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CHAPTER - 5

AN ALTERNATE VIEW OF MINIMUM 
ABERRATION CRITERION

5.1 INTRODUCTION

In the previous chapter, we have discussed the minimum aberra­

tion criterion for distinguishing between designs of the same maximum 

resolution. When there are two or more designs of the maximum res­

olution, the minimum aberration criterion picks a design with fewer 

words of the minimum length. If there are two or more designs having 

this property, then among these designs it picks up a design with the 

similar property for the next non - zero wordlength.

When there is no idea about the magnitude of any of the two - 

factor interactions, in other words, when there is no prior knowledge 

about the relative sizes of the two - factor interactions, the experimenter 

will be interested in estimating as many two - factor interactions as 

possible giving equal importance to all the two - factor interactions. 

Note that, as seen in the Chapter 4, if d\ has less aberration than 

^2, then under d\ more two - factor interactions are expected to be 

estimated, because in d\ fewer two - factor interactions are expected to 

be aliased with each other. Thus in the situation described above, the
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experimenter will prefer design d\.

Cheng, Steinberg and Sun (1999) revealed an another interesting 

aspect of minimum aberration design that a minimum aberration design 

maximizes the number of two - factor interactions which are not aliased 

with main effects, consequently making a maximum number of main 

effects estimable. Also they observed that minimum aberration designs 

tend to make the values of the number of two factor interactions in 

various alias sets very uniform in some sense.

Details about these points are discussed in section 5.2, The two 

different criteria : (i) Estimation capacity (ii) the expected number of 

suspect two-factor interactions for assessment of model robustness are 

discussed in section 5.3. It is shown that minimum aberration designs 

are optimal for both of these criteria when the number of significant 

two-factor interactions is not large.

At the end, in Section 5.4, we present survey of current literatures.

5.2 AN ALTERNATE VIEW OF MINIMUM

ABERRATION CRITERION

5.2.1 NOTATIONS AND ILLUSTRATION

In a 2k~p design ’cP of resolution III or higher, there are 2P — 1 of 

the total 2k — 1 factorial effects in the defining relation. The remaining 

2k — 2P effects are partitioned into g = 2k~p — 1 alias sets each of size 

2P and k of these g alias sets contain main effects. Let / = g — k be
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the number of alias sets which do not contain any main effects. Denote 

these alias sets by, M1? M2,Mf, and the k alias sets containing main 

effects by M/+1,..., Mg. For 1 < i < g, let m*(d) denote the number of 

two - factor interactions in M%.

For each design ’ef of resolution III or higher, there are 3Az(d) 

two - factor interactions which are aliased with main effects. This is 

because from each word of length 3 in the defining relation, there are 

(2) = 3 two - factor interactions which are aliases of main effects. (For 

example, if the word ABC is there in the defining relation, then the in­

teractions AB, BC, AC respectively are aliased with the main effects 

C, A and B) Therefore, the total number of two - factor interactions 

which are aliased with main effects is given by,
9
E m,i{d) = 3Az(d) (5.1)

i—f+l
and hence, the number of two - factor interactions which are not aliased 

with main effects is,

(5.2)

EXAMPLE 1: Consider an example of a 26 2 design of resolution III 

with the defining relation.

I = ABE = ACDF = BCDEF

Here 22 — 1 = 3 factorial effects out of 26 — 1 = 63 appear in the 

defining relation and the remaining 26 — 22 = 60 effects are partitioned 

into g = 26-2 — 1 = 15 alias sets each of size 22.
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In this design out of Q =15 two-factor interactions, the three 

two-factor interactions AB,AE, and BE are aliased with the main 

effects E, B and A respectively. Among the remaining 12 two-factor 

interactions, AC is aliased with DF, AD is aliased with CF, and AF 

is aliased with CD. Therefore, the 12-two-factor interactions which are 

not aliased with main effects are partitioned into nine alias sets, three 

of which are of size two and each of the remaining six contains one 

single two-factor interaction.

In this case, g = 15, / = 15 — 6 = 9, and the values of rrii(dys 

are, mi{d) — 7712(d) = 7713(d) = 1,( the corresponding two factor 

interactions are aliased with main effects ) and 7714(d) = 7715(d) = 

7716(d) =2;7717(d) = 7718(d) = 7719(d) = ... = 77112(d) = 1 (the cor­

responding two factor interactions are not aliased with main effects) 

and 77713(d) = ... = 77115(d) = 0. Here A$(d) = 1 and the number of

two-factor interactions that are aliased with main effects is equal to 
9]T) 77ij(d) = 3A$(d) = 3 and of those which are not aliased with main 

*=/+!
/

effects is, mi(d) = 12 = 
i=l

3A3(d) □

In the next section, we discuss an another aspect of minimum 

aberration design.

