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CHAPTER - 1

FACTORIAL EXPERIMENTS

11 INTRODUCTION

When many factors influence a character under study, it is always 

desirable to test different combinations of factors at various levels. Such 

experiments are called factorial experiments. Factorial experiments are 

widely used to study the joint effect of many factors on a response.

Prior to 1926, a factorial experiment was called as a ’complex 

experiment’. Fisher and Yates have developed and anaylzed the fac­

torial experiments. Besides them , Barnard (1936), Bose (1938, 1942, 

1947 etc.) Cochran and Cox (1959), Kempthrone (1952), Fedrer (1955) 

among the others have contributed significantly. A systematic devel­

opment of this topic is available in the books by Kempthrone (1952), 

Fedrer (1955), Cochran and Cox (1959), John (1971), Ogawa(1981), 

Das and Giri (1979), Fedrer, Hedayat and Raktoe (1981), Montogo- 

mory (1984), Wu and Hamada (2000).

In full factorial experiments, all combinations of levels of all fac­

tors are considered as the treatments. If many single factor experi­

ments are carried out varying the levels of only one factor at a time 

and keeping the levels of other factors fixed, it will not be possible to es-
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timate interactions among different factors. Also the procedure is more 

expensive and time consuming and requires more resources. On the 

other hand, factorial experiments are very economical, speedy and pro­

vide a more reliable result with less experimental material and enable 

to estimate the interactions between the factors.

If all the factors have same number of levels, then it is called a 

symmetric factorial experiment, otherwise it is called an asymmetric 

factorial experiment. If there are k factors each at 2 levels then it is 

called by a ”2* experiment”.

In general for a sk factorial experiment, there are k factors each 

at s levels. The levels are denoted by the integers 0,1,2,. . ., a — 1 and 

the factors are labeled A,B,C, ... or 1,2,3, . . .. The treatment 

combinations consisting of the level xi of A, the level X2 of B, the level 

#3 of C, ... is denoted by (fl If2 &3 dx4, . . or by ( Xi X2 £3 . . .

£*:), where X\ X2 £3 . . . are all integers taking values between 0 and

s-1. If all XiS , i — 1,2, ...,fc are zero, then the treatment combination 

is denoted by 1. In all there are sk treatment combinations.

Various factorial effects to be defined in the next section are de­

noted by Aai Ba2 Ca3 Da4 . . .. where a* is the exponent of ith

factor in the effect and c^’s are all integers between 0 and s — 1. For 

example , in a 32 experiment, there are 2 factors each at three levels 

0,1,2 and the treatment combinations are denoted by ,

1 a a2 b ab ab2 b2 a2b a2b2
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or

00 01 02 10 11 12 20 21 22.

Various factorial effects studied are the main effects A, B and the 

two-factor interactions AB , AB2.

In a sk experiment there are sk — 1 different effects and interac­

tions. These are nothing but some well defined treatment contrasts. 

The analysis of a factorial experiment is basically concerned with test­

ing significance of these treatment contrasts.

In this chapter we present definitions of these contrasts and their 

tests of significance. In section 1.2, we discuss the analysis of full fac­

torial experiments at two levels and three levels. The section 1.3 deals 

with the technique of confounding and the construction of confounded 

factorial experiments for 2k and Sk factorial experiments. In section 1.5 

we present a chapterwise summary.

In the next section, we describe in brief the analysis of a full fac­

torial experiment.

1.2 ANALYSIS OF FULL FACTORIAL EXPERIMENT

1.2.1. 2k full factorial experiment

In a 2k full factorial experiment, the treatment sum of squares 

carries 2fc-l degrees of freedom. This is further partitioned into the 

sum of squares due to 2*-l mutually orthogonal treatment contrasts
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which are interpreted as main effects and interaction contrasts. These 

contrasts are explained below, first with the help of a 22 experiment 

and then generalized.

Main Effects And Interaction Contrasts

Let us consider a 22 factorial experiment. There are 4 treatments 

i.e. 1, a, b and ab with abuse of notation, these letters also denote 

the unknown effects due to the treatment combinations. The treatment 

sum of squares (Tr.SS.) carries 3 d.f. This is further partitioned into 

three components each carrying 1 d.f. These components are respec­

tively the sum of squares due to main effects A, B and the interaction 

AB. Here the main objective is to test the significance of the main 

effects A, B and interaction AB.

