
CHAPTER V

ARTIFICIAL NEURAL NETWORK AND TESTING OF HYPOTHESIS

5.1 INTRODUCTION

It is a known fact that the hypothesis testing problem 

covers a very broad area of applications such as detection, 

classification and pattern recognition. Due to the significance 

of these types of applications, there has been much interest in

developing neural network structure for hypotheses testing, In

this Chapter, we will discuss the use of ANNs for solving 

hypothesis testing problems and the discussion is based on recent 

article by Pados and Papantoni-Kazakos (1995). Before we 

proceed, for the sake of completeness we give some notations and 

terminology regarding testing of hypotheses problem.

The problem of testing of hypotheses may be described as 

follows :

Let x = (x ,x ,...,x )' be a random sample from a pdf g,(.)1 2 n (3
belonging to a family of distributions | g^( . ), <9 <= © c R*: j-.

Let © ={<9 ,9 } and consider two hypotheses o 1

h : e = e
o o

versus h : e = e
t i
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For testing H against H , let <£(x) be a test function of the o i

form

1 , if X € R

0 , if X <= A

where R and A denote the critical region and acceptance region 

respectively. Obviously, two types of errors are associated with 

such a test which are as follows :

1. a = P,,[ type I error ] = P,F reject H ], for all 9 «= ©a 9 © o

2. = PJ type II error ] = P. [ accept H ],>p & Bo

for all Q <— ©
i

Further, the power function is defined as

E $(x) = P [ x e R ], for all 6 <= && &

Now, for hypotheses testing problem where H and H are bothO i
simple, let | g^(.), 6 <e & |, where & = ,^3- / be a family of

possible distributions of x , and let us write g (x)=g. (x) ando Qo
9 (x)=9-, (x) for convenience. Then Neyman-Pearson lemma 1 H z

(Lehmann, 1986) offers a Most Powerful(MP) test $(x) for a given 

a which is of the form
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1
$(x) « i-'(x) 

0

if g (x) > k g (x)i o
if g (x) = k g (x) 1 o
if g (x) < k g (x)i o

for some k > 0 and 0 < v(x) < 1 and E (#(x)) <*♦HO

As is well-known, the theory of testing of hypothesis is well 

developed and it is excellently documented in Lehmann (1986). 

So, we do not discuss further this topic and proceed to present 

an application of ANN modelling in testing of hypothesis 

problems.

We note that in the above approach, one needs the knowledge 

of distributional form(function) of x under H and H . Clearly,G 1

in the absence of such knowledge, one cannot implement the above 

test procedure. Of course many other alternative procedures 

(such as Non-parametric procedures) exist. Recently, Pados and 

Papantoni-Kazakos (1995) made an attempt to offer neural network 

solution for testing of hypothesis problem.

In this Chapter, we focus our attention to use of ANN for 

testing simple versus simple hypothesis. In Section 2, we 

describe the ANN model proposed by Pados and Papantoni-Kazakos 

(P-PK) (1995) for this purpose. In Section 3, P-PK learning rule 

is discussed. At the end, an example is given to illustrate the 

theory followed by concluding remarks.
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5.2 ANN MODEL FOR HYPOTHESES TESTING
Pados and Papantoni-Kazakos (1995) designed a different kind 

of ANN model shown in Fig.5.1 for testing a simple versus simple 

hypotheses.

Figure 5.1 ANN Model for Hypothesis Testing problem

In the above model, x = (x ,x ,...,x )' denotes the input vector,12 n
o = (o ,o ,..,,o )' denotes the output vector in the hidden1 2 n
layer, and final output of network is denoted by y .

Here, we note that structure of the ANN model as shown in

Fig.5.1 differs(i.e. here x.'s are connected only to o.'s ) fromi i.
the earlier models which are discussed in Chapter II and III. 

However, the rule associated with this model is similar to that
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given in (2.2.2). Here the rule for computing the o.'si. is as

follows :

1 , if f (x ) > T
o = «

i. i (5. 2.1)
i.

