
CHAPTER IV

APPLICATION OF ARTIFICIAL NEURAL NETWORK 

IN DISCRIMINANT AND REGRESSION ANALYSIS

4.1 INTRODUCTION

In previous two Chapters, we developed and discussed the 

theory associated with single layer and multilayer ANN models. 

We also discussed how these models are useful in certain types 

of pattern recognition and classification problems. Now, the 

purpose of the present Chapter is to discuss how based on the 

theory presented in Chapter II and Chapter III, ANN models offer 

an entirely novel Statistical data analysis tools.

First, in Section two, we are concerned with an application 

of ANN in Discriminant analysis. Since ANN models are extremely 

powerful in pattern recognition problems, it is but natural to 

exploit their use in Non-linear Regression problems. In Section 
three, we devote our discussion to this aspect. We compare the 

performance of regression models- linear as well as non-linear 
models with that of neural networks with the help of simulated 

and live examples. We conclude this Chapter by discussing, when 
it is advantageous to use this type of model in place of 
regression model.
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4.2 ANN AND DISCRIMINANT ANALYSIS

The problem of discriminant analysis is as follows :

Suppose there are two distinct p-variate populations n and n .1 2

The problem of discrimination is to decide whether an individual 

belongs to n or based on the basis of a p-component vector of 

variables x. The process of obtaining a solution to this 

problem proceeds on the following lines :

Let R denote the entire p-dimensional space in which an
observation x falls. Divide this region R into two distinct
regions say R and Ri 2 (R = R UR).2

Then a rule or procedure such as

If x £ R , assign an individual to 0i i
and

If x £ R , assign an individual to n ““2 2

is called a 'discrimination' or 'classification' rule.

In order to obtain an optimal discrimination rule, it is assumed 

that (Kshirsagar, 1972) X and Y are p X n and p X n matrices
i 2

of the sample observations from n which is N (u ,Z) population,
i P -l

and n , which is N (u ,£) population respectively. Then the2 p —2
Fisher's best linear discriminant function is given by V x and 

the classification rule is :

assign the individual with measurements x to n or n— 1 2
according as
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1'x - --- 1' (x + i) > 0 or <02 (4.2.1)

-iwhere 1 = f s d, d = x - y and s = SSSP matrix based on f

degrees of freedom (f = n+n-2).1 2
At this stage, we draw the similarity between 1*x and ANN 

modelling. For this, note that l'x is a 'linear classifier'. 

Further, one can immediately observe the similarity between

(4.2.1) and the rule given in (3.2.2) namely

w' x = •
" > o, x £ n

V. 1< o, x £ n—i 2
(4.2.2)

We recall that the theorem which we have proved in Section

(3.2) with such a rule, states that a single layer ANN with the 

learning procedure given in Section (2.3) always correctly 

classifies the pattern x to appropriate class.

This fact indicates that a single layer ANN can therefore be 

used for discrimination purpose as an alternative tool to 

Fisher's discriminant function. Below we demonstrate the use of 

ANN in such situations.

Example 4.1 : Consider the data collected by Fisher (1936) 

(reported in Kendall (1980)) in his classical paper on 

discrimination. Data contains two different species of flowers 

namely: Iris Setosa and Iris Versicolor, distinguishable on the 

four variables (petal length, petal width, sepal length and sepal
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width).
Let x denote the vector of variables then the discriminant 

function for these variables is l'x where
1 = (-3.0692, -18.006, 21.7641, 30.7549)'

Then using the above rule we observe that all the 50 

observed patterns x are correctly classified into appropriate 

classes. Hence, the observed error of misclassification is zero.

Now, consider the single layer ANN model with sigmoid 

activation function (2.3.4) presented in Fig. 4.1

Inputs

Figure 4.1 Single Layer ANN Model for Fisher's Data.

