
CHAPTER - IV
OTHER DESCRIPTIVE MEASURES

4.1 Introduction :
In this chapter we introduce some new descriptive measures 

.In section (4.2) we describe some new measures of location which 
are obtained by combining two measures [ Rattihalli (1996) ]. In 
section (4.3) we discuss the measure for peakedness introduced by 
Paul(1983). This measure is defined even for the distributions 
for which moments not exist. Then we discuss some properties of 
this measure and obtain measure for crammer density and double 
exponential distributions. Generally we say that if the given 
distribution is normal then it's kurtosis is definitely equal to 
3. Even for a non-normal distribution it may be equal to 3, a 
class of such distributions is introduced by Kale and Sebastian 
(1996) which we discuss in the last section of this chapter.

4.2 Measures of Location :
In this section we discuss two measures of location which 

are obtained by combining the two location measures. Let n = mk 
and H be a measure of location based on a random sample of size 
k formed by X , X(l.l>fc^...... Xfc ( 1=1,2----m ).
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Further U be a measure of location based on M,, M .__ , M . Fori 2 m
example M be the mean of X. _ . X . _ . __ , X.r t <u-l)k+l * <i-i>k+2 * i.k
(i=l,2,... ,m). and U be the median of M , M . ..., M . We shalll z m
refer U as the median of arithmetic means of X. „, ,,a-i>k+i
X(i l)k+2,__ , X<i)k. For simplicity we shall denote it by

MA(X> = U.M(X). (4.2.1)

Similarly we define AM(X) (not mean to arithmetic mean of X 
but arithmetic mean of median of X). It is denoted by,

AM(X> = M.U(x) (4.2.2)

Welknown measures of location are also of this form;

i) Hie sample mean : i sample is {X^ >, ]£ be the mean of i 
sample and U is the mean of M 's. 

ii) The sample median : ilh sample is {Xt>, 14 be the median of 
ith sample, and U is the median of M^'s.

In general any statistic W of this form can be viewed as 
M^ = { X^> and U = W. These measure satisfy the desired
properties of measure of location.

i) If 7 is stochastically larger than X, then ,

U.M(X) < U.M(Y) (4.2.3)

ii) Under change of location or scale,
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U.MCaX + b) = a U.M(X) + b (4.2.4)

iii) The measure of location change the sign under reflection 
with respect to the origin, that is it satisfies the condition.

U.M(-X) - -U.M(X) (4.2.5)

To obtain a sample version we have to obtain EV., the 
empirical distribution function. Such measures ax*e used to define 
some new measures of symmetry. [ Refer Rattihalli (1998) ].

4.3 Measure of dispersion :
Let -as < X < X < ___1 2

the func tional,

f-t (F) = inf { E [W(X) jX - a
Q V.

< X 5 ® be n givenn

|w(X) ix

numbers, then

(4.3.1)

be a measure of dispersion, where W(x) is a non-negative numbers. 
Let,
H(©) = E | W(X) |X ©J |

00
= J w(x) |x - 6| f(x) dx.

e 00
= w(x)(0-x)f(x) dx + w(x) (x - 0) f(x) dx (4.3.2)

-oo J eJ
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Applying Lebnit'z rule of differentiation we get

w(x) f (x) dx. + w(x) f(x) dx (4.3.3)
-00

If we set this equation is equal to 0 we get

F(0) f(x) dx.

If w(x) = 1 then ,u (F) will be minimum when Q - median.

4. 4 A New measure fee. Rsaksdnetss s
Kurtoss is used to characterize the peakedness of a density. 

Sometimes, the kurtosis does not exist. A natural question in 
such a situation is how to measure the peakedriess? In this 
section we discuss a measure of peakedness which exist for all 
densities. The numerical measure of peakedness would be helpful 
to make more precise statements about the peakedness of any 
distribution. The well known measure of kurtosis is

2 (4.4.1)f-i /V-
4 2

This measure does not help to make more precise statements 
about the peakedness of any density because it does not exist for 
the Caushy distribution. A measure for peakedness which exist for
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all symmetric unimodal densities would make comparisons between 
densities more meaningful.

Definition C4.4. l ) : Msaaare. for, psakodness
Let f(.) be a symmetric unimodal (say about 0 ) the density 

function, and let F(.} be the corresponding distribution 
function. Consider a rectangle in the X-Y plane which is formed 
by the following lines: 
i) X = 0; Y = 0.

ii) X = F^(p +0.5); Y = f(0) for some 0 < p < 0.5.

