CHAPTERS-I1IYVY

OTHER DESCRIPTIVE MEASURES

4.1 Introduction :

In this chapter we introduce some new descriptive measures
.In section (4.2) we describe some new measures of location which
are obtained by combining two measures [ Rattihalli (1996) 1. 1In
section (4.3) we discuss the measure for peakedness introduced by
Paul(1983). This measure is defined even for the distributions
for which moments not exist. Then we discuss some properties of
this measure and obtain measure for crammer density and double
exponential distributions. Generally we say that if +the given
distribution is normal then its kurtosis is definitely equal to
3. Even for a non-normal distribution it may be equal to 3, a
class of such distributions is introduced by Kale and GSebastian

(1996) which we discuss in the last section of this chapter.

4.2 Measures of Location :

In this section we discuss two measures of location which
are obtained by combining the two location measures. et n = mk
and ML be a measure of location based on a random sample of size

k formed by X

-1k+e ? x<t-—1)k+z ?

.. ka ( i=1,2,...,m ).



Further U be a measure of location based on Mt, Hz, . Mm. For

X

example ML be the mean of xci.—nku ’ xct-—nk+2 * e ik

(i=1,2,...,m). and U be the median of H1’ Mz, .. Mm. We shall

refer U as the median of arithmetic means of X . .,
X okez? ---2 X - For simplicity we shall denote it by
MA(X) = U.M(X). (4.2.1)

Similarly we define AM(X) (not mean to arithmetic mean of X

but arithmetic mean of median of X). It is denoted by,
AM(X) = M.U(x) (4.2.2)

Welknown measures of location are also of this form;

i) The sample mean : :'Lth sample is {KL 3}, !1“ be the mean of ith

sample and U is the mean of Ht’s.

=

ii) The sample median : " sample is {X}, M be the median of
ith sample, and U is the median of ML’B.
In general any statistic W of this form can be viewed as
l!'.[L = { Kt } and U = W. These measure satisfy the desired

properties of measure of location.

i) If Y is stochastically larger than X, then ,
U.M(X) = U.M(Y) (4.2.3)

ii) Under change of location or scale,
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T M2 + b) = a UME) + b (4.2.4)

iii} The measure of location change thsz sign under reflection

with respect to the origin, that is it satisfies the condition.

U.M(-%y = -U. M (4.2.5)
To obtain a sample version we have to obtain F~, the

empirical distribution function. Such msasures are used to define

some new measures of symmetry. [ Refer Rattihalli (1986) 1.

4.3 Measure of dispersion :
Let ~w = X,1 = X = ... £ X £ wbe n given numbers, then

the functional,

u(F) = inf { E [W(X) |X - 8] } = E {woo X - 2 | } (4.3.1)
= .

be a measure of dispersion. where W(x) is a non-negative numbers.

Let,

ot

~
D
H

E { WO (X - e | }

o0

= J wix) |x - 5‘ f(x) dx.

[s.¢]

]
J w(x)(@-x)f(x) dx + J wix) (x - 58) f(x) dx (4.3.2)
0 &

il
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Applying Lebnit z rule of differentiation we get,

s ¢]

N "9 ~
w(x) f(x) d=. + J w{x) f(x) dx (4.3.3)
=4

ad
EY=) H(E) = J
-~ 00

If we set this equation is equal to 0 we get,

ted
i

F(s) = J f(x) dx.
0

(¥

f
~
1S

Tf w(x) = 1 then «(F} will be minimum when & - median.

4.4 A New measure for Peakedness :

¥urtoss is used to characterize the peakedness of a density.
Sometimes, the kurtesis does net exist. A natural question in
such a situation is how to measure the peakedness? In this
section we discuss a measure of peakedness which exist for all
densities. The numerical measure of peakedness would be helpful
to make more precise statements about the peakedness of any

distribution. The well known measure of kurteosis is

B, = w s (4.4.1)

2
This measure does not help to make more precise statements
about the peakedness of any density because it does not exist for

the Caushy distribution. A measure for peakedness which exist for



21l symmetric unimodal densities would make comparisons betwesn

densities more meaningful.

Definition C4.4.1) : Measure for peakedness
Let £(.) be a symmetric unimodal (say about 0 ) the density
function, and let F(.) be the corresponding distribution
function. Consider a rectangle in the X-Y plane which is formed
by the following lines:
iYX =0; Y = 0.