0 , if
X.

f (x ) < T.
1 l

where f(x ) is an activation function (performedt on input x. ) and

T is
1.

its threshold value. Regarding the output of neuron F, its

input consists of all the outputs produced by the previous

neurons o.'s { i
i.

= 1,2, . . .,n), and let y be theF output(which is

the final output of ANN ) computed as follows :

y = -
1 , if f (o) > TF ~ F (5. 2.2)F 0 , if f (o) < TF F

V

where f (.) is an activation function (may be different fromF

f(.) ) and T is the corresponding threshold value. Since theF

objective of this network is hypotheses testing, following 

convention will be used for finding final output of network :

y = 1 , when the network decides that its input x comes fromF
hypothesis H .

y = 0 , when the network decides that its input x comes fromF
hypothesis Ho
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The crucial part of the theory developed by the Pados and

Papantoni-Kazakos (1995) is about choosing the activation 

function f(.) and f (.) which are called as 'suitable testingF
functions' or 'suitable functions'. Below we discuss the same.

5.2.1 Suitable Testing Functions 

Definition 5.1 :

Let H and H be any two hypotheses. Then, a function f(x) is o i
called 'suitable' for the specific hypothesis testing problem, if

P( f(x) > T) > P( f(x) > T), l o

for any T <= inf
x f(x) sup

X f (x)

(5.2.3)

To illustrate the above definition, consider the following 

example :

Example 5.1 : Consider a class of hypotheses testing problem for

testing H versus H as o 1

Let

H : X ~ g (x) VS H : X ~ g (x-Q)
O O 1 o

for some 0 > 0

f ( X ) = X
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Then, (5.2.1) become,

f1 ' if x > T
o = l 0 * if X < T

From the Definition (5.1), it can be seen that above test

function f(x) for testing H versus H is suitable becauseo 1

P (X > T) > P (X > T), for every real T 
t o

This implies that, any strictly monotonically increasing function 

f(x) is suitable.

REMARK 5.1 : From the above Example, it can be observed that

any strictly monotonically increasing function is suitable. 

Therefore, frequently used sigmoid function is used as a testing 

function.

Below, we prove the Proposition for obtaining testing 

function f (.).F

Proposition 5.1 : If f(x) is suitable (in the sense described

in Definition (5.1)) then the test function for the neuron F is
n

f (o) = E w.o. , w > 0 for i = 1,2, . . . ,nF “ i l. i.
i. = 1

a suitable test function for any arbitrary hypotheses testing 

problem.

118



Proof : We have

o =
1 , if f (x ) > T i. i.
0 , if f (x. ) < T.

for all i = 1,2,...,n
(5.2.4)

Since f(x. ) is suitable function, we have

P ( f(x. ) > T.) > P ( f (x. ) > T.) , i = 1, . . . ,n it i o t. i

This implies

P ( o = 1) > P ( o =0), for all t = 1, . . . ,n1 i o i

then for w >0
t

P(wo > T ) > P ( wo >T) for all i = l,...,n1 i i. F Oil F

This implies that

p( r wo
1 , i

>T)>P(rw.o. > T )F o li. F1=1
r

for any T eF

(5.2.5)

Therefore
ri

f»(fi) = E w.o. , (5.2.6)
r tv.i. = 1

is suitable for any arbitrary hypotheses testing problem.

a
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Once the suitable test functions f{.) and f {.) are selected, theF

next task is to train the network using a learning rule. We note 

here that Pados and Papantoni-Kazakos(P-PK) (1995) have pointed 

out that the traditional back-propagation learning rule is not a 
good choice for this problem and hence they have proposed a new 

rule which uses Neyman-Pearson approach.

5.3 P-PK LEARNING RULE

Consider the model presented in Fig 5.1. Assume that

training set consists of a set of observations from hypothesis

H , denoted by vector x = (x ,x ,...,x )' and set of1 “J Ji }2 jn
patterns from hypothesis H, by z = (z,z,...,z)', j =o j ji )2 ,ir>
1,2,...,P. The rule associated with the hidden layer neurons is 
given by

1 , if f (X ) > T i. i
0 , if f (x ) < T

l l

for i = 1,2,... ,n

where T ’s (i = 1,2,...,n) are threshold parameters. Then, the
l.

decision rule at neuron F is proposed as follows :
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1

yF

n
if Two > M

“ V l.