5.2.2 AN ANOTHER ASPECT OF MINIMUM ABERRATION DESIGN 

In this section we demonstrate that a minimum aberration design 

maximizes the number of two-factor interactions which are not aliased
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with main effects, (equivalently minimizes the number of two factor

interactions which are aliased with main effects) consequently making

a maximum number of main effects estimable; subject to this condition 
9

it minimizes 5^(mi(d)) • I11 other words, minimum aberration designs 
i—1

tend to make the numbers mi(d)’s very uniform and more concentrated 

around their mean. This main result is presented in Theorem 5.1.

The following lemma will be used in the proof of Theorem 5.1.

LEMMA 5.1:

For a 2k~p design of resolution III or higher, the number of words 

of length 4 in the defining relation is given by,

A4(d)
1
6 L 1=1

(5.3)

PROOF:

Let A$(d} i,j) denote the number of words of length 4 in the 

defining relation which include both factors i and j. Since each word 

of length 4 includes Q) = 6 pairs of factors, we get

Md) = l

v i<j

Note that, two two-factor interactions ij and Ik are aliased with 

each other if and only if the word ijlk of length 4 appears in the defining 

relation. Therefore, Ith alias set containing mi(d) two-factor interactions 

generates mj(d) pairs of factors (i,j) (the interaction ij in the alias set 

gives the pair (i,j) ) for which A4(d,i, j) — mi(d) - 1 (obtained by 

taking generalized interaction of ij with the remaining mi(d) - 1 two -
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factor interactions in that alias set). Then, taking the sum of Ai(df i, j) 

over all the alias sets, we get

Ai(d) = i £ At(dtitj) = ~
D 0

- I- g
Therefore, from (5.1) and (5.2), we get

1

£ mi(d)(mi(d) - 1) 
i=i

i=l 1=1

A,(d) 6
EKW)!- (g

□

As a consequence of equations (5.2) and (5.3), we have the fol­

lowing Theorem.

THEOREM 5.1 :

A minimum aberration design of resolution III or higher, maxi-

mizes £ ^(d) (which is equal to the number of two factor interactions 
i=l

that are not aliased with main effects) and among the designs maxi-
/ 9

mizing £mj(df), it mimimizes £(rai(d)) . 
i=1 i=1

PROOF:

From equation (5.2),

£™*(d) = Q -3Az(d)

By definition, a minimum aberration design of resolution III or

higher minimizes A%{d) (the number of words of length 3) hence from
/

above identity it is clear that it maximizes £ rrii{d).
i—1
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Further, subject to the condition that Az{d) is minimum, a mini­

mum aberration design further minimizes the number of words of length 

4, i.e. A$(d). Since from equation (5.3), we have,

A*(d) 1
6 UrrnWf

U=1

it follows that it minimizes 52 (rrii(d))2. □
i=l

REMARK :
g fk\ 9

[1] Since 52 mi{d) = ( J is a fixed number, minimizing 52 (mi(d))2
i=1 W i=1

is equivalent to minimizing the variance among the numbers m*(d), 

i = 1,2Thus, for minimum aberration designs, the numbers 

rrii(d),i = 1,2will have smallest variance and hence are more 

’uniform’ and concentrated around their mean.

[2] In particular for a minimum aberration design of resolution IV,
952 m*(d) = 0 (the number of two - factor interactions that are aliased 

*=/+1
/

with main effects), so that —
i=i \2/

We illustrate the above results with the help of the following

example,

EXAMPLE 2

Let us consider an example of 27-2 fraction. First we find a 

minimum aberration design of resolution Rmax — IV for this fraction 

with the help of algorithm 4.4.1 discussed in section 4.4. Here the word 

length pattern should be of the form W = {uq W2 W12} ■ The word 

length pattern W of a minimum aberration design must satisfy the
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conditions (4.4) and (4.5) discussed in the section 4.3, namely, Y Wi =
i= 1

2p~lk, where m = 2p — 1 and either the w's all are even or exactly 2p~l 

of them are odd. The word length patterns satisfying these conditions
m

are W\ = (4 5 5), W2 = (4 4 6). Here m = 3, Wi > 4 and Ywi = 14
i=l

for both W\ and W2. Further, since W\ has less number of the words 

of length four, it is the best word length pattern of resolution IV. Thus 

the design d\ having the word length pattern given by W\, with the 

following defining relation is a minimum aberration design.

dt: I = ABCF = ABDEG = CDEFG (5.2.1)

Now consider an another design c?2 with the defining relation

d2 : / = ABCD = ABDEFG = CEFG (5.2.2)

For these designs, the complete alias structure is given in Appendix C.

For these designs, g = 31, / = 24.

The vectors m(di) and 111(^2) for these designs (where the ith 

component of m(dj), j = 1,2 is rrii(dj), the number of two factor inter­

actions in the ith alias set, i = 1,2,..., 24) are given by,

For design rfi,m(di) = (2 2211111111111111100000 0) 

For design d2, m(^) = (2 2222211111111100000000 0)

/ 9
For these designs Y mi(d) and Y(mi(d)) are respectively given in the 

i=1 i=1
following Table 5.1.
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T&ble 5.1

di d2

Y,mid)
i=1

21 21
g

E mid)2
i=l______

27 33

According to the above discussion, since design di is a minimum
/

aberration design, it should maximize E mi(d) and among the de-
i=l

/
signs having the same maximum value of E mid), it should minimize

i=l
g
Ylimid))2- This expected behaviour of d\ is reflected in the Table 5.1. 
i—l

i.e. E midi) = E midt) = 21 and Yimidi))2 < EC™^))2- □

The next section deals with some criteria for assessment of model 

robustness.

