

the Jackknife procedure, the following results are obtained.

Population Sample Jackknife modified Jackknife
regression regression regression regression
coefficients coefficients coefficients coefficients
0.6053 0.588 0.5943 0.6009

0.6842 0.719 0.7104 0.7016

Quite evidently, the modified Jackknife estimators are 'closer*
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to population values.

5. *5. <L The Bootstrap Method : -

Efron (1979) suggested another method for bias reduction 

which is called a "Bootstrap method". We discuss it below: 

Bootstrap method is a resampling scheme in which a one attempts 

to learn the sampling properties of a statistic by recomputing 

its value on the basis of a new sample realized from the orignal 

one. Efron (1979) points out that Bootstrap method is more widely 

applicale that Jackknife.

The general steps involved in bootstrap method are as follows:

Step 1: Resample a bootstrap sample from a given sample, that is 

draw a simple random sample of size n with replacement 

from the data of size n.

Step 2: Caluclate the value of statistic under consideration 

using this bootstrap sample.

Step 3: Repeat the Step-1 and 2 say 'r* times or required number 

of times.

Step 4: Take the average of all bootstrap sample statistics.

Consider the model

Y « Xft + e (5.5.4)

The LSE ft is

b » (X’xTVy (5.5.5)
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Bootstrap method is used in regression analysis as follows:

Step I: Regress Y on Xi,X2,...»Xn such as

Y = Xft + s

Step II: Compute the residual vector

Y -Y i = 1,2.... n. (5.5.6)

where Y denote the predicted value of Y .
i i

Step III: Draw the simple random sample from residual vector
*

e .It is denoted by e
l L

*Step IV: Obtain the Bootstrap observations Y as

Y = X b + e
it i

* *Step V : Obtain the LSE of ft using Y ,say b

(5.5.7)

Where
b* * (X'XrV*

J )
7=1,2, (5.5.8)

Step VI : Repeat the Step III to Step V for m required times.
* * * *

Step VII: Calculate b = [b +b + +b i / m-1 -2 -m
.Mean and variance of Bootstrap estimator:

» -i *Let b = (X*X) X*Y be the Bootstrap estimator of ft when 

the model is Y * Xft + e.

Then,
E(b*) = Ej\x#xrVY*j

* (X*X)_1X*E(Y*),

- (X*X)_1XtXb,
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Thus
E (b* ) - b

Further,

Cov(b*) ■ Cov (X'xTVy* ,

= (X * X) _1X * cov (Y*)X(X’X)-1,

= (X’Xl'V^ X(X’X)-1t

Therefore,

cov(b*) « /(X’X)"1
*

(Since the Bootstrap value e i use in (5.5.7) are

independent with mean zero and variance
„ n
o' - J (Yi-Xib)Z/n.

I =1

The implication that b is unbiased for ft with covariance matrix 
approximetly equal to c2(X’X) *.)

Bootstrap method is used in subset selection as follows:

Step I: Select a subset model from the full model containing k 

variables, such as Y=X ft + s. Suppose selected subset 

model containing p variables be Y * X^ + e.

Step II: Regress Y on X ,X ,...X such as12 p
Y * X ft + s. 

l-i

Step III: Compute the residual vector e 8 Y - Y , 1*1,2,...n.ill
Step IV: Draw a simple random sample of size n from residual

*
vector e . It is denoted by e .i i

151



Step V : Obtain the Bootstrap observations Y as

Y = Y + e
t t i i-1«2«* * *•n#

Step VI: Select a subset of p variables from the modelY x a

Step VII: If the selected subset is same as that selected at

step I. Then obtain the LSE of the selected subset, it 
*

is denoted by b .
ij

Step VIII: Repeat the Steps IV to Steps VI required number of 

times
*

Step IX: Calculate the b by taking avarage of LSE which are1

obtained at step VI.

Below, we illustrate the above procedure.

Example C5.5,2D: We have generated a random sample of size 30 

from multivariate normal distribution hM/Lf,!) where ju and I are 

as given in example (5.5.1). We select a subset from the sample 

by using forward selection method. Compute the residual vector e 

from the selected model. Then draw the 20 Bootstrap sample from 

the original sample e. Fit the model such as,

Y* = Xft + £.

The subset by using forward selection method are selected 

for each sample. Then consider the samples which are selected the 

same subset in original subset and take the average of that 

sample estimators. The average of the ten sample estimators which 

are selected same subset is given below.
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Population
regression
coefficients

Sample
regression
coefficients

Bootstrap
regression
coefficients

0.6053 0.5420 0.5559

0.5841 0.7058 0.6926

In the above discussion, we have seen that if variables are 

dropped from the model then the estimator of parameter becomes 

biased estimator of ft. Now-a-days 'bias’ is an important problem 

in subset selection. Here, we discuss two methods of bias 

reduction with illustrations, namely Jackknife statistic and 

Bootstrap method. The results of these methods show that bias 

decreases. Lastly, we conclude that these two methods are most 

useful for subset selection in regression analysis.
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