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CHAPTER - 3

SELECTION METHODS FOR DEFINING 
CONTRASTS _ _

3.1 PRELIMINARIES

As discussed in the previous chapter, in fractional factorial de­

signs, the main problem is the best possible choice of the defining con­

trasts such that the main effects and important interactions are es­

timable, that is they are not aliased with one other. The half fraction 

of a factorial experiment is straightforward for the selection of the defin­

ing contrasts because it requires a single defining contrast and usually 

in this situation the highest order interaction is the best choice, (in 

this dissertation we use the words defining contrasts and generators 

synonymously). For other fractions say, 2n~k, k > 1, k independent 

generators are needed. Their generalized interactions automatically 

become members of the defining relation. When some specified inter­

actions are required to be estimated, the choice of defining contrasts is 

not easy so as to generate a satisfactory alias structure of the resultant 

fractional design. We use the word ’satisfactory5 in the sense that the 

main effects and important interactions are not aliased with each other.

Often the task of choosing an appropriate set of the defining con-
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trasts based on mere guess work is not easy. Usually, first one has to 

choose a set of defining contrasts based on the judgement, then generate 

the alias structure and check whether the main effects and important 

interactions are not aliased with one another. If these are aliased with 

one another, again repeat the procedure with a new set of defining con­

trasts. Thus this process is difficult %o implement as well as very time 

consuming. One may have to spend hours to search a suitable set of 

the defining contrasts by trial and error.

In this chapter, we discuss some systematic methods for select­

ing defining contrasts so as to enable estimation of main effects and 

specified interactions while certain other higher order interactions are 

considered negligible. In seetion(3.2) we discuss the method introduced 

by Greenfield (1976) and later improved by Franklin (1977). In section 

(3.3), the method introduced by Franklin and Bailey (1977) is studied. 

The methods are illustrated with an appropriate example. Justifica­

tion for Franklin and Bailey’s method is given in section 3.4. and also 

we discuss an another method for obtaining added factors and basic 

factors for given defining contrasts. Also we compare Greenfields and 

Franklin and Bailey algorithm in section 3.5.
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3.2 THE METHOD DUE TO GREENFIELD(1976)

In this section, we discuss the method of selecting an appropriate 

set of the defining contrasts introduced by A. A. Greenfield (1976). 

First we present the algorithm and then illustrate it by an example. 

Later Greenfield (1977) modified the method slightly based on a sug­

gestion by M. Franklin.

3.2.1 THE ALGORITHM

In this method, we have to specify apriori which main effects and 

interactions are to be estimated from the experiment. This set is known 

as the requirements set. Greenfield (1976) gives a step by step proce­

dure to generate the defining contrasts and the aliasing matrix at the 

same time when the requirements set is specified. The algorithm for 

the procedure is presented below. The aim is to produce the smallest 

fraction of the 2k experiment say, 2k~p, (i.e. to find largest possible 

value of p) such that all members of the requirements set are estimable. 

Step 1 : Let k be the number of factors and m be the number of in­

teractions in the requirements set. First we decide the fraction number 

’p’ which is the largest integer satisfying ,

2*"*>l + * + m (3.1)

This is because for estimating the k main effects and m interactions 

along with the overall mean requires at least k + m +1 observations (If 

the algorithm does not produce a satisfactory alias structure with this
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value of p , then the algorithm is reapplied with value of p decreased 

by one that is a fraction which is double the size of the previous one). 

Let R denote the requirements set.

Step 2 : First choose a suitable set of (k — p) factors and write the 

identity element I and these (k—p) factors along with all their possible 

interactions in the first column in a systematic order. Thus column 1 

contains 2k~p elements. Then mark the elements in this column and 

also in the requirements set R by an asterisk which are common to 

both.

Step 3 : Generate the first defining contrast (generator) taking the 

product of the last available (unmarked) element in the first column 

and the last available (unmarked) element in the requirements set. The 

product should be modulo 2.

Step 4 : Use this defining contrast to generate the second column of 

the aliasing matrix by taking its generalized interactions with all the 

members of the first column. (Note that entries in the same row of the 

columns are aliases of each other). At the same time check whether any 

element of the requirements set is aliased with those elements, which 

are already marked in the first column. If not, mark those elements 

from the requirements set which have been newly introduced in the 

second column.