5.3 SOME CRITERIA FOR ASSESSMENT OF

MODEL ROBUSTNESS

In this section, we discuss two - different criteria for assessing the 

idea of model robustness : i) Estimation Capacity ii) The expected 

number of suspect two - factor interactions. These concepts are dis­

cussed in more detail in the following subsections.
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5.3.1 THE CONCEPT OF ESTIMATION CAPACITY

If all the effects included in a model are estimable under a design 

5gP, then the model is said to be estimated by the design 5gP. For any 

1 < n < Q), let En(d) denote the number of models containing all 

main effects and exactly n two-factor interactions that are estimated 

under design 5gP. Note that any two factor interaction that is aliased 

with a main effect is not estimable. In a design ;gP, there are / alias 

sets which contain no main effect. From one such set at most one two 

factor interaction can be estimated. Therefore, at most /-two factor 

interactions are estimated under design ’gP and for n > /, En(d) = 0.

Let us try to enumerate the number of models containing all main 

effects and exactly n two factor interactions that can be estimated under 

design ’gP. Note that from one alias set (containing at least one two - 

factor interaction ) only one two factor interaction can be estimated. 

Therefore, for estimating n (n < /) two-factor interactions we need n 

alias sets. Consider the n alias sets namely, if1, if1,..., if4 set out of the 

/ not containing main effects such that each of them contains at least 

one two factor interaction. We are to select one two - factor interaction 

from each of these alias sets. Note that the if1 alias set contains 

two factor interactions. Therefore, there are (d) ways in which a two 

- factor interaction can be selected from the if1 alias set, j = 1,2,..., n. 

Hence the total number of models that are estimable under d, which 

include all main effects and exactly n - two factor interactions is given
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(5.4)
by,

EM = £ ft mM, if n<f

In particular, for n = 1, this gives, 

f fu\
Ei(d) = £ mi{d) = I ) - ZA$(d) (by equation (5.2))

i—1 \2/

Note that, there are in all (*) = = u (say) two factor

interactions. Out of these we can choose exactly n of them in ways. 

Thus, the total number of models that include exactly n two-factor 

interactions is (“), and En(d) out of them are estimable under d.

Thus,
E'M = ^ (5-5)

is the proportion of models containing exactly n two-factor interactions 

that are estimable under d. The vector E (d) — (£j[(d), £^(rf),..., E'n(d)) 

is defined to be the ’Estimation Capacity’ of the design ’cf.

Note that, for a design d, it is desirable that every component 

of the vector of estimation capacity should be as large as possible. 

Therefore, we have the following definition.

DEFINITION 5.1 :

For any two designs di, d<i, if E'n{di) > En{d2), for all n, with strict 

inequality for at least one n, then the design d\ is said to dominate d% 

with respect to the estimation capacity. □
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We discuss here a sufficient condition for a design d\ to dominate 

an another design The concept of majorization discussed below, 

is used for developing the condition. A detailed discussion about ma­

jorization can be found in Marshall and Olkin (1979).

5.3.2 THE CONCEPT OF MAJORIZATION 

DEFINITION 5.2:

A vector x = (xi,X2, ...,£*) is said to be majorized by another
t t n

vector y = (yu 2/2, ...,1ft) if and only if £ = £ Vi and £ x$ >
i=1 *=1 i=l

n
£^j], for all 1 < n < t — 1, where < Xj2] < ... < x^ and 

y[i] < V\2] < < y\t) are the ordered components of x and y. This

is denoted by x -< y. □

e.g. Consider the two vectors x = (| | 0 0 0) and y = (1 0 0 0 0).
5 5

Prom definition, we have £ a:< = £ Vi = 1. For 1 < n < 4. The corre-
*=1 i=l

sponding vectors with the components ordered in ascending order are
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E Si > E Vi and for 1 < n < 4, E *[i] > E V\i] y.
i=l i=l i=l i=l

DEFINITION 5.4:

A real valued function / of x is called Schur Concave, if x X y

=> /(s) > /(y)- D

DEFINITION 5.5:

Sn(x) is called the elementary symmetric function of aq, #2, •••, 

if

$»(*) = E ft ^ (5-6)
i=l j=l

i t
In particular Sq(x) = 1 Si(x) = E S^Oz) — E O

i=l i

Before proving the main result, we list certain lemmas (without 

proof) from Marshall and Olkin (1979), which are used in the seqnel. 