Here, Iris Setosa and Iris Versicolor are two populations 
correspondina to class fl and n respectively. For training the

i 2

ANN, we have selected 25 input vectors from Fl and 25 from II .1 2
Further, the vectors are normalized, since it is a requirement
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for implementing the ANN effectively. With this set, the network 

is trained using the training rule given in Section (2.3). The 

weights are obtained (by using program 'SANN' enclosed in 

Appendix B) as follows :

w -2.431, -4.85, 3.18, 5.56,-7.251
t

Thus, we have ANN discriminatory rule as

If w' x > 0.5 then x € n~ — i
A

If w'x < 0.5 then x e n
— — — 2

Now, to check the validity of trained network, we have

selected remainina 25 observations from n and 25 from n . Fori z
this set, we observed that, these observationsalso correctly 

classified into appropriate classes.

For this particular example, we see that, by using both 

neural network and discriminant analysis, the observations are 

correctly classified. However, we note that for using ANN 

models, we do not need any assumptions such as Normal 

distribution, equality of two covariance matrices etc. And, this 

is an important advantage over the traditional method.

4.2.1 Use of ANN As a Linear Classifier In More Than Two 
Population Problems

Below, we demonstrate how ANN model can be used for a 

classification problem, when there are several populations. As
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is well-known, when there are more than two classes, an elegant

solution like Fisher's discriminant function in the case of two 

populations, is not possible (Kshirsagar, 1972, pp 354). 

However, several statistical procedures for this problem exist 

(Anderson, 1958). Usually, while deriving optimal classification 

rule, one needs to assume the underlying distributions as 

multivariate normal for each population and with the same 

variance-covariance matrix. And, hence alternative methods such 

as ANN models which do not need such assumptions are preferred. 

Here, we discuss how a simple single layer ANN can be used in a 

classification problem, when there are more than two groups.

For the classification problem when there are R populations, 

we have developed the following modified form of ANN model and 

it is shown in Fig. 4.2

Inputs

Figure 4.2 Single Layer ANN with R-output Units
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Here, x = (x ,x , ...,x )' denotes an n-dimensional1 2 n

input (observation) vector and upon receiving an input x, the 

network produces R outputs as shown in the output layer. The 

above network is trained with the rule given earlier, by using a 

given training set •{ (x ,d), i=l,2,...,P } of P patterns where
l t

new d = (0,0,...1,0,...,0)' is a desired or target vector
i.

containing elements 0 or 1 (1 occurs at j-th position when an

observation vector x comes from FI , j =1,2,...,R, and 0
J

otherwise).

As an illustration of the above model, we present the

following example :

Example 4.2 : Consider Fisher's data on three species (Iris

setosa, Iris versicolor and, Iris virginica) with four variables

(two species are reported earlier).

Now, consider the single layer ANN model useful for three 

population classification problem as shown in Fig. 4.3.

For this problem, the desired output d for a network in a 
modified form is taken as follows :

The outputs are represented as (1 0 0), (0 1 0), and (001) 

if observation x comes from class n ,n , and n respectively. In12 3

this example, three populations n ,FI , and n are three species of12 3

Iris setosa, Iris versicolor, and Iris virginica respectively.
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Fixed Input
x0 = -l

*4

Figure 4.3 ANN Model For Three Population Problem

For training the ANN model in Fig. 4.3, the selected 

training set contains 75 observations (Data are available in 

Kendall, 1980) from three populations with their corresponding 

desired output as given above. With these observations, the 

above network is trained.

For checking validity of trained network, we used the data 
set of 50 observations from these three populations. We observed 

that, observed error of misclassification is almost equal to zero 

for this data set. This implies that, all selected set of 
observations are correctly classified into appropriate classes.

93



NOTE: We obtained results of Example 4.1 and 4.2 after executing

program in 'C' language enclosed in Appendix B. Once again we 

note that the ANN approach works 'efficiently' in the absence of 

any assumptions.