Step 5 : If any unwanted aliasing (as described in Step 4) has occurred 

in step 4, then discard the chosen generator (and also discard the ele-
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merit of the first column used in the previous step) and go to step 3 to 

generate a new defining contrast by taking the product of the next last 

unmarked element of the first column and the last available element of 

the requirements set. Every time when a new generator is determined, 

create new columns corresponding to itself and its generalized interac­

tions with all the previous ones by taking the product modulo 2 of the 

elements of the first column with the corresponding generalized inter­

action.

Step 6 : Repeat the procedure until ’p’ independent generators are 

chosen.

Step 7 : If there are no more available elements in the first column 

and the number of generators selected is less than p then the current 

value of p is not suitable. Then decrease the value of p by one and start 

the procedure afresh by returning to step 2.

We illustrate the algorithm by an example presented below: 

3.2.2 EXAMPLE 1

Consider an example of a 25 experiment, i.e. there are 5 factors, 

namely, A B C D E each at two levels. Suppose we have to 

estimate all the main effects and the two-factor interactions AC and 

CD, assuming that all other interactions are negligible. Hence the re­

quirements set R is, {A, B, C, D, E, AC, CD }

Step 1 : Here k = 5 and m = 2 and 1 -f k T m = 8 i.e. 23. Therefore, 

the maximum value of p satisfying (3.1) is 2. So the smallest fraction
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to get a suitable design is a quarter fraction.

Step 2 : Choose the factors A, B and C to generate the first column. 

Thus the first column with the elements common to the requirements 

set marked with an asterisk is as follows.

Column 1 The requirement Set:- R

I {A* B* C* D E AC* CD]

A*

B*

AB

C*

AC*

BC

ABC

Step 3 The first defining contrast is obtained by taking the prod­

uct modulo 2 of the last unmarked element from the first column and 

the last unmarked element of the requirements set. In this example, 

these elements are ABC and CD respectively. Taking the product 

(mod 2) of these elements, we get ABC x CD = ABD. This is the first 

defining contrast which is used to generate the second column by taking 

the generalized interactions with each element of the first column. We 

check whether any members of the requirements set are aliased with 

those already marked in the first column. In this example, thus we
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obtain the second column as,

Column 1 Column 2 The requirement Set R

I ABD {A* B* C* D* E AC*

A* BD

B* AD

AB D*

C* ABCD

AC* BCD

BC ACD

ABC CD*

Here no two effects from the requirements set are aliased with 

each other. Therefore we proceed further. The second defining con­

trast is the generalized interaction of the next last unmarked element 

in the first column and the next unmarked element in the requirements 

set. Here, these elements are BC and E respectively. The second 

defining contrast is then BC x E = BCE. This automatically leads to 

the third defining contrast which is the product (mod 2) (i.e. general­

ized interaction) of the first and the second defining contrast, that is, 

ABD x BCE = ACDE. Then generate the third and fourth columns 

respectively by taking the generalized interactions of BCE and ACDE 

with the elements of first column. This gives the full aliasing matrix. 

Everytime we check the aliasing condition as in step 4 and mark with
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an asterisk the elements of the respective column common with the 

requirements set. The aliasing matrix is given below.

Column 1 Column 2 Column 3 Column 4

I ABD BCE ACDE

A* BD ABCE CDE

B* AD CE ABCDE

AB D* ACE BCDE

C* ABCD BE ADE

AC* BCD ABE DE

BC ACD E* ABDE

ABC CD* AE BDE

Here no unwanted aliasing has occurred (that is no two elements 

of the requirements set are aliases of each other). Thus we have ob­

tained the complete alias structure with p — 2 independent generators.

In the next example, we illustrate the situation where the largest 

value of p given by equation (3.1) does not produce a satisfactory alias 

structure and a larger fraction has to be chosen.

3.2.3 EXAMPLE 2

Consider again the example of a 25 experiment with slightly dif­

ferent requirements set , R = {A, B, Cy D, Et AB, CE}. The 

maximum value of p obtained from (3.1) is again 2 which suggests a 

quarter fraction in the first instance. But the algorithm later reveals
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that a satisfactory quarter design does not exist and it needs a half 

fraction of the design. The first column of the aliasing matrix is ob­

tained as explained in the first example and is given by,

Column 1 The requirement Set:- R

I {A* B* C* D E AB* CE}

A*

B*

AB*

C*

AC

BC

ABC

As before the elements common to the requirements set are marked 

by an asterisk. The first defining contrast is the generalized interac­

tion of the last unmarked element from the first column and the last 

unmarked element of the requirements set. They are ABC and CE 

respectively, which give the first generator ABC x CE = ABE. The 

second column of the aliasing matrix consists of the generalized inter­

actions of ABE with each member of the first column. Thus, we obtain 

the second column as,
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Column 1 Column 2