Let us call this rectangle R^ (f). The area of this rectangle 
is given by ;

A (f) = f(0) F X(p +0.5) (4.4.2)

Thus, the measure of peakednesss would be the number ;
p

mt (f) = 1----——— (4.4.3)p A \ I i
P

P
where —— is the proportion of area of R (£) covered by theA < I i pP

density f(.) A (f) = f(0).F^(p +0.5).
p
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1) The area tinder the density contained in R (f)is equal to p forP
all f(.).

p
2) If ——i  is near to 1, then naturally most of the density isA < I >

P
under rectangle R^(f) and therefore f(.) is looking rectangle 
not very peaked.

Thus we can write,
i) If mt^(f) = o , the density is rectangular, 

ii) mt (f)is not exactly one but near to 1 f(.) looks like spikeP
with a long tail for all p : 0 < p < 0.5 
Thus smallness of p relative to A (f) is an indicative ofp

being more peakedness of density.

Rxnmnl e C 4. 4. 15 :
l"-> The crammer density is defined as,

e
f(x) ~-------- --- — OD < X < 00, 6 > o. (4.4.4)

2(1+0 | xj )

-r 0 otherwise.

From the density given we get, f(0) = 0/2. Now find

U = F 1 (p + 0.5).
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The value of U can be find by solving the following integral
as follows;

U &
dx = p

2(1 +0x) 
That is,

1 + ©u

Which implies that,

1
1 - ----- = 2p

1 + ©u 
or

u=2p/©(l-2p). (4.4.5)

Thus,

Ap(f> = (4-4-6)

Form (4.4.2) measure for peakedness for the given density is, 

tt (f) = 1 - p / A (f)p p

Substituting value of A (f) from equation (4.4.6) inp
(4.4.3), we get,

mt (f) " 2p. (4.4.7)p
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Ryarople C4. 4. 2) : The double exponential (Laplace) density is 
defined as

f(x) = — expo | | x | | -oo < x < oo (4.4.8)

- 0 otherwise.
Clearly, f(0) ~ 1/2. The value of F ^(p + o.s) is found by 

solving the following integral, 
u

1-7y- JexpoOx} dx - pO
where u ~ F*(p + 0.5). This gives,

1
2 expo{-x }

-1
u
0 P

Equivalentaly we have,
1 1 expo { -u } j - p

or

u = logj[ 1 / (1 - 2p)j (4.4.9)

Thus,
A (f) = f {0). F~1 (p +0.5)
p

= 1/ 2 log(l - 2p) (4.4.10)

Therefore from (4.4.3) and (4.4.10) the measure for peakedness is
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ns (f)-l- p/A(f)
p p

That is,

ns (f) - p / 21og(l 2p). (4.4.11)P

Lemma C4.4. ID : The measure ns (f)for peakedness is free form thep

scale.
Proof : Let X be the random variable with density f(x). Considez* 
the random variable
Y = <? X. (4.4.12)
Then,

f(y)=l/I>f(yA')](4.4.13)
Now F ^(p + 0.5) can be obtained by solving the equation,

P ( Y < t ) - p 

That is,

P( X < t/o ) = p 

This gives,

t = Fy ^(p + 0.5 ). (4.4.14)

Similarly,
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F~ 1 (P + 0.5) = t/cr.
X

or

<? F-1(p + 0.5) = t
X

Therefore we can write,

o' Fx1(p + 0.5) = F'^p t 0.5)

Then the measure for peakedness is
P

(P) • 1 • -—-------
-~-f (0). F”1 (p+0.5)

(4.4.15)

(4.4.16)

P
= 1 --- -------------- -

-f (0) .Fx1(p+0.5)o-

P
= 1--- -—-----

f ( 0). Fx 1 (p-i 0.5 )

~ mx(p)

which implies that rntp(f) is free from the scale.

4. 5 equal ia 2
In this section we introduce a wide class of non normal 

symmetric distributions which have kurtosis -3. This can be 
obtained by considering a mixture of two symmetric non normal
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densities of which one has Trurtosis strictly less than 3 and of 
the other has kurtosis strictly greater than 3. The p.d.f.s can 
be very much different from the normal density.This class was 
introduced by Kale and Sebastian (1906). If f(x) and g(x) are two 
symmetric distributions with - u ~ 0 and variances of
^ ^_ ;

unique mixture of f and g such that (mixture) ~ 3.