4.3 ANN AND REGRESSION ANALYSIS

Regression is used to model a relationship between response 

and stimulus variables. The stimulus (or independent variables) 

are denoted by x. . The response (also called outcome or 
dependent variable) variable is denoted by y. One of the main 

objectives of regression analysis is to predict response y from 

the variables x. .
i

The general form of regression model is

y = f(x'ft) (4.3.1)
where

x = (x , x , . . . , x )*
12 n

and

£ ■ ..W
are the vectors of independent variables and parameters (or 
coefficients) associated with the model respectively, and f(.) is 

a function which relates x to y (to be consistent with our 

earlier notations, we are using the symbol n for n-covariates
rather than the traditional 'k').
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As a starting point, in many situations, f(.) is taken to be

a linear function of x. Moreover, we note that if the underlying 

distribution is Normal, then such a choice of linear function is 

quite adequate. Under the assumption of linear relationship, the 

model (4.3.1) becomes

y = x' ft + £, (4.3.2)

where e is a random error component. Eq (4.3.2) is called the 

'multiple linear regression' model with n regressors and the

parameters ft's (i = 0,1,2, . . . , n) are called 'regression
i

coefficients'.

Once the model is proposed, the next objective is to 

estimate the coefficients ft 's. To find the coefficients, we
i.

must have a dataset that includes the independent variables and

associated known values of the response variables. For finding

or estimating these coefficients, different methods are

available. One such well-known method is 'Least-Squares method'

of estimation. Using this, we estimate the coefficients as 
follows :

Least-Squares Method of Estimation

Suppose that p > n observations are available and let y
.i

denote the jlh observed response. Let x denote the ilh
jt

observation on regressor x . We assume that the error term s inj
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the model has mean 0 and constant variance a , and the errors are 

uncorrelated.

We may write the model corresponding to (4.3.2) as

o

= +

+ ft X. + ft X. + ,1 jl 2 j2n
. . . + ft 1

S ft X + £ for }
L i. j1- j

ri m j

i =1
(4.3.3)

The above model can be written in matrix notation as

Y = X/3 + £, (4.3.4)

where y is a (P X 1) vector of observations, X is (P X m) (where 

m=n+l) matrix of observations on regressor variables, ft is (mXl) 

vector of regression coefficients, and s is a (P X 1) vector of 

random errors.

Consider the following residual sum of squares E

s Pz, p >n

P

J=1

(4.3.5)

Now, we wish to obtain ft 's which minimizes (4.3.5).
V

Equivalently, (4.3.5) can be written as
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E = (Y - X£)' ( Y - Xft) (4.3.6)
Then, the problem is to obtain

"T (Y- X/?)' (Y - Xtf) (4.3.7)
/j -

A

A solution /? which minimizes (4.3.6) is given by

(X'X) ft = X'Y

A vector ft is called 'Least-Square(LS) estimator' of ft. In 
particular, if (X'X) 1 exists, then

A
ft = (X' X )_1 X' y (4.3.8)

Using the above LS estimator, the fitted regression model is 

given by
y = rft

For checking the adequacy of fitted model, several measures 

are available. There is vast literature available on this topic 

(Draper, C., and Smith, 1981; Cook and Weisberg, 1982).

4.3.1 Problems Associated With Regression Models

We first note that, in regression models, a functional form 
is imposed on the data. For instance, in the case of multiple 

linear regression model, this assumption is that the response is 

related to a linear combination of the independent variables. 

Naturally, if this assumption does not hold, it will lead to an

97



error in prediction. Also, there are some more assumptions like, 

the error term e has mean zero and constant variance o', errors 

are uncorrelated and are normally distributed and so on. The 

assumption of constant variance is a basic requirement of 

regression analysis. If error variance is nonconstant, the 

regression coefficients will have larger standard errors than 

necessary. Unless these problems are overcome regression models 

will not be effectively useful.

So quite obviously, if there exists an alternative tool 

which assumes less but serves the purpose will definitely be 

preferred over regression model and precisely here for the 

reason mentioned earlier the ANN models will do this job (Warner 

and Misra, 1996). Further, as discussed in Chapter III, a two 

layer feedforward network with sigmoid activation function is a 

best approximator, for it can approximate any function to any

degree of accuracy (Cybenko, 1989). Thus, a neural network is

useful when we do not have any idea about the functional
relationship between the dependent and independent variables.
Below, we discuss how ANN can be used to model the relationship 
between response and independent variables.