I ABE

A* BE

B* AE

AB* E*

c* ABCE

AC BCE

BC ACE

ABC CE*

The requirement Set R

{A* B* C* D E* AB* CE*}

Here, the two elements of the requirements set namely, AB and 

E (underlined) are aliased with each other and therefore we discard the 

generator ABE and return to the step 3. Then take the next unmarked 

element from the first column i.e. BC and the last unmarked element 

of the requirements set i.e. CE which leads to the generator 

BC X CE = BE. Applying the same procedure as in example 1, we get
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Column 1 Column 2 The requirement Set :-R

/ BE {A* B* C* D E* AB*

A* ABE

B* E*

AB* AE

C* BCE

AC ABCE

BC CE*

ABC ACE

Here also two effects namely, B and E (underlined) from the re­

quirements set are aliased with each other. Hence, this is also not a 

suitable defining contrast. We discard this defining contrast. Again 

take the next unmarked element AC of the first column and the last 

unmarked element CE of the requirements set, giving rise to the gen­

erator AC x CE = AE. Here also it is easy to see that the main effects 

A and E become aliases of each other. Further there are no more un­

marked elements available in the first column, which suggests that p = 

2 is not possible. So we decrease the value of p by one and hence the 

design requires a half fraction. Obviously the generator for this half 

fraction should be the largest order interaction, i.e. ABCDE.

Next we discuss a modification of algorithm 3,2.1.
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3.2.4 MODIFACTIQN OF ALGORITHM

Greenfield (1977) gave a modification of the above algorithm (on 

the basis of a suggestion made by M.Franklin (1977)) which suggests 

that the (k — p) factors chosen previously as basic factors to gener­

ate the first column should be majority factors. That is, those factors 

which are represented maximum number of times in the requirements 

set. This is explained with the help of an example of a 25 design with 

the requirements set, R = { A, B, C, D, E, AD, AE }. For 

this requirements set it can be easily verified that the choice of factors 

A, £, C for step 2 of the algorithm will not generate a 25”2 design. But 

if we write the first column of the aliasing matrix in terms of (k — p) 

majority factors in the requirements set, namely, A, D and E instead 

of taking the first (k — p) factors the algorithm works well. For this 

choice of factors, the first column is given by,

Column 1 The requirement Set:- R

I {A* B C D* E* AD* AE*}

A*

D*

AD*

E*

AE*

DE

ADE
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where, an asterisk denotes the common elements between the first col­

umn and the requirements set. According to the algorithm the first 

defining contrast is the generalized interaction of ADE and C i.e. 

ACDE. Repeating the same procedure two other independent defin­

ing contrasts are found to be BDE and ACDE and their generalized 

interaction is ABC. Thus the full aliasing matrix is generated and is 

given below:

Column 1 Column 2 Column 3 Column 4

I ACDE BDE ABC

A* CDE ABDE BC

D* ACE BE ABCD

AD* CE ABE BCD

E* ACD BD ABCE

AE* CD ABD BCE

DE AC B* ABCDE

ADE c* AB BCDE

Here no unwanted aliasing has occurred. Thus we have obtained 

the complete alias structure with p — 2 independent generators, i.e. a 

quarter fraction.

In the next section, we discuss the method of selecting an appro­

priate set of defining contrasts by Franklin and Bailey.
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3.3 THE METHOD BY FRANKLIN AND BAILEY (1977)

3.3.1 NOTATIONS AND PRELIMINARIES

In this section, we discuss the method of selecting an appropriate 

set of defining contrasts introduced by Franklin and Bailey (1977) for a 

fractional factorial design. This method can also be used for obtaining 

a confounded design. The method by Greenfield (1976) discussed in 

section 3.2. gives at most one suitable set of defining contrasts for 

obtaining a fractional factorial design. On the other hand, the method 

suggested by Franklin and Bailey (1977) searches all possible suitable 

sets of defining contrasts each one of them giving rise to a different 

fractional factorial design. Before we present the actual algorithm, we 

will discuss certain related terms below.