11) X = F 1

(p +0.5); Y = £(0) for some O < p < 0.5.
Let us call this rectangle R;(f). The area of this rectangle

is given by ;

A (£) = £(0) Fip +0.5) (4.4.2)

Thuszs, the measure of peakednesss would be the number ;

P
mt (£) = 1 ~ e (4.4.3)

V-
<3

P

where —— is the proportion of area of Rb(f} covered by the

A (0
P

density £(.) A (f) = £00).F H(p +0.5).
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Remark :
1) The area under the density contained in Rb(f)is equal to p for

all £(.).

©

2y If — T is near to 1, then naturally most of the density is

<)

under rectangle Rp(f) and therefore f£(.) is looking rectangle
not very peaked.
Thus we can write,
iy If mtp(f) = o , the density is rectangular.
ii) mtp(f)is not exactly one but near to 1 f(.) locks like spike
with a long tail for all p : 0 < p < 0.5
Thus smallness of p relative to Ab(f) is an indicative of

being more peakedness of density.

Example (4.4.10 :

1) The crammer density is defined as,

2
f(X) - S — w0 < ¥ < W, g8 > 0. (4-4-4)
2(1+81=]|")

= 0 otherwise.

From the density given we get, £(0) = 3/2. Now find

U=FYp + 0.5).



The value of U can be find by solving the following intsgral
as follows;

&

[ o
o 2{1+5x)
That is,
1 1
~———{1—~—~-} = p
2 - 1 + 8y -

Which implies that,

1
1 - = 2p
1 + Zu

or

u = 2p / 2(1 - 2p). (4.4.5)
Thus,

P
Ab(f} R e (4.4.6)

Form (4.4_.2) measure for peakedness for the given density is,

mtp(f) =1 -p/ Ap(f)

Substituting value of Ap(f) from equation (4.4.8) in

(4.4.3), we get,

nﬁp(f} = 2p. (4.4.7)
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Example (4.4.2) ¢ The double exponential (Laplace}

defined as

1

f(x) = = expo { -] = | } -0 < X <
o

= 0 otherwise.

Clearly, £(0) = 1/2. The value of F X(s + 0.5) is
solving the following integral.

u
-%~ Jexpo{-x} dx = p

£

(]
where u = F'(p + 0.5). This gives,

1 u
5 [ expo{-x } } - P

-1 0

Equivalentaly we have,

1 [ 1 - expo { ~u ? ] = p

£

or

u = log[ 1 /7 (1 - 2p)]

Thus,

A (f) = £00).F *(p 10.5)

= 1/ 2 log(l - Z2p)

density is

(4.4.8)

found by

(4.4.9)

(4.4.10)

Therefore from (4.4.3) and (4.4.10) the measure for peakedness is
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m (£) = 1 - p / A (f)
P =

That is,

m (£} = p / 21log(l- Zp). (4.4.11)
Lemma (4.4.1> : The measure nnp(f)for peakedness is free form the
scale.

Proof : Let X be the random variable with density f(x). Consider
the random variable

Y = o X. (4.4.12)

f(y)=1/[of(y/=)1(4.4.13)

Now Erl(p + 0.5) can be obtained by solving the equation,
PlY <t ) =op

That is,

P( X<t/ ) =p

Thig gives,

t o= F;:}L(P + 0.5 ). (4.4.14)

Similarly,



-1

F.lp + 0.5) = t/o.
Qr
o F;l(p +0.5) = t (4.4.15)

Therefore we can write,

1

o B l(p + 0.5) = F,l(p + 0.5) (4.4.16)

Then the measure for peakedness is

P

(py = 1 -
m* 1
&

£00) . F, L (p+0.5)

P

1

Lo g

1

f(O).F;{ (p+0.5)o

p

£(0).F, 1 (p+0.5)

= m (p)

which implies that mtp (£} is free from the scale.