The difference (a — 1) is called as the effect of factor A at the 

lower levels of B and (ab — b) is interpreted in the similar maimer. The 

main effect of factor A is the average effect of factor A over the two 

levels of factor B and is given by,

A = ^{(a - 1) + (ab - 6)} = ~(a& - & + a - 1)

which for notational convenience represented as i4 = |(a — 1)(& + 1) 

where the RHS is to be expanded algebraically and the terms are to 

be interpreted as effects due to the particular treatment combinations. 

Similarly , the main effect of factor B is defined as

B = ab -f b - a - 1} = i(a + 1)(& - 1).
& 2t
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The interaction effect AB is the average difference between the effect 

of A at the high level of B and the effect of A at the low level of B and 

is given by

AB = La& - b - a + 1} = l(a - 1)0 - 1)

In general for a 2k experiment the main effect of a factor A is 

the average of the 2fc_1 effects of A computed at each of the possible 
combinations of the remaining (k — 1) factors^ and is given by

A = 2^l{(a ~ !)(* + W0 + 1)-}.

where the RHS is to be expanded algebraically and the terms are to be 

interpreted as effects due to particular treatment combinations. 

Similarly a p - factor interaction ABC... is defined by

ABC... = —~r{(a ± 1)(6 ± l)(c ± 1)...},

where the sign inside a bracket is negative if the factor is included in 

the effect and positive if the factor is not included in the effect and a 

similar interpretation as explained above is to be given to the brackets.

Estimates (BLUE) of various main effects and interaction con­

trasts are obtained by replacing a particular treatment combination in 

the expression of contrasts by the average yield of that a particular 

treatment combination.
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Sum Of Squares Due To Factorial Effects

The sum of squares for testing the significance of a factorial effect 

X is given by

SS(X)
X

•\2

2kr (i.i)

where \X is the factorial effect total obtained by replacing treatment 

combinations in the contrast X by the total yield obtained from the 

respective treatment combinations. SS(X) carries a single d.f. The 

sum of squares due to various contrasts can be easily obtained by Yates 

algorithm, (cf. Montogomery (1984), pp.280 )

AN OVA (Analysis of Variance)

Suppose the 2fc factorial experiment is conducted in an RBD hav­

ing r replicates under the usual assumption of normality and indepen­

dence. The total sum of squares is given by

ssr = ££4-|rr
* 3

(1.2)

where y,. = grand total, yij — observation on the plot receiving ith 

treatment in the jth block i = 1,2, j = 1,2,...,r. This carries 

(2kr - 1) d .f.

The block sum of squares is given by

SSR
E Bj
j__

2k
«5
2kr (1.3)

where Bj is the total yield from the jth block and carries (r — 1) d.f. 

Treatment S.S.(Tr.SS.), is the S.S. due to all 2fc - 1 orthogonal main
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effect/interaction contrasts and carries 2k — 1 d.f. The error sum of 

squares is computed by substracdon, ESS = SST— SSR — Tr.SS and 

has (r — l)(2fc — 1) d.f. The equality of block effects and the significance 

of factorial effects (main /interaction) can be tested by comparing their 

mean sum of squares with the mean error sum of squares using F test. 

(Mean sum of squares is obtained by dividing the sum of squares by cor­

responding degrees of freedom). Various tests of hypothesis are given 

below :

1) F-statistic for testing the equality of block effects is

Fr
SSR/(r — 1)

SSE/(2k - 1)(r - 1) ~ (1.4)

2) F-statistic for testing the significance of the main effect/interaction 

(X) is given by,

Fx =
SS(X)

SSE/(2k - l)(r - 1)
~ -^1,(2*—l)(r— (1.5)

Let a be the level of significance and FQj1/1j1^ represents the 100(1— 

a)th percentile of F-distribution with Vi, v2 d.f. The hypothesis of equal­

ity of block effects is rejected at a % level of significance if the cor­
responding Fr > Fa,vhu2 with ^(r - 1),(2* - l)(r - l)j d.f. oth­

erwise the hypothesis is accepted. Similarly, if Fx > FQ) Vi, v2 with 
^1. (2* - l)(r - l)j d.f., reject the hypothesis that the effect X is signif­

icant at a % level of significance, otherwise the hypothesis is accepted.