For a 2k factorial design whose suitable fraction is to be decided, 

the set of all main effects and interactions (which are 2*-l in number) 

is partitioned into two subsets,

1) Ineligible effects 2) Eligible effects

An ineligible effects set is the set of effects which are not appropriate 

for choice as a defining contrast and an eligible effects set is the set of 

effects which are eligible for choice as a defining contrast. For example, 

the effects belonging to the requirements set (defined in section 3.2.3) 

and all their pairwise with respect to the operation (*)). Also, for a 

2k~p factorial experiment, there are 2P — 1 defining contrasts together
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with the identity element I which form a group of size 2P . Thus, if 

we can find a suitable group (i.e. containing all eligible effects) of 2P 

defining contrasts, then we can generate a 2k~p fraction. Obviously 

the smallest possible fraction is determined by the size of the largest 

group in the eligible effects set. The search procedure of such a group 

is outlined in the algorithm given in the next subsection.

If there are several groups which have this largest size, the algo­

rithm finds all of them. Suppose the largest groups in the eligible and 

ineligible effects set are of size 2r and 2s respectively. Since the group 

formed by the product of these two groups is a subset of the group of 

size 2k containing all 2k effects, we have r + s < k.

First we describe the algorithm and then illustrate it by an ex­

ample.

3.3.2 THE ALGORITHM

In this method, the aim of the procedure is to search all possible 

smallest fractions of the 2k experiment. Franklin and Bailey (1977) give 

a stepwise algorithm to generate p independent defining contrasts. To 

start with, we have to decide (k — p) basic factors and the remaining p 

added factors. The basic effects group formed by the effects and inter­

actions among the basic factors contains 2k~p elements.

Step 1 : First define the requirements set and then generate the set of 

ineligible effects as explained in the beginning of the section 3.3.

Step 2 : Choose the value of p such that the size of the largest group
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in the ineligible effects set contains not more than 2k~p members.

Step 3 : Select a (new) set of (k — p) basic factors. The group formed 

by all main effects and interactions among these (k — p) basic factors 

is called basic effects group.

Step 4 : Arrange a two-dimensional table with 2k~p rows correspond­

ing to the elements of basic effects group and 7p 7 columns corresponding 

to the added factors denoted by numbers 1 to p . The (i,j)th cell entry 

is the generalized interaction XiYj between the ith row basic effect (Xj) 

and jth column added effect (Yj) of the table and should be an eligible 

effect. That is, it should not be present in the set of ineligible effects. 

An ineligible effect is denoted by in the table.

Step 5 : Begin to search a set of p defining contrasts, one contrast 

being selected from each of the p columns of the table, which generates 

the largest group in the eligible effects set.

Step 6 : Initialize a starting position for a search of the table i.e. 

column number 0 and a defining contrasts group containing only the 

mean effect I.

Step 7 : Increase the column number by one. i.e. start from the next 

column.

Step 8 : Select the next available effect from the current column. If 

all the elements in the current column have been exhausted then go to 

step 11.

Step 9 : Check whether all generalized interactions between the effect
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selected and each member of the defining contrasts group are eligible 

effects. If not, return to step 8.

Step 10 : Extend the defining contrasts group by the selected ef­

fect and its interactions with all the members of the defining contrasts 

group. If the last column has been reached, an acceptable set of defin­

ing contrasts has been found. Therefore output this set and return to 

step 8, otherwise go to step 7.

Step 11 : If the current column is the first column move to step 12, 

otherwise move to the previous column (do not reinitialize the pointer) 

and go to step 8.

Step 12 : The search procedure has been completed by using the cur­

rent basic factors set. If a new set of basic factors is available then go 

to step 3 and repeat the procedure.

Step 13 : If a suitable design i.e. a suitable set of defining contrasts 

has been found or p = 1 then terminate the search, otherwise decrease 

p by one (that is double the fraction size) and return to step 3.

The example given next illustrates the above algorithm.
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3.3.3 EXAMPLE 3

Consider an example of a 25 experiment with the requirements 

set, {ABC D E BD BE}.