Tlieorem C 4. 5.11 : Let G be the class of all probability 
distribution functions symmetric around 0 and ft < 3. Let F be 
the class of all probability distribution functions symmetric 
around 0 with ft > 3. Then for every pair of probability 
distribution functions g e G and f F there is unique a (0,1) 
such that ft2 (h..) = 3,where,

ha(x) = a g(x) + (1 - a) f(x) (4.5.1)

Proof = Given that F and G are symmetric distributions around 
zero. If ,uf and are means of F and G respectively ,then, mean 
of h-< (x) can be founded as follows :

ha(x) = a g(x) + (1 -at) f(x)

Taking expectation on both sides of the above equation, we get,
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E Vx)j = otE g(x) f (1 ~ «)E f(x)

a /j + (1 - a) ,u f (4.5.2)
9

Since u - p
9'

h (x) = 0.a

Therefore, if ^ be the mean of h^Cx), then, = 0. Hence
ha(x) is also symmetric about aero, for all o< e [0,1].
Similarly, the variance of

ha(x) ~ « g (x) t (1 ot) f(x)

is given as

'Zh> (x) • oi a*+ (1 - «) c-\ (4.5.3)
9 f

Now the measures of kurtosis for both the distributions F and G 
is given by,

ft A 9) = v./o* (4.5.4)2 -4 g

and

'(f) - t~i /a2 4 (4.5.5)

Consider u of h (x) distribution ,it can be found as4 d.

-a w (g) + (1 - «) ^ (f)4 4 (4.5.6)

Therefore we can write
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(4.5.7)K, (h ) -3 exp (g ) O* + (1 - a) PA nor*
*-X 29 2 t

Therefore kurtools of h_ (x) = a. g(x) + (1 -ot) f{x) is given by,

W = ./> -4x’ ■9
< 1 ~ GO / j \ f ) O'_______2______f

2 2 2c d o + < i - oi > a ]
9 f

(4.5.8)

Here we are interesting finding ot such that O (h«) = 3. 

Therefore from the equation (4.5.8)we can write,

< i-on p < f > a
oi (g ) o- + —------ —-----------2 g 2 2 2c a a + < x - ot > o1 3

9' f

- 3 (4.5.9)

equivalentaly,

ap (g) o- + (1 - a) /? (f )< 29 2
/ = o[ 2 2 oi 0 + (1 — «)

or

a/? (9) ® + (19 «) /yO*f
2 2Ol O' -f (1 - Oi ) &.9 *

-t 2
0

Solving this equation and and by substituing A 2 2q/‘*f WS ^t ^ie

quadratic form

3(1 - A2) a2 + 6(A - 1) -pz (9 )A + /?z(f) + (f ) 0

(4.5.10)

At ex = 0 from the above equation we get,
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(4.5.11)[3 - nz(ni < o.

and for ct = 1, we have 

C3 - /\<g)l > 0 (4.5.12)

Since the equation (4.5.10) is increasing, there is unique root « 

to the above equation in the interval (0,1).

Remar k :
The mixing coefficient a in h (x) can be obtained from the 

(4.5.10) equation. For illuatration Kale and Sebastian (1996) 
give an example of double gamma probabiliyt density functions. 
Consider double gamma probability density function with

f (x) p
[2 r (p) ] <p-i> >{- i ■?-1 j R f> (4.5.13)

Now f-i (f ) for thid pdf is given by,2 P

n (f ) x ,
Z p 4 (4.5.14)

By our regular calculations we get:
< 3 + p > ( 2 + p)(f ) .- .------2 p p < 1 + p > (4.5.15)

For f%(fp) x 3 we get,
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(4.5.16)P = (/ 13 + l)/2.

The above pdf an be considered as a mixture of two gamma 

distributions in equal proportions, one on the positive side and 

one on the negative side with the same shape parameter p. Further 

Kale and Sebastian (1996) remarks that similar results can be 

obtained for the following pdfs:

m (x) - —.“ * 1 ~ WP>> M < 1, p > 0 (4.5.17)

and

gq(x) - —1 -. |x| q, }x| >1, (4.5.18)

For the probability density function given in equation 

(4.5.17) ft (m ) i3 equal to 3 when p = / 10 - 3 and for the
2 p

probability desity dunction given in (4.5.18) /\(gq) = 3 for 

q - 3 i -/e .

* * * * *

106