Analysis of variance table for a 2fc experiment in r blocks is given 

in Table 1.1.
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Table LI

ANOVA Table for 2k Experiment in r Blocks

s.v. D.F. S.S. Statistic

Blocks r-1 SSR Fr

Treatments 2k — 1

Main effects

A 1 SSA = -$■ Fa

B 1 Fb

2-factor Int.

• • •

AB 1 SSAB = Fab

BC 1 SSBC-Jg- Fbc

3-factor Int.

• •

ABC 1 SSabc = -^11 FABC

k-factorlnt.

• • •

ABC...k 1 CO [ABC...kl3
&&ABC...k ~ 1 FABC...k

Error (r-l) (2* - 1) SSE — by subtraction -

Total 2kr — 1 SST = Ei Ej yfj - -

NOTE : F-statistics are computed as given in (1.4) and (1.5).
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1.2.2. A 3* FULL FACTORIAL EXPERIMENT

In a 3fe factorial experiment , there are k factors each at three 

levels. There are 3* treatment combinations and the treatment sum of 

squares carries 3fe — 1 d.f. The treatment sum of squares is partitioned 

into (3* — l)/2 sets corresponding to various main effects and interac­

tions each carrying 2 d.f. Each main effect carries 2 d.f and a two-factor 

interaction carries 4 d.f. In general a k-factor interaction carries 2* d.f. 

Effects, Interactions And Their Sum Of Squares

Let us consider an example of a 32 experiment. There are 2 factors 

each at 3 levels. The nine treatment combinations are, 1, a, a2, b, 

ab, a2b, ad2, 62, a262 . The treatment sum of squares carries 8

d.f. The main effects A and B each have 2 d.f. and interaction AB has 

4 d.f. Further this two-factor interaction AB can be decomposed into 

two components AB and AB2 each with 2 d.f. Thus there are 4 groups 

of effects/interactions each with 2 d.f.

For obtaining sum of squares due to a particular set carrying 2 

d.f. the nine treatment combinations are divided into three groups 

where the grouping is based on a particular polynomial associated that 

particular set, namely, polynomial associated with A1 Bm is lx\ + mx<i. 

The following table shows the polynomials and groups associated with 

the sets for a 32 experiment. Here all the calculations are done modulo 

3.
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Table 1.2

Effect set Polynomial Grouping

carrying 2 d.f. p($) G, :pfe)= 0 Gs :p(£) = 1 G3 :p(z) = 2

A Xi 00 01 02 10 11 12 20 21 22

B x2 00 10 20 01 11 21 02 12 22

AB Xi + X2 00 12 21 01 10 22 20 02 11

AB2 Xi + 2X2 00 11 22 02 10 21 01 12 20

If Gi(X) denotes the total yield on the combinations from the ith 

group satisfying (p(2L) = i) for the effect ’X\ then the sum of squares 

for testing the significance of the effect X is given by,

E GiS(X) 2
SS(X) = J-j--------Wr (1.6)

where G — Grand total and r = number of replications. Each group 

contains 3 treatment combinations. In general for a 3* experiment, 

calculation of sum of squares due to an effect/interaction, Aai Baz 

Cai Da4 ... ,where a* takes values 0 ,1,2 depends on the grouping of 

treatment combinations given by p(x) — i ( mod 3 ), i = 0,1,2 where
k

p(x) = Ylaixi- The sum of squares due to a particular effect set X
i=1

carrying 2 d.f. is given by ,

E<VW t
= W - (L7>

Suppose the factorial experiment is conducted in an RBD having r 

replicates. The total sum of squares and error sum of squares are
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computed as given in previous section.

1.2.3. ALTERNATIVE METHOD OF ANALYSIS

If the factors are quantitative and equispaced, the effects can be 

partitioned into the linear and quadratic components, each carrying 

single d.f.

To illustrate this splitting, consider a 32 experiment, where there 

are 2 factors, say A ,B each at three levels ao,ai, <22, and 60,61,62 re­

spectively and the levels are equispaced. The difference ((1260 — Oo6o) 

can be called as the linear effect of A at the lower level 60 of B and the 

effects at other levels of B be defined similarly. The linear effect Ai is 

average of these three and is given by,

Al = ^{(a2 — G0X62 + 61 + 60)}

where EHS is expanded algebraically and the terms are interpreted as 

treatment combinations.