The ineligible effects contains the members of the requirements set and 

all their pairewise interactions and is given by,

{/, A, B, AB, C, AC, BC, D, AD, BD, CD, ABD,

E, AE, BE, CE, DE, BDE, ABE, BCD, BCE}

The value of p is chosen according to step 2 of the algorithm. In this 

example, the group generated by the factors A, B and D is the largest 

group in the ineligible effects set which contains 23 = 8 elements. Thus 

it suggests the initial value of p equal to 5 — 3 = 2. We select the fac­

tors A, B and D as basic factors and C, E as added factors. The basic 

effects group generated by these factors is written in the first column 

of the table. We arrange a two-way table with 25-2 rows headed by 

the members of the basic effects group and two columns headed by the 

added factors. The entries in the table are the generalized interactions 

of the basic effects with the corresponding added factors. The table is 

presented below :
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Table 3.3.1

Basic

effects

Added factors

C E

I - -

A - -

B - -

AB ABC -

D - -

AD ACD ADE

BD - -

ABD ABCD ABDE

In the table, denotes an ineligible effect.

According to the algorithm, we start from the first column of the added 

factors. The first eligible effect in this column ABC is selected as a 

generator. Then an eligible effect from the second column is selected 

in such a way that its generalized interaction with ABC is also eligi­

ble. Here two such effects are available, ADE and ABDE and their 

generalized interactions with ABC are BCDE and CDE respectively 

which are eligible. As there are no more columns to search, we get the 

corresponding generating equations given below:

I = ABC = ADE = BCDE
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and

I = ABC = ABDE = CDE

Each of these equation generates a different fraction meeting the es- 

timabilitv requirements. Then we come to step 11 and select the next 

available eligible effect in the first column, ACD and the search of the 

second column is repeated. The generalized interactions of ACD with 

ADE and ABDE are CE and BCE respectively which are not eligible 

effects. Hence we discard the contrast ACD. Again the next eligible 

effect in the first column, ABCD is selected and the procedure is re­

peated. It does not produce any suitable group of defining contrasts 

and we discard ABCD. As the first column is exhausted, the search 

procedure is terminated. There is no need to choose another set of 

basic factors, because if we choose any set of basic factors, it produces 

again the same groups of the defining contrasts.

In the next section we show that the algorithm generates all suit­

able smallest fractions of a factorial design. That is, it generate at least 

one fraction and also given am acceptable set of generators, we show that 

the algorithm generate an equivalent set of generators which produces 

the same fractional design as that of the given set.
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3.4 JUSTIFICATION FOR AN ALGORITHM (3.3.1)

In this section, we show that the algorithm described in section 

3.3 produces all possible appropriate fractions, i.e. it produces at least 

one suitable fraction (if exists) and any appropriate fraction can be 

generated through this algorithm.

We observe that, when the search of all the columns has been 

completed, an appropriate set of defining contrasts has been found (if 

at least one exists). To see this, note that, each of the p selected 

defining contrasts contains exactly one added factor Aj among all the 

added factors (because one defining contrast is selected from each of 

the columns corresponding to the added factors Aj). Therefore, if any 

two particular defining contrasts contain the added factors Ai and Aj 

respectively then their generalized interaction contains both factors Ai 

and Aj while any of the remaining p — 2 contrasts do not contain any of 

these two factors. Thus, it follows that none of the p defining contrasts 

is a generalized interaction of any other selected contrasts and hence 

they all are independent. Moreover, we have checked in step 9 that 

all the generalized interactions among these defining contrasts are eli­

gible effects. Thus, a group of size 2P formed by these selected defining 

contrasts, their generalized interactions and mean effect I is suitable 

for forming the generating equation giving rise to an appropriate frac­

tion. Thus, it is clear that the algorithm produces at least one suitable

66



fraction.

Further, we show that any given fraction can be generated through 

this algorithm.

Consider a fraction with a particular set of p independent defining 

contrasts, Di, i = 1,2, ...p.

Case 1: Suppose we are able to find p added factors Ai, (i = 1,2, ...p) 

such that the IVs can be written in the form

Di = BiAi (3.2)

where Ai are the added factors and Bi represents a set of basic factors 

i.e. exactly one added factor Ai occurs in each of the defining contrast 

Di, (i = 1,2, ...,p). Since the algorithm generates all acceptable frac­

tions arising from a particular set of added factors, obviously, it will 

generate this particular fraction.

Case 2: Suppose we are not able to find p added factors Ai, (i = 

1,2, ...p) such that (3.2) holds. Then using the following algorithm we 

can generate an equivalent set of generators, say D*, (i = 1,2. ...p) such 

that (3.2) holds for D- , (i = 1,2, ...p). The word ’equivalent’ means 

that these D?1 s will generate the same fraction as the one generated by 

given Di s.