LEMMA l: (cf. Theorem A.8, Marshall and Olkin (1979), p.59)

A real valued function / satisfies, x <w y => /(x) > /(y) if and 

only if / is non - decreasing in each argument and Schur Concave. □ 

LEMMA 2: (cf. Proposition F.l, Marshall and Olkin (1979),p.78)

The function Sn (defined in (5.6)) is increasing and Schur Concave 

on 3^ = : {(ari,a:2> •••?£t) : x« > 0 V«}^. If n ^ 1, Sn is strictly

Schur Concave on 3fi$.+ = ($&++ : {(^1,^2, ...,£*) : Xi > 0 V?}^, □
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5.3.3 CONDITION FOR DOMINANCE

In the following theorem, we present the main result of this sec­

tion which gives a sufficient condition for a design d\ to dominate an 

another design Gfo- 

THEOREM 5.2 :

If m(di) is upper weakly majorized by 111(^2) and m(di) can not be 

obtained from m(c^) by permutting its components, then d\ dominates 

c?2 with respect to the criterion of estimation capacity.

i.e. m(dt) <w m(d2) => E'n(di) > E'n(d2) V n = 1,2,..., /

PROOF;

By Definition 5.5 and from equation (5.4), it follows that En(d) 

is nth elementary symmetric function of m(d) = (mi(d),rrif(d)) and 

non-decreasing in each component of m(d), for all n = 1,2,/. There­

fore by Lemma 2, the function En(d) is Schur Concave.

Therefore from Lemma 1, En(d) satisfies,

m(dr) m(d2) => En(di) > En(d2) V n = 1,2,..., /.

=» E'n(di) > E’n(d2) V n = 1,2,...,/. (by equation (5.5))

Hence by definition 5.1. d\ dominates d2. □

The following example illustrates the result of the above theorem.

EXAMPLE 3

We now reconsider the designs (5.2.1) and (5.2.2) discussed in the 

previous section 5.2.2. Here g = 31 and / = 24. The vectors m(d*),
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i = 1,2 are

m(rfi) — (2 2211111111111111100000 0)

m (d2) -(2 2222211111111100000000 0).

Note that, here under design di, the 21 two factor interactions are

distributed among 18 alias sets, fifteen of the alias sets contain a single

two factor interaction and three of the alias sets contain two two-factor

interactions each. Under design d2, the 21 two factor interactions are

distributed among 15 alias sets, nine of the alias sets contain a single

two-factor interaction and six of the alias sets contain two two-factor

interactions each.
24 24

We have Y mi(di) — Y rrii{d2) = 21. The corresponding ordered 
i=1 i=1 *

vectors m0(di) and m0(d2) are,

m0(di) -(0 0000011111111111111122 2) 

m 0(d2) -(0 0000000011111111122222 2).
n

Prom this, it is easy to see that for 1 < n < 23, Y m{i\(di) >
i=1 n

Ym\i](d2)- Therefore by definition 5.3, m{d\) is upper weakly ma-
i=1
jorized by 111(^2) i-e- m(di) -<w mfe)- Then from Theorem 5.2. we 

get,

E'n{di) > Efn(d2) V n = 1,2,...,24. (5.3,1)

Therefore design di dominates design d2 with respect to the estimation 

capacity. The actual values of E’n{d) for the designs d\ and d2 are 

displayed in the Table 5.2.
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Table 5.2

di d2

Y,m{d) 21 21
2=1
E WiM2 27 33
2=1

Bi(d) 1 1

E'^d) 0.9857 0.9714

m) 0.9571 0.9143

vm 0.9148 0.8311

E'm 0.8596 0.7268

Em 0.7932 0.6086

E'M 0.7174 0.4851

sm 0.6742 0.4000

Em 0.5847 0.2569

EUd) 0.4585 0.1665

E'n(d) 0.3712 0.1658

E[m 0.2888 0.0497

E[m 0.2125 0.0367

E'uid) 0.1464 0.0066

E[m 0.0919 0.0012

E[m to Eim
= 0

Here we observe that E'n(di) > V n = 1,2,24, as expected.
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Thus with the help of Theorem 5.2, two designs d\ and d,2 can be 

compared based on the values of Wi(<i)’s i = 1, 2Further using 

this condition inferior designs i.e. those which are dominated by others 

can be eliminated.

In liujS of definition of weak majorization, Chen, Steinberg, and j

Sun further comment that a design has large estimation capacity if 
/

TUi(d) is as large as possible and the mj(d)’s are as uniform as pos-
i=l
sible. Thus, Theorem 5.1 and 5.2 together imply that a minimum 

aberration design should have maximum estimation capacity.

In the next section we discuss an another criterion of the expected 

number of suspect two-factor interactions.

5.3.4 THE CONCEPT OF THE EXPECTED NUMBER OF 

SUSPECT TWO-FACTOR INTERACTIONS 

In Section 5.3.1, we have discussed the concept of estimation ca­

pacity. Now we focus on an another criterion ’the expected number of 

suspect two-factor interactions.

In a 2k~p fractional design d, there are 2k~p - 1 set of alias sets.