Next, for fixed level say, 6q of B, the linear effect A when level 

of A changes from ao to a\ should not be same as that when level of A 

changes from ai to <22- The difference between these two may be called 

as quadratic effect of A. Thus quadratic effect A at level 60 of B is 

given by. (a.260 — ai&o) — (&160 — Oq&o) = (o>2 ~ 2% — «o)6o- Far other two 

levels 61 k. 62 of B, the quadratic effect A can be similarly defined. 

The quadratic effect Aq is the average of these three and is given by,

Aq = g{(«2 - 2ai + ao)(6o + 61 + 62)}
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where EHS is expanded algebrakaEy and the terms are interpreted as 

treatment combinations. The main effect B can be similarly partitioned 

and interpreted.

In a similar way, the two-factor interactions are decomposed into 

four mutually orthogonal contrasts namely, Linear x Linear, Linear X 

Quadratic, Quadratic x Linear and Quadratic X Quadratic respectively 

denoted by AlBl, AlBq, AqBl, and AqBq (each carrying single d.f.) 

and are defined below,

AlBl = — {(«2 ~ ao)(&2 - bo)}

AlBq = -{(a2 - «o)(&2 ~ 2&i + &o)} 

AqBl = -{(a2 — 2ai + ao)(&2 — &o)} 

AqBq = -{(a2 ~ 2ai + ao)(&2 ~ 26i + &o)}

The splitting of sum of square due to various main effects and higher 

order interactions in terms of their linear and quadratic effects in a 

general 3* experiment can also be done in a similar manner.

Estimates of various main effects and interaction contrasts are 

obtained by replacing a particular treatment combination in the ex­

pression of a contrast by the average yield of that particular treatment 

combination.

The sum of squares due to each contrast say X is given by,

SS(X) =
2m3k-Pr (1.8)
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has single d.f. where, m = number of factors in the effect/interaction, 

k= total number of factors in the experiments, p = number of linear 

terms in the effect/interaction, r = Number of replications.

The sum of squares due to various effect® can be suitably deter­

mined by using Yate’s procedure(cf.Montogomery (1984) pp.291).

The total sum of squares with (3kr — 1) d.f. and error sum of 

squares with 3k(r — 1) d.f. are obtained in the usual manner (explained 

in sectioni'2). Analysis of variance table for a 32 experiment in r blocks 

is given in Table 1.3 displayed on the next page.

In the next section, we discusE the technique of confounding and 

construction of confounded factorial experiments for 2k and 3k factorial 

experiments.

1.3 CONFOUNDING

When the number of treatment combinations and/or the num­

ber of factors in a factorial experiment increases the block size also 

increases accordingly. But in practice, large homogenous blocks will 

be rarely available and one is forced to use incomplete blocks. For ex­

ample, a 25 experiment has 32 treatment combinations. Therefore the 

block size will be 32 plots ,26 experiment has 64 treatment combina­

tions and it will require block of size 64 plots and so on. In such cases 

take blocks of size smaller than the number of treatments and use these 

smaller blocks for each replication i.e. have more than one blocks per
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replication. The treatments are then partitioned into as many groups 

as the number of blocks per replication. The different groups of treat­

ments are allotted to the blocks. However, in the process of grouping 

the treatment combinations, it may happen unknowingly that an ef­

fect/interaction of experimenters interest may become identical with 

block contrasts. Then it is not possible to distinguish the effect due to

that particular effect/interaction from the block effects.
Table 1.3

ANOVA1!able for 32 Experiment in r Blocks

s.v. D.F. S.S. F

Replicates r-1 SSR Fb

Treatments 8

Main effects

A:Al 1 ii*•*

C
o

C
o Fa.h

: Aq 1 ssAa - Jjj£ Fa*

B-.Bl 1 ssBl = -fg£ Fbl

■ BQ 1 Fbq

AB ; AlBl 1 SSaa = ^ FalBi

: AqBl 1 SSa^ = FAqBu

AB2 : AlBq 1 BSalBq = FalBq

: AqBq 1 ss** = ^ FaqBq

Error (r-l)8 SSE=by substraction -
Total 9r — 1 SST = £iT,i^-^ -

Note that F-Statisties are computed as given in (1.4) and (1.5).