3.4.1 THE ALGORITHM

We input a particular set of p independent defining contrasts 

corresponding to the given fraction Di, (i = 1,2, ...p) into the following 

algorithm to find a set of added factors A+ (i = 1,2,...p) as explained
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in the previous paragraph.

Step 1: i — 0.

Step 2: Increase i by one. Select a factor Ai from D{. If i = p then 

move to step 4.

Step 3: For j = i+1, ...p, if Ai appears in Dj then replace Dj by D{Dj. 

This gives again an equivalent set of p independent defining contrasts 

and Ai does not occur in Dj for; 2r. Return to stop 2.

Step 4 : For j = 1, ...,i — 1, if Ai appears in Dj then replace Dj by 

DiDj . This ensures that Ai does not occur in Dj unless i = j.

Step 5 : If i > 2 decrease i by one and return to step 4. If i = 2 stop 

the process.

At the end, we get an equivalent set of defining contrasts say, D|, 

(i = 1,2, ...p) and p added factors Ai (i = 1,2, ...p) such that exactly 

one of the p added factors appears in each of the defining contrasts, 

remaining are the basic factors, and case 1 applies. Note that, Dj and 

Dl are the members of a defining relation, hence generate the same 

defining relation.

We illustrate the above algorithm with the help of the following 

example.

3.4.2 EXAMPLE 4

Consider an example of a 2s"2 design with the defining contrasts 

ABC, BDE and ACDE respectively.
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Stepl : Let D\ = ABC and D2 = BDE be two given independent 

defining contrasts.

Step 2: Select factor B from ABC.

Step 3: Since D2 = BDE contains B, replacing D2 by D1D2 = D2*, 

we get D2 — ABC X BDE — ACDE. Now we have an independent 

equivalent set of defining contrasts ABC, ACDE respectively. Let 

j = 2 and go to step 2. Here, we select factor A from D2* = ACDE. 

Step 4 : Since D\ = ABC contains A, replacing D\ by D1D2* = 

Di*(say)(by step 4 in the algorithm), we get D\ = ABC x ACDE = 

BDE.

Thus, at the end, we get an independent set of defining contrasts 

ACDE, BDE with A and B as added factors and C, D and E as basic 

factors. Note that the defining relation

I = ACDE = BDE = ABC

is same as the one generated by the given defining contrasts ABC and 

BDE.

In the next section we discuss an another method of obtaining 

added factors and basic factors for given a defining contrasts.

3.4.3 ALTERNATIVE METHOD

The given defining contrasts Di, i = 1,2, ...p are written in the 

form of a p x n matrix, where corresponding to each Di, there is a row 

and corresponding to each factor there is a column. The (i,j)th entry 

equals one if jth factor occurs in Di, otherwise it is equal to zero.
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To obtain the added factors, we apply elementary row operations 

followed by a permutation of columns to the matrix such that it reduces 

to the form (/ X ), where I is a p x p identity matrix and X is a p 

X (n — p) matrix. Since each factor occurs exactly once in the defining 

contrasts, the factors corresponding to the identity matrix are the added 

factors and the rest are the basic factors.

The above algorithm is illustrated with the following example. 

EXAMPLE 5

Consider a 25-2 design with the defining contrasts D\ = BDE 

and D2 — ACDE. Then the matrix described above is,

A B C D E
( \

Di 0 1 0 1 1

D2\ 1 0 1 1 1

Then, interchanging the first and second columns, the reduced 

matrix is ,

Di

D2

(
B A C D E

10 0 11 

0 1111 

= (/ X)

\

where I is 2 x 2 identity matrix and X is 2 X 3 matrix, 

where,

X =

/

'oil

111
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Thus, the factors B and A corresponding to the identity matrix are the 

added factors and the remaining namely, C , D and E are the basic 

factors. Then from the argument at the beginning of this section it fol­

lows that the corresponding fraction can be generated by the algorithm 

of section 3.3.

In next section we compare Greenfields and Franklin and Bailey 

algorithm which is illustrated with an example.

3.5 COMPARISON WITH GREENFIELD’S ALGORITHM

If we choose any arbitrary set of basic factors, it may not always 

be possible to generate all suitable designs.