4.5 Non-normal distributions with Kurtosis equal to 3@
In this section we introduce a wide class of non-normal
aymmetrisc digtributions which have hurtcesis 3. Thiz can be

obtaincd by considering a mixture of two symmoiric non normal



densities of which one has kurteosis strictly less than 3 and  of
the other has kurtosis strictly greater than 3. The p.d.f.s can
be very much different from the normal density.This class was
introdiced by Kale and Sebastian (1998). If f(x) and g(x} are two
symmetric distributions with e T yg = 0 and variances u?
GZrespectively, and ﬁz(q) < 3 and Gz(f) > 3. Then there exist a

unique mixture of f and g such that ﬁz(mixture) =3,

Theorem €4.5.12 : Let G be the class of all probability
distribution functions symmetric around 0 and ﬁz < 3. Let F be
the class of all probability distribution functions symmetric
around 0 with 62 > 3. Then for every pair of probability
distribution functions g = G and f = F there is unique « = (0,1)

such that ﬁz(hﬁ) = 3,where,
ha(x) = o g(x) + (1 - a) £(x) (4.5.1)
Proof : Given that F and G are symmetric distributions around

zero. If i and pg are means of F and G respectively ,then, mearn

of ha(x) can be founded as follows :
ha(X) = o g(x) + (1 - a) f£(x)

Taking expectation on both gsides of the above equation, we get,
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E[by(x)] = aE{g(x)]+ (1 - &)E[f(x)]

b

a1 - ae) (4.5.2)

Since dooE M= 0, E[ha(x)] = 0.

Therefore, if Qe be the mean of ha(x), then, Moo= 0. Hence

ha(x) is also symmetric about zero, for all « = [0,1].

Similarly, the variance of

ho(x) = a g(x) + (1 - «a) £(x)

is given as

Z P4 4

o ho(x) = a ::79+ (1 - =) o (4.5.3)

Now the measures of kurtosis for both the distributions F and G

is given by,

() = /o, (4.5.4)
and
5’3’2(1‘} = 3..24/{/"; (4.5.5)

Consider M, of ha(x) distribution ,it can be found as
¢ (h ) = « o (9) + (1 - a) g () (4.5.86)

+ [#3 4

Therefore we can write,
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L) ok .
’ = a2 (3) @ 1 -a) . ;
My (hy = aB () o + (1 VNER O N (4.5.73
Thereforc kurtosis of h (x) = « g{x) + (1 - a) £(x) is given by,

. Cd- ,‘?2<f> G
- — o3 . . + 5.
7, (h.) EACPIC - (4.5.8)

2 2
Lo @ + AL~y @]
g f

Here we are interesting finding @« such that Fz(ha) = 3.
Therefore from the equation (4.5.8)we can write,

+
L -3 fy o
ﬁz £

o (5’2('9') o: + , B w3 (4.5.9)

equivalentaly,

2
o3 (3) cr;+ (1 - @) ﬁz(f)a‘; - s[a cr;+ (1 — a) af]

or

Z
Sf,(a) O+ (1 = @) B ()] - 3[’«* ot (L= e O’f] =0

Solving this equation and and by substituing & = gz/@f we get the
quadratic form

2 z

3(1 - 4%y oF 4 [S(A - 1) 3,085 B () ]cx + [3 : (?Z(f)] =0

(4.5.10)

At @ = 0 from the above equation we get,
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[3 - GZU)] < 0. (4.5.11)
and for 2 = 1, we have,

[3 -6,631 >0 (4.5.12;

Since the equation (4.5.10) is increasing, there is unigue root «

to the above equation in the interval (0,1).

Remark :

The mixing coefficient o« in ha(x) can be obtained from the
{(4.5_.10) equation. For illuatration Kale and Sebastian (15356;
give an example of double gamma probabiliyt density functions.

Consider double gamma probability density functiocn with

f;(x) = I2 r(?)]_lgxlm"“ cxp{-lzlt, e R, p > O. {(4.5.13)

i

How 7 {fp} for thid pdf is given by,
,")Z(fp) VY, (4.5.14;

By cur regular calculations we get,

(AP {24y

(£,) = e (4.5_15)

ToitLvpr

wi

2

For ﬁz(fé) = 3 we get,
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p= (¥ 13 + 1)/2. (4.5.16)

The above pdf an be considered as a mixture of itwo gamme
distributions in equal propertions, one on the positive side and
one on the negative side with the same shape parameter p. Further
Kale and Sebastian (1996) remarks that similar results can be

obtained for the following pdfs:

m (x) = ————"-— {1~ [2|"}, |x] <1, p>0 (4.5.17)

and

g,(x) = <§11i~ [x]7%, |x] »1, (4.5.18)
For the probability density function given in equation

(4.5.17) ﬁz(mp) is equal to 3 when p = V[_Ig - 3 and for the

probability desity dunction given in (4.5.18) ﬁz(gq) = 3 for

*x &k ¥ % ¥
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