14



As an example,-'let us consider a 22 experiment. There are four 

treatment combinations. If we decide to use blocks of size 2 each, then 

we have to divide a replication into two blocks. Let the blocks are B\ 

and B2 such that B\ — {a ab} B2 — {1 b}
Here B\ — B%= [(a) + (ab) - 1 - (6)] is block effect, 

where (.) represents the total yield from the plots receiving the treat­

ment combinations. Note that this is same as the main effect A, i.e. 

main effect A is mixed up or confounded with block effects and we 

are not able to separate out the block effect from the main effect of 

A. This is not desirable because the main effects are most important 

for the experimenter. To avoid such undesirable situation one or more 

effect/ interaction(s) (contrasts) which are of least importance to Hie 

experimenter are chosen and the grouping of treatments is carried out 

based on the expressions of chosen contrasts. Generally, the highest 

order interactions are of least interest. This technique is called ’Con­

founding5. There are two types of confounding. 1) Total confounding 

2) Partial confounding. In total confounding, the same set of interac­

tions is confounded in all replicates and this set of interactions is not 

at all estimable whereas in partial confounding, different sets of inter­

actions are confounded in different replications. In this type of con­

founding no interactions are lost because all confounded interactions 

are estimated from those replicates in which they are not confounded.

To construct such experiments, first the experimenter must
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decide which effect/interaction(s) to be confounded, these are called 

as generators5 or ’defining contrasts*. Once the generators or defining 

contrasts have been decided then the blocking can be easily done. For 

arranging an sk experiment in sP blocks each of size sk~p, p independent 

’generators’ are to be chosen.

In the following we explain the technique of confounding and also 

construction of confounded factorial experiments for 2k and Zk factorial 

experiments.

1.3.1. COUNFOUNDING IN THE 2fc FACTORIAL EXPERIMENT

In general, a 2k factorial experiment can be arranged in 2P incom­

plete blocks, (p < k) each of size 2k~p. To construct such experiment, 

we select p independent effects (which are of least importance to the 

investigator) to be confounded with blocks. By ’independent’ we mean 

that none of the chosen interaction is a generalized interaction among 

others. (The generalized interaction of 22, ...,£p is the product mod­

ulo 2 XiX2...xp) Along with these p interactions, the 2P — p — 1 other 

effects are also automatically get confounded with blocks which are all 

possible generalized interactions among the previously chosen interac­

tions.

Suppose the ’p’ independent interactions chosen are, AanBai2... 

kaik, Aa21Ba22...ka2ky..., AaplBaj,2...kapk where = 1 if ith factor is 

present in the interaction and 0iik — 0, if it is not. Then the treatment 

combinations (a^a^ •••£*:) which satisfy the following algebraic equations
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simultaneously are put in the same block.

aii^i + OL\2^2 +

&21&1 + ®22«^2 +

• + aik%k = h 

. + &2kXk = h

> (mod 2) (1.9)

^pl^l “I" &pl3'2 T • • » “h Olpk'Xk — ip

where U = 0 or 1, i = 1,2, ...,p. Depending on the values of 

(ll, I2, ■ . .,lp) there will be 2P such sets of equations which give rise to 

2P blocks.

Usually, it is enough to generate the principal block which con­

tains the treatment combinations satisfying equations (1.9) with U = 0, 

i = 1,2, The other blocks are generated by adding (modulo 2) 

a treatment combination which is not present in any of the previous 

blocks to the contents of the principal block.

To illustrate this, consider an example of a 25 factorial experiment 

with 5 factors each at two levels. Suppose this experiment is arranged 

in 22 blocks of size 23. The p = 2 generators are, ADE and BCE. Their 

generalized interaction ABCD also gets confounded with the blocks. 

The content of the principal block are those combinations satisfying 

the equations,

(mod 2)
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which are given below :

Bt : (00000) (10010) (01100) (11110) (11001) (10101)(00111)

(01011)

The next block is generated by adding a treatment combination, say, 

(10000) which is not present in the principal block and is given by,

£2 : (10000) (00010) (11100) (OHIO) (01001) (00101) (10111)

(11011)

Similarly, other blocks £3 and £4 are generated by adding a treatment 

combination (01000) and (00001) respectively which are not present 

in any of the previous blocks to the content of principal block. The 

blocks are given by ,

£3: (01000) (11010) (00100) (10110) (10001) (11101) (01111)

(00011)

£4: (00001) (10011) (01101) (11111) (11000) (10100) (00110)

(01010)

1.3.2. CONFOUNDING IN THE 3* FACTORIAL EXPERIMENT

In general, a Sk factorial experiment can be constructed in 3? in­

complete blocks , (p < k) where each block is of size 3k~~p. To construct 

such experiment, we select p independent interactions which are of least 

importance to the investigator to be confounded with blocks. There are 

(3? — 2p — l)/2 other effects which automatically get confounded with 

blocks which are all possible generalized interactions ( The generalized 

interaction of rri,^, ...,xp is the product modulo Q XiX2---xp ) among
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the preselected p interactions.