In section 3.2, we have seen that in Greenfield’s algorithm the 

first (k — p) factors are always selected as the basic factors. Therefore, 

it can be seen that the algorithm always does not produce the smallest 

fraction. For an example, it is shown in section 3.2.4 that it fails to 

generate a suitable fraction for a 25-2 design with the requirements set

{ABC D E AD AE} (3.3)

Therefore, the algorithm is modified for the selection of alternative set 

of basic factors. That is, we have to select the majority factors that 

is those which occur most frequently in the requirements set. Further 

this algorithm picks out atmost one acceptable fraction.
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On the other hand, in Franklin and Bailey’s algorithm described 

in section 3.3., we have seen that the algorithm examines all sets of 

basic factors for generating FFD’s. If the current selected set fails to 

give a suitable fraction, then we can select a new set of basic factors 

until we get all possible suitable fractions.

The example given next illustrates the above points.

EXAMPLE 6

Consider the problem of construction of a 25-2 design with the 

same requirements set given in (3.2.4). The corresponding ineligible set 

is

{I, A, B, AB, C, AC, BC, D, AD, BD, CD

ABD, ACD E, AE, BE, CE, DE, ADE, ABE, ACE, }

Suppose we select A, B and C as the basic factors and D, E as 

the added factors. According to Franklin and Bailey’s algorithm , we 

arrange a twoway table as displayed on the next page :
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Table 3.3.2

Basic

effects

Added factors

D E

I - -

A - -

B - -

AB - -

C - -

AC _ -

BC BCD BCE

ABC ABCD ABCE

denotes an ineligible effect.

Applying Franklin and Bailey’s algorithm, it is easy to observe 

that it fails to produce a suitable set of defining contrasts for generating 

a 25-2 design. So, we choose another set of basic factors namely, A, C, D 

and let B, E be the added factors. Then the required two-way table is 

Table 3.3.3 displayed on the next page.

Again applying the algorithm, we obtain all possible sets of defin­

ing relations as follows,

I = ABC = CDE = ABDE 

I = ABC = ACDE = BDE
(3.4)

Note that, both the defining relations contain the generator ’ABC\
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Table 3.3.3

Basic

effects

Added factors

B E

I - -

A - -

C - -

AC ABC -

D - -

AD - -

CD BCD CDE

ACD ABCD ACDE

REMARK 1 :

A careful observation of the algorithm reveals that for a particular 

set of basic and added factors, it is not possible to generate any fraction 

in which a basic effect is one of the defining contrasts because one of the 

added factors is always appended to a basic factor to form a defining 

contrast. Therefore, it follows that, if basic factors are selected such 

that all the basic effects belong to an ineligible set, then this set of 

basic factors generates all possible fractions. In the above example, 

we observe that both the quarter fractions have ABC as one of the 

defining contrast. Therefore, in example 6, if we select A, B,C as the 

basic factors, ABC being a basic effect, it does not generate any of the 

fractions given in (3.4). However, if we choose the set of basic factors 

such that all the basic effects belong to the set of ineligible contrasts, e.g.
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any of the sets {A,B,D}, {A, C. D}, {A,D,E}, {AyB>E}t {A}C}E} 

then such a set produces all suitable fractions and it is not necessary to 

choose any other set of basic factors. Thus a criterion for choosing the 

set of the basic factors should be that the set for which all the basic 

effects belong to the set of an ineligible contrasts.

REMARK 2 :

The Greenfield’s algorithm discussed in section 3.2 does not pro­

duce a suitable design which involves both fractional replication and 

confounding. But Franklin and Bailey’s algorithm described in section 

3.3 can be used to produce such designs. To generate such designs, it re­

quires that the effects are eligible for the selection of defining contrasts 

as well as confounded effects. Such designs are obtained by repeating 

the application of Franklin and Bailey’s algorithm after the required 

fraction has been obtained.

Consider a 2k~p fraction arranged in 2r blocks of size 2k~p~r. 

There are 2^—1 defining contrasts and 2p(2r — 1) confounded effects. 

These are obtained by applying Franklin and Bailey’s algorithm twice, 

initially we have to find p defining contrasts to generate the fraction and 

then r effects to arrange it in 2r blocks by applying the same procedure. 

Thus, there are 2p+r — 1 defining contrasts and confounded effects.

In the next Chapter, we focus on the concept of Minimum Aber­

ration Criterion (MAC) for selecting a good fractional design, when the 

information regarding eligible and ineligible effects is not available.
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