If the magnitude of the contrast associated with an alias set is large, 

then it indicates that one or more effects belonging that particular alias 

set are significant. However, it can not be decided which of the effects 

belonging to that alias set is significant. Usually, the lower order effect 

belonging to the alias set is assumed to be significant effect. Under this 

assumption, main effects are more likely than two-factor interactions,
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two-factor interactions axe more likely than three factor interactions 

and so on.

Suppose there is a two factor interaction which is aliased with a 

main effect. If the contrast associated with this alias set is significant 

then according to the above principle, we will declare that the main 

effect present in this alias set is significant. Even though in reality, 

the two factor interaction aliased with this main effect is significant, 

its significance can not be identified in this situation. This two-factor 

interaction will be said to be a ’’suspect” two-factor interaction. Similar 

thing can happen if more than one two-factor interactions (and no main 

effect) axe aliased with each other and the contrast associated with 

this alias set is significant. In such situation, it can not be identified 

that which of them is significant. Then all the two factor interactions 

belonging to this alias set will be called as ’’suspect”.

DEFINITION 5.6

If the two factor interactions that are not clear, that is, they axe 

either aliased with main effect or with another two factor interactions 

and after analysis the contrast associated with this alias set turns out 

to be significant, then that two factor interactions axe called as suspect 

two factor interactions. □

Next, we obtain the expected number of suspect two-factor inter­

actions in a 2k~p fractional design.
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The Expected Number Of Suspect Two-Factor Interactions

In a 2k~p fractional design d, there are in all (fj) = k^k~^ = u (say) 

two factor interactions in alias sets. Suppose that there are exactly 

n-significant two-factor interactions. Let Ith alias set contains m-two 

factor interactions and no main effect. The remaining (u — m) two 

factor interactions are distributed in the (t — 1) alias sets. Let P(m, n) 

denotes the probability that the contrast associated with Ith alias set 

with m-two factor interactions is large (significant). Then P(m,n) is 

given by,

P(m, n) = 1 - Pr the contrast associated with this alias set with m-two 

factor interactions is not large 

= 1 - P(A) (say)

Note that the event A means that the n- significant two factor inter­

actions all come from the remaining (u — m) two factor interactions 

distributed in other (t — 1) alias sets. Noting that , there are in all 

u two factor interactions, out of these we can choose n-two factor in­

teractions, in ways and out of (u — m) two factor interactions, we 

can choose n- significant two factor interactions, in (^~m) ways, the 

ratio (“;”>)/(:) is the probability that the n significant two factor in­

teractions belong to the set of remaining (u—m) two factor interactions 

distributed in (t—1) alias sets. In other words, it is the probability that 

the contrast associated with Ith alias set with m-two factor interactions
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is not large. Then 

P(ra, n) = 1

= 1- 

= 1

(“D

(u-n)(u-n~ 1) ... (w-n#m +1)
u{u — 1)

=){' ”
(u- 1),

(u — m + 1)

... [l n
(u — m + 1) J

(5.7)

Let the expected number of suspect two factor interactions in a 

design d when it contains exactly n significant two factor interactions, 

be denoted by Sn(d). Note that, for each design d of resolution III or 

higher, there are 3i43(d) two factor interactions which are aliased with 

main effects. Also there are / alias sets that do not contain any main 

effect but have one or more two factor interactions. According to the 

definition 5.6, if any of these contrasts turns to be significant then all 

the m-two factor interactions belonging to that set should be declared 

as suspect interactions. Therefore Sn(d) is given by,

Sn(d) = 3 Az(d) + £mi(d)P(mi(d),n)
i=l

(5.8)

Provided that the fraction (n/u) significant two-factor interactions is 

not too large, P(m,n) The proof is given in the Appendix C.

Then,
fi f

Sn(d) ^ SAz(d) + - 52 m(d)2 (5.9)
u i=l

This result is exact if n = 1. i.e.

Si(d) = 3Md) + - E rm(d)2
1

121



Thus from Theorem 5.1, a minimum aberration design minimizes 

the expected number of two-factor interactions when n is small.

Therefore with respect to the expected number of suspect two- 

factor interactions, we have the following definition for the dominance 

of design d\ and c^.

DEFINITION 5.7

If Sn(di) < Snidt^) for all n with strict inequality for at least 

some n, then a design d\ is said to dominate d^ with respect to suspect 

two-factor interactions. □

The following theorem gives a sufficient condition for dx to dom­

inate g?2 with respect to the expected number of suspect two-factor 

interactions.

THEOREM 5.3

For each design d, let a(j, d) denote the number of alias sets that 

have j two factor interactions and no main effects. If

Ei4rfi) > £
j=i j=i

for all h = 1,2,w, where w is the size of the largest alias set under 

either design, and strict inequality holds for at least one h, then d\ 

dominates d<i with respect to the expected number of suspect two-factor 

interactions.