Suppose the ’p’ independent interactions chosen are, AanBan.., 

kaik,Aa21Ba22...ka2k,..., AaplBat>2...kapk where otik = 1 or 2 if ith factor is 

present in the interaction and = 0, if it is not. Then the treatment 

combinations (x\X2-..Xk) which satisfy the following algebraic equations 

simultaneously are put in the same block.

anxi + anX2 + + OL\kXk = h

ol2\Xi + anx% + + OL2kXk = h

> (mod 3) (1.10)

Otf\X\ + CKpl^2 + T OLjfcXk — Ip

where U = 0 , 1 or 2 i = 1,2, ...,p. Depending on the values of 

(h,hi- • -Ap) there will be 3P such sets of equations which give rise to 

3? blocks.

Usually, it is sufficient to generate the principal block which con­

tains the treatment combinations satisfying k = 0. The other blocks 

are generated by adding (modulo 3) a treatment combination which is 

not present in any of the previous blocks to the contents of the principal 

block.

Note that, in 3k factorial experiment, if the pair of interactions, 

X and Y are confounded then their generalized interactions XY and 

XY2 are also confounded. As a eonvension, the power of the first letter
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in the name of any interaction(s) should be one. If it is not, then 

its square ( modulo 3 ) is taken the name of that interaction, e.g. 

A2B = (A2C)2 = A*B2 = AB2(modS) .

To illustrate this, consider an example, suppose a 3s factorial 

experiment with 3 factors each at three levels, is constructed in three 

blocks of size nine. Here, p = 1 and we take AB2C2 as the generator. 

The contents of the principal block are those treatment combinations 

satisfying the equation,

xi + 2^2 + 2x3 = 0 (mod 3)

which are given as below :

jBi :(000) (012) (101) (202) (021) (110) (122) (211) (220)

The other blocks are obtained by adding (modulo 3) a treatment 

combination which is not present in any of the previous block. The 

contents of block B2 and £3 are obtained by adding (mod 3) a treatment 

combination (200) and (100) respectively in the principal block. The 

blocks are given as,

B2 :(200) (212) (001) (102) (221) (010) (022) (111) (120)

£3: (100) (112) (201) (002) (121) (210) (222) (Oil) (020)

In general, a sk factorial experiment with k factors each at s lev­

els can be arranged in sp incomplete blocks of size sk~~p where, (p < k). 

The (# — 1 )/(s— 1) interactions with (s — 1) d.f. get confounded with 

blocks. Among these interactions ’p’ are independent. The remaining 

are the generalized interactions of these p interactions. The contents of
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the different blocks can be obtained from a set of equations constructed 

from p independent confounded interactions AanBan. .. kaik, Aan Baxi.. 

. ka2k, . . . , v4aplBap2. . . kapk, where = 1,2,. . . s — 1 if ith

factor is present in the interaction and 0% = 0, if it is not. The RHS 

of these sets of equations is the same, where the equations are,

anxi + a12x2 + ... + aikxk = 1$, 

Ol\2X\ + Ct22X2 + ... + 0i2kxk — 1-2

> .... (mod s)

d" Gtp2X2 T •• • T ocpkxk —► Ip

where h = 0,1,s — 1. The analysis of such experiment is as 

usual as if no blocking is occurred except the confounded effect/interaction(s) 

is not included in the AN OVA table. The blocks sum of squares 

is the addition of the sum of squares due to all the confounded ef- 

fect/interaction(s). Sum of squares are easily obtained by using YateJs 

algorithm, (cf. Montogomery (1984) , pp.280 )

In the analysis of partial confounding designs, the sum of squares 

due to the confounded interaction is calculated by using data from those 

replicates in which interaction is not confounded. For example, let us 

consider a 23 experiment with 4 replicates and different interactions 

are confounded in each replicate. Let ABC is confounded in replicate 

I, AB is confounded in replicate II, BC is confounded in replicate III
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and AB is confounded in replicate IV respectively. To calculate the 

sum of squares due to ABC, information on ABC is obtained from the 

replicates II, III and IV. Similarly for other confounded interactions 

the sum of squares are obtained, i.e. 3/4</l information is obtained on 

the interactions because they are unconfounded in only three replicates. 