4.3.2 ANN Model For Regression Problem

A regression model with n independent variables discussed
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above is similar to a single layer feedforward neural network as

shown in Fig. 4.4

Figure 4.4 ANN model for Regression Analysis

Here, the independent variables x,'s (i = l,2,...,n)

correspond to the input of the neural network and y acts as the

desired output. The regression coefficients ft's correspond to
i.

weight's w.'s in the neural network. And finding estimates of
\.

regression coefficients is similar to estimating weights of ANN. 
In general, from the theory presented in Chapter II, it follows 
that any linear regression model can be mapped into an 

equivalent single layer neural network of the type discussed in 

Section (2.3) (Warner and Misra, 1996).
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In the following, we present some examples to demonstrate

the use of ANN as an alternative approach to regression analysis.

Example 4.3 : To compare linear regression model and ANN model, 

we have generated a data set on (y,x) where y and x are related 

as follows:
y = 10 + 20x (4.3.9)

Fifty random samples were obtained by generating 50 random 

error terms from a normal distribution with mean 0 and variance 
30 and adding these to y values of data set. Here, the values of 

x were randomly selected from the U(10,100).

First we will fit the linear regression model to the 

generated data. The model is

y = ft + ft x + s o 1

and estimated ft.'s (i=0,l) are ft = -0.5 and ft = 20.3. Theo 1
fitted line, y = ft + ft x alongwith the scatter plot of y vs x is 

shown in Fig. 4.5. As expected the scatter plot, it can be seen 

clearly that y and x are linearly related and the proposed model 
is a good fit (R2 = 0.98).

Now, consider a single layer ANN structure as an alternative 

way of modelling the data. This is done since we know that there 

is a linear relationship between y and x . To this end, 
consider the ANN model as given in Fig. 4.4.
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Figure 4.5 Regression Curve
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Figure 4.6 Neural Network Output versus x



The above generated data set is used to train 

For this, the vectors in data set are normalized, 

the above network, we have used training rule 

Section 3 of Chapter II, and the software which is 

Appendix B.

After training the network, estimated weights 

as follows :

the network. 

For training 

discussed in 

enclosed in

are obtained

w £ -0.0027, 2.0251

The Fig. 4.6 shows the results from implementing the neural 

network (that is, the plot of output of neural network vs x). In 

Fig. 4.7, the dots represent the regression curve and solid line 

shows the results from the neural network. This example clearly 

indicates that, the neural network adequately approximates the 
linear relationship between y and x.

Figure 4.7 Comparison Between Regression and ANN Output
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Further, for checking adequacy of the model, a separate set
of 100 values on x were generated and applied to the regression 

model and the trained neural network model. To measure the 

predictive performance of ANN model, the sum of squared errors 
V ( y - y )2 (where y 's are observed and y 's are predicted
" v i i. v
values) was computed and these are 0.041 and 0.035 for the 

regression and neural network model respectively. So the 

predictive performance of both the models was approximately 

equal.

NOTE: We note that, in the absence of a priori knowledge of 

relationship between y and x the above problem of extracting the 

relationship has to be dealt with a two layer feedforward neural 

network with more than one hidden units and sigmoid activation 

function. We have used 4 hidden units and the network was 

trained using back-propagation training method (discussed in 

Chapter III). However, since the above problem is linearly 

separable, a single layer ANN is just sufficient and there is no 
need to use complex ANN structures.

Non-linear Modelling

The real power of ANN models lies in capturing the 
non-linear relationship among the variables and as discussed in
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Chapter III, the multilayer neural network models are necessary

for this type of relationship. Below, we illustrate the same.

Example 4.4: To illustrate how ANN can be used in extracting 

nonlinear relationship between y and x, we consider the following 

function
y = xZ (4.3.10)

Here, fifty random x values from U(-l,l) were used to 

generate data. The true curve for above function is shown in 
Fig. 4.9.