PROOF Suppose that there are n significant two-factor interactions.
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Then by equation (5.8) the criterion value for design d*, i = 1,2 is

Sn(di) = SA3(di) + J2 ja(j,di)P(j,n),
i=i

where P(j, n) is defined in equation (5.7). Constructing a vector V'(dj) 

for i = 1,2, of length u such that the first a(l,di) entries are P(l, ft), 

the next 2a(2,dj) entries P(2, ft), the next 3a(3,d*) entries P(3,n), etc. 

and the last SAz(di) entries are all 1. Then Sn(di) is the sum of all the 

entries of V(di). Under the given conditions, since P(j, n) is increasing 

in j, the entries V(d2) — V(d\) are all non-negative and at least one is 

non-zero. Hence Sn(di) < Sn(d2) for all n with strict inequality for at 

least some n. □

REMARK :

w k(k — 1)
1. jat?> di) = ——-------3Az(di), since for a design di of resolution

j=i 2
III or higher, there are in all ^wo factor interactions and

3Az(di) two factor interactions v/hich are aliased with main effects. 

Hence the two-factor interactions which are not aliases of main 

effects are given by this equation.

EXAMPLE 4

We now reconsider example 5.3.1 with the designs (5.2.1) and 

(5.2.2) discussed in Section 5.2.2. Here g = 31 and / = 24. The 

vectors m(di) and m(c?2) for these designs (where the ith component 

of m(dj), j = 1,2 is mi(dj)y j = l,2,z = 1,2,..., 24) are given by 

m(tfi) = (2 2211111111111111100000 0)
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m{d2) = (2 2222211111111100000000 0). 

The expected number of suspect two-factor interactions Sn(d) by equa­

tion (5.Cg) for design d\ and d2 are displayed in the Table 5.3.

Table 5.3

di d2 di d2

Si(d) 1 2 Sn(d) 13 14

S2(d) 3 3 Su(d) 14 15

S»(d) 4 5 Sa(d) 14 16

S4(d) 5 6 Su(d) 15 17

St(d) 6 7 Su(d) 16 18

St(d) 7 9 Sw(d) 17 18

S7(d) 8 10 Sn(d) 18 19

S»(d) 9 11 Sa(d) 19 20

S9(d) 11 12 S19(d) 20 20

Sio(d) 12 13 Sx(d) 20 21

Sn(d) 21 21

Here we observe that Sn(di) < Sn(d2) V n = 1,2, ....24 as ex­

pected. Thus the design d\ dominates design d2 with respect to the 

expected number of two factor interactions.

In the next section , we present the summary of current litera­

tures surveyed.
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5.4 SURVEY OF CURRENT LITERATURE

In this section, we summarize the current available literatures 

regarding the minimum aberration criterion. Due to lack of time and 

space, we could not discuss these results in detail. First we give an 

outline overall of the reviewed literatures and in the next section give 

a detail summary of each article reviewed.

5.4.1 OUTLINE

As discussed in section 4.3., when there is a very little aprori 

knowledge about the relative sizes of factorial effects, a minimum aber­

ration criterion selects designs with good over all properties. Franklin 

(1984) extended this criterion to sk~p fractional designs, where s is 

prime power. Also he presented some tables of minimum aberration 

designs. Chen and Wu (1991) constructed minimum aberration 2k~p de­

signs for p < 4 and found that such designs have a periodicity property 

when k is large and p is fixed. Theoritical characterizations for mini­

mum aberration designs were obtained by Chen (1992) for s = 2,p = 5. 

Using an efficient computational algorithm, Chen, Sim and Wu (1993) 

compiled a catalogue of regular fractions which are good under the 

criterion of minimum aberration. This catalogue incorporates in par­

ticular, minimum aberration designs for s = 2 and 3. H. Chen and 

Hedayat (1996) proposed the weak minimum aberration criterion i.e. 

a modified version of minimum aberration criterion and obtained some 

interesting results.
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In several other situations, the theoretical study of minimum 

aberration can be facilitated by expressing the wordlength pattern of 

regular fraction in terms of the complementary set. These concepts are 

developed by Chen and Hedayat (1996), Tang and Wu (1996) and Suen 

et.al.(1997), Wu and Zang (1993) extended the idea of minimum aber­

ration designs to the method of grouping. Using this approachSuen, 

Chen and Wu (1997) constructed several families of 2k~p designs with 

minimum aberration.

5.4.2 SUMMARY OF LITERATURE SURVEYED

[1] Franklin M. F., ” Constructing Tables of Minimum Aberration

pn~m Designs”, Technometrics .

Franklin (1984) presents some simple results that enable to im­

prove the Fries and Hunter algorithm so that they are suitable for a 

wider range of k and p. Some of these results are applied to general 

sk~p designs, s is prime > 2 and therefore they enable the algorithm 

to be extended beyond two-level designs. He defined a class of min­

imum variance designs ( i.e. a design which maximizes first moment 

and minimizes the second moment) and also optimal moments designs 

belonging to such class. Further, he suggested that minimum aberra­

tion designs have minimum variance among the defining contrast word 

lengths. Using this information he presents generators for a wide range 

of 2k~p designs that have minimum aberration or optimal moments and 

also for designs with factors at three levels. He outlined a procedure
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for determining confounded effects.