The sum of squares due to blocks and for the uncofounded effects are 

obt ained in the usual manner.

14 ANALYSIS WITH SINGLE REPLICATE OF

THE 2* EXPERIMENT

For a moderate number of factors in the experiment, the total 

number of treatment combinations in a 2k factorial experiment is large. 

For example, a 26 experiment has 64 treatment combinations, a 27 

has 128 treatment combinations and so on. When the resources are 

limited, more than one replicates of the experiment are not possible. 

In such situation, the experimenter assumes that the random error in 

the process is small.

A single replicate of a 2k experiment is also called as an unrepli­

cated factorial. In a single replicate experiment there is no internal 

estimate of error. In the analysis of such experiments, certain higher 

order interactions are assumed to be negligible and their mean squares 

are combined to get an estimate of the error variance.
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Daniel (1959) suggested a method of analysis of unreplicated fac­

torial experiment. He suggests to examine a normal probability plot of 

the estimates of the effects. The effects which are negligible are nor­

mally distributed with mean zero and variance a2 and will fall along 

a straight line of this plot. However, significant effects which have 

non-zero means will lie outside the straight line. Therefore, based on 

normal probability plot the preliminary model can be specified for those 

effects which are non-zero. The sum of squares of negligible effects are 

combined to give an estimate of the error variance. For example, con­

sider a single replicate of the 24 experiment. There are 15 factorial 

effects to estimate. When normal probability plot is constructed, sup­

pose A, B, C, AC, AD lie far from the line. i.e. effects are significant. 

The remaining effects which are not significant lie on the line which are 

combined to estimate the error of variance.

1.5 CHAPTERWISE SUMMARY

We now present the Chapterwise summary of the dissertation. 

This dissertation includes four chapters besides Chapter 1 is introduc­

tory, describes (i) The need of factorial experiments (ii) Analysis of a 

full factorial experiment at two level and three level (iii) The technique 

of confounding (iv) Construction of confounded factorial experiments 

for 2* and 3fc. (v) Analysis of single replicate factorial experiment.

In Chapter 2, we discuss (i) The need of fractional factorial ex­

periments. (ii) The technique of constructing a fractional factorial
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experiments, (iii) Alias structures (iv) The concept and role of res­

olution in selecting an appropriate fractional 2k~p factorial designs, 

(v) Determining the maximum possible value of resolution for 2k~p 

design.

In Chapter 3, we explain some systematic methods for selecting 

defining contrasts so as to enable estimation of main effects and spec­

ified interactions while certain other higher order interactions are con­

sidered negligible. In particular we discuss (i) The method suggested 

by Greenfield (1976 ) (ii) The modification of this method by Green­

field (1977) (iii) The method by Franklin and Bailey (1977) (iv) An 

alternative method using Hadamard matrices (v) Comparison of this 

method with Greenfield’s method. All these methods are illustrated 

with examples.

Chapter 4, deals with (i) The concept of minimum aberration 

criterion for distinguishing between designs of the same maximum res­

olution. (ii) A necessary and sufficient condition for the existence 

of the defining relation (iii) The algorithm suggested by Fries and 

Hunter(1980) for generating a best fraction of design for N = 2k~p 

runs. . Some examples are illustrated at the end of this chapter.

Chapter 5 is an extension of the concept of minimum aberration 

criterion discussed in Chapter 4. In this Chapter, we deal with (i) An 

alternative view of minimum aberration criterion (ii) Another aspect 

of minimum aberration design i.e. a minimum aberration design maxi-

24



mizes the number of two-factor interactions which are not aliased with 

main effects and among those designs having this property it minimizes 

the sum of squares of the sizes of alias sets of two factor interactions, 

(iii) Some criteria for assessment of model robustness a) The concept 

of Estimation Capacity b) The expected number of suspect two factor 

interactions. We discuss a sufficient condition for eliminating designs 

which are dominated by others. At the end, we present a summary of 

current literature which we could not discuss in detail.

The dissertationends with a list of references.
i

In the next chapter, we discuss fractional factorial experiments 

of 2* and 3*.
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