For the above case, two-layer feedforward neural network 

with five hidden units and sigmoid activation function is used 
and it is shown in Fig. 4.8

Figure 4.8 Two-Layer Feedforward ANN With Five Hidden 
Units.
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Figure 4.9 True Curve

Figure 4.10 Network Output versus x
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After training the ANN by using the software given in
Appendix C(2), we obtain following weights :

For the sake of simplicity, we present the weights in matrix 

form. The matrix V denote the weights connecting from input to

hidden units are :

-6.129 -4.65 -4.95 3.09 -3.64 0.752
v = 1.986 4.812 -5.45 0.22 -0.183 0.861

and the matrix W denote the weights which are connected from

hidden units to output units are:

w = 2.864 2.925 -3.772 1.61 -1.99 -5.807

Fig. 4.10 shows the results from implementing the neural 

network (i.e. plot of actual output of network vs x). From Figs. 

4.9 and 4.10, it is observed that the neural network curve and 
true curve are 'closer' to each other.

Example 4.5: Consider a more complex nonlinear relationship 

(Warner and Misra, 1996)

y = 20 exp (-8.5 x) [log (0.9 x + 0.2) + 1.5] (4.3.11)

Fifty random x values between U(0,1) were used to generate 

data. A random component consisting of normally distributed 
error terms with mean 0 and standard deviation of 0.5 were added 

to each y value. The Fig. 4.12 shows the true curve of above 
function.
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Figure 4.13 Network Output versus x

Figure 4.12 True Curve
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Clearly, this problem would be difficult to model using

regression technique, and would require some techniques of 

variable transformations. Most of these transformations assume 

power or logarithmic transformation. But it is easy to 

understand the functional relationship between independent and 

dependent variable with the help of ANN, without making any 

transformation.

Consider the neural network model with eight hidden units 

presented in Fig. 4.11 and was trained on the above data.

Figure 4.11 MFN With Eight Hidden Units

108



The result plotted in Fig. 4.13 (i.e. the plot of actual output

of network vs x) and it is observed that this curve is 'closer' 

to curve shown in Fig. 4.12. Thus the ANN model captures the 

relationship adequately.

In the following we present a live example.

Example 4.6 : Consider the data collected by Rayan, Joiner and 

Rayan (1976) reported in Cook and Weisberg (1982, pp. 66). The 

data consists of measurements on the volume V, height H, and 

diameter D at 4.5 ft. above ground level for a sample of 31 black 

cherry trees in the Allegheny National Forest, Pennsylvania. The 

data were collected to provide a basis for determining an easy 

way of estimating the volume of a tree using its height and 

diameter. Since the volume of cone or cylinder is not a linear 

function of diameter, a transformation of volume is likely to 

result in a fit superior to that provided by the untransformed 

data.

On the other hand, without making such type of 
transformation, using the ANNs we obtained similar results (using 
the original data). For this, we have used two-layer feedforward 

network with eight hidden units and sigmoid activation function 
(1.3.7), and network is trained using software enclosed in 
Appendix C(2).
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NOTE : 1. Generally, the knowledge of functional form is

unknown a priori and hence, for a given problem, one should 

always start with a Two-layer Feedforward ANN with more than two 

hidden nodes. Therefore by trial and error one can determine an 

optimal choice of hidden nodes.

2. In Examples 4.4, 4.5, and 4.6 though we have used ANN with 

five, eight, and eight hidden nodes respectively, one can always 

use more than two hidden units.

4.4 CONCLUDING REMARKS

From the above discussion, it can be observed that neural 

network is indeed useful when one does not have any idea of 

functional relationship between the dependent and independent 

variables. Also, this approach requires no distributional 

assumptions, (precisely for this reason, ANN approach is called a 

'Model-free' or 'Distribution-free' approach). If functional 

relationship between dependent and independent variables is known 

a priori, obviously better way is to use regression model. 
Further, we observe that, there are some difficulties associated 
with neural networks such as choosing the number of hidden 

units, the learning parameter n, the initial starting weights, 
the choice of objective function and deciding when to stop 

training etc. The process of determining appropriate values for
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these parameters is often an experimental process where the

different values are used and evaluated. And the problem in this 

process is that it is very time consuming, especially when neural 

networks are known to have slow convergence rates.

Before concluding this Chapter, we would like to mention 

that a lot of research is required in this field regarding how to 

measure the performance of ANN models, what are the effects of 

'outliers' on the weights, how many independent variables should 

be included in the structure and so on, and we have plans to work 

on these problems.
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