Here, we focus on a criteria for selecting best designs, termed as 

optimal moments and a step by step procedure to select a best design.

To choose a good design it is important to minimize the number 

of defining contrasts of smaller lengths. Franklin (1984) suggested the 

following procedure for selecting a best design.

Step 1 : First, consider the designs with same maximum resolution 

R, from these designs select those which have the smallest mean length 

w.

Step 2 : From these, select those designs for which the variance of 

Wi is minimized.

Step 3 : Among the designs satisfying the conditions of Step 1 and 

2 above, further , select those designs for which the W{ have maximum 

positive skewness.

Continue in this manner as far as necessary, maximizing odd mo­

ments and minimizing even moments, so he defines the following crite- 

rions.

DEFINITION 1: Let d\ and be two sk~p fractional factorial de­

signs. If to = r is the first moment such that Mr(d\) / Mr{d2) 

and Mr(di) > Mr(d,2) then d\ is better than d% when r is odd but 

d2 is better than d\ when r is even. If no other sk~p fractional fac­

torial design has better moments than di, then d\ is said to have 

optimal moments. □
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DEFINITION 2 : A sk~p fractional factorial design is a minimum vari­

ance design if it maximizes the first moment M\(d) and minimizes the 

second moment M2(d). □

He derived formula for rth moment as,

Mr(d) = E fAj(d)
3=1

= EW, r = 1,2,...
r

where Aj(d) be the number of words of length j in the word length 

pattern W{d).

AN EXAMPLE : Let d\ and d<i be 27-2 designs of resolution R = IV 

with the defining relation.

di : / = ABCF = AD EG = BCDEFG ]
(<*)

d2:1 = ABCDF = ABC EG = DEFG I

The corresponding word length pattern is given as,

W(d1) = (0 2 0 1 0) and W(d2) = (0 1 2 0 0).

Since A^{d\) > A^d^), then by definition of minimum aberration cri­

terion, the design d2 has less aberration than d\.

The magnitude of moments for designs d\ and d2 are,

Mi(rfi) = 3, M2{dl) = 68 and Mi(d2) = 3, M2(d2) = 66

Prom definition, M2{d\) > M2(d2), hence d2 has better moments than

d\.

Thus, from both criteria, minimum aberration and optimal mo­

ments, design d2 in (a) is the optimal 27-2 design.
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[2] Chen and Wu (1991), ” Some results on sn k fractional factorial 

designs with minimum aberration or optimal moments” , The Annals 

of Statistics.

Chen and Wu (1991) studied some periodicity properties of max­

imum resolution , minimum aberration criterion and optimal moments 

for sk~p designs with large k and any fixed p.

Let Rs(k,p) denote the maximum resolution of an sk~p design. 

Define the m — lag(W, m) = (0 0 0... 0, w) where w is preceded by
m

m zeros. Chen and Wu (1991) studied the following properties :

A : Periodicity property of maximum resolution :

(i) For any sk~p fractional factorial design d\ with the word length 

pattern W1; there exists an 5(*+(aP-~)/(s-1))-J> design d2 with the word 

length pattern W2, such that W2 = lag(W, s^1).

(ii) R3((k + (sp - 1 )/(s - 1)) -*zp,p) = Rs(k,p) + a*-1.

(iii) For any fixed p, there exists a positive integer Np, such that for

k > Np, R8^p) - Rg(k,p) + sp~x} * - k+ Uf-i )/$ -o

B : Periodicity property of minimum aberration criterion :

(i) For any fixed p, such that there exists a positive integer Mp, such 

that for k > Np, the minimum aberration property is periodic, that is, 

if a minimum aberration sk~p design has wordlength pattern W, then 

there exists a minimum aberration design 5(fc+(*p-!)/(*-i))-? with the
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word length pattern lag{W, s^-1).

C : Periodicity property of Optimal moments :

(i) For any optimal moments [ Franklin (1984) ] sk~p design d\, there 

exists an optimal moments a(*+(«,,-i)/(*-i))-j> design g^, which has the 

same central moments as d\.

Chen and Wu (1991) comment that the periodicity property of 

resolution does not hold for p > 5. Further, they give a characterization 

of a minimum variance sk~p design. A minimum variance design is a 

special case of an optimal moments design.

[3] J. Chen (1992) ” Some results on 2n k fractional factorial designs 

and search for minimum aberration designs”, The Annals of Statistics.

Chen (1992) obtained minimum aberration 2k~p designs for p = 5 

and for any k. He suggests the following new method to present a defin­

ing relation. Using this new presentation, he obtains some properties 

of 2k~p fractional factorial designs.

Method :

First construct a matrix 'H' as ,

vB* BtB )

where Ip\spxp identity matrix, b is apX (2P — p — 1) matrix containing 

all distinct and non-zero linear combinations (modulo 2) of column 

vectors of Ip , Bl is transpose of B. In matrix H , when 0’s are replaced 

by -1 and 0 row and 0 column are added then a Hadamard matrix of 

order 2P is obtained whose rows form a group under summation modulo
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2 and a similar result holds for columns.

Denote the rows of H by w1} u2) ...,u2P-i. To define 2k~p fractional

design, divide k letters into 2P — 1 sets, namely ti,t2,t2p-\. Let fi be
2P-1

the number of letters in the ith set such that J2 — Then each row
Z=1

vector u„', j = 1,2, ...2P — 1 of matrix H forms a word Wj. The word 

Wj is obtained by combining all the letters in those sets for which the 

components of Uj is equal to one. Then (if, /) denotes a design, where 

/ — (A h ■■■fw-i) is the frequency vector of the design.

For example : Consider a 25“2 fractional design with k = 5 factors 

namely, A, £, (7, DandE, p = 2 and 2P — 1 = 3. Then the matrix H is ,

H

(i 0 1\ 

0 1 1

\1 1 0/

The five letters are divided into 3 sets ti,t2, £3. Let us assign A, B to 

fi, C,D to t2 and E to t$ respectively. Therefore the frequency vector
>x-3

f = (2 2 1) which satisfies T, fi = k = 5. Let, consider a row vector 

u\ — (1 0 1) which forms a word W\ = ABE, similarly from other 

rows, we get W2 = CDE and W3 = ABCD. Hence the defining relation 

for this design is, I = ABE = CDE = ABCD.

With this representation , they found a simple expression for the 

moments of 2k~p designs d. The mth moment of a 2k~p design is given 

as,

Mm=\\ YrfjVj ||ro
i
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where || v ||m= Ylvim> v = (vi v2 • •'^2?-i)*, Vj are column vectors pf 
i

H.

He proves that ” a 2k~p fractional factorial design (if, f) has min­

imum variance if and only if fj = 1 or q + 1 for all j, where q is 

determined by k = q(2p — 1) + r) , where 0 < r < 2P — 1.

They also obtained the following properties of the second moment of a 

2k~p fractional factorial design.

I. ” For any 2k~p fractional factorial design, its second moment is di­

visible by 2P~U.

2. ” Let v be the second moment of a minimum variance 2k~p design, 

M2 — 2P~2 Ylfj+k2 be the second moment of any 2k~p design d and

let

M2 — v = m2p~

Then the length L of the longest word of d satisfies L < q2p~1 + r' + m 

where k = q(2p — 1) + r) , where 0 < r < 2P — 1 and r' = min{r, 21’-1}”.

3. Any 2k~p fractional factorial design with minimum aberration is 

uniquely determined by its wordlength pattern when p = 3,4.

Furthermore, he suggests a method to test the equivalence of frac­

tional factorial designs and proves that minimum aberration designs for 

p < are unique. A relation between 2k~p and 2^k+l^~p designs is given 

below. ” Suppose a 2k~p fractional factorial design d\ has resolution R, 

and Ar{d\) is the first non-zero component of its wordlength pattern. 

Then there exists a 2^k+1^~p design di with Ar{d2) < (l/2)Ar(di), and
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Ar{d2) is the first possible non-zero component of its word length pat­

tern” .

[4] H. Chen and S. Hedayat (1996) ” 2n 1 designs with weak

minimum aberration ”, The Annals of Statistics.

In (1996) Chen and Hedayat proposed the weak minimum aber­

ration criterion which is a modified version of the minimum aberration 

criterion- They construct 2k~p fractional factorial designs of resolution 

with weak minimum aberration by using finite geometry. Also they ob­

tained several families of 2k~p fractional factorial designs of resolution 

III and IV with minimum aberration criterion.

The concept of weak minimum aberration is a natural and useful 

modification of minimum aberration and is defined below.

DEFINITION : A 2k~p fractional factorial design with maximum reso­

lution Rmax is said to have a weak minimum aberration if it has the 

minimum number of words of length Rmax-

They also studied the relationship of word length patterns be­

tween fractional factorial designs and their complementary designs in 

the whole factorial.

[5] WU1, H and WU2, C.F.J. (2002) ” Clear Two - Factor Inter­

actions And Minimum Aberration ”, The Annals of Statistics.

H. Wu and C.F. Wu (2002) developed a method to examine 

whether a given design is a MaxC2 design where a MaxC2 design is ■ 

a design containing maximum number of clear two-factor interactions
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(i.e. those two factor interactions which are not aliased with any main 

effects or other two-factor interactions). In particular they proved that 

all minimum aberration designs with resolution IV are MaxC2 designs 

(except in six particular cases given by them). First they develop a 

graphical representation and classification of length 4-words. With this 

representation of designs , they obtained bounds for the number of clear • 

two-factor interactions and reduced the search for designs to a much 

smaller set. Together with combinatorial and group theoretic argu­

ments , they proved some known and some new designs to be MaxC2 

designs.
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