1 = 1
n

< v(x), if Two = Mt i.i = 1 
n

0 if r w o < Mv ** i i
t=l

(5.3.2)

where M is discrete valued threshold parameter and v € (0,1).

Then, usina the known set of patterns x 's from H and z ' s from
j i j

H , the problem is to obtain threshold and weighting parameters0
w. 's so that the induced probability of first kind of error1
becomes equal to a.

In the following, we discuss the learning procedure referred 

to as 'Layer-by-Layer Learning' which recursively adapt the 

network parameters -IT ,T ,...,T ,w ,w ,. . . ,w V so that the1 2 n 1 2 n
the induced probability of error will eventually become equal to 

value a. (As pointed out by P-PK (1995), it can be seen that 

this approach is similar to N-P approach.)

5,3.1 Layer-by-Layer Learning Procedure

In this learning procedure, assume that, a set of patterns

z 's (j=l,2,...,P) from hypothesis H is available and level of j o
significance or a false alarm probability ot is specified .

The first step in this procedure is to train the hidden
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layer neurons to induce a false alarm probability equal to ot.

This is done by feeding a single hidden neuron i (i <={1,2, . . . ,n}) 

with all Pn available observations and then use the 'best'

estimate of this threshold T. , say T , as the threshold for all
i

hidden layer neurons.

*To obtain such a T , a recursive formula is derived and it 

is as follows :

T = T + c ( o (u , T } - a. ) for k = 1,2 , . . . , Pn
ic+i k fc k k

(5.3.3)

where u 's are observations after relabellina the observations
k

z 's (i=l,...,n; j=l,...,P), T is an arbitrary initial value,
.i1- i

c = c/k for some c>0 (where c is learning rate), and o(.) is as 
k

given in (5.3.1).

NOTE : Note that, the value of T. converges to the desired value
i

with probability one and this is proved by P-PK (1995, pp 599)

. &Using the value of T , the threshold parameters M, v> given 

in (5.3.2) are evaluated so that the probability of first kind 

of error induced by the output neuron P equals ot. For this, the 

corresponding recursive formulas are obtained which are as 

follows:
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V. = v. - c C y ({ z .z , . . . ,2. }, - a )j+l j j Fv 1 <j-t>n+l (,)~l>r>+2 Jr' J J

M = M ~ [V ] j+l J J+l

V. = V - lv. 3,J+l J+l J+l for j = 1,2,...,P.

(5.3.4)

where [x] is greatest integer which is less than or equal to x, a

is the pre-specified error probability, v is an arbitrary1
initial value in (0,1), M is an arbitrary initial value in1

{0,1, ...,n}, and c.= c/j, for some c>0 and j = 1,2,...,P.

NOTE : However, the expression (5.3.2) contains the weighting

parameters w 's, an optimal selection for the weighting
V

parameters is suggested by P-PK (1995) as

w. = 1 for i=l, 2, . . . ,n.
\.

Now, we illustrate how the ANN model given in Fig. 5.1 can 

be used to test a simple versus simple hypothesis testing problem 

using a simulated data.

Illustration

Let x be a random variable from a N(jj.aZ), with a2=1.

Consider the problem of testing
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H :u = 0 VS H : jj - 1 o 1

Now, 300 patterns each consisting of 8 observations from N(0,1) 

and N(1,1) are generated and the maximum allowable false alarm 

rate is fixed at os=0.1

For testing H versus H , the learning algorithm discussed o i
above is applied to the basic neural network structure shown in 

Fig. 5.1. For this, the number of hidden layer neurons is n=8 

and testing function applied on these neurons is given by

1 + exp(-x)

As mentioned earlier, the testing function of the neuron F is as 

follows :

n
f (o) = Two , w >0 for i = 1,2,, ,nF i i i

i = 1

Using the above generated data the network is trained.

After the training, test observations under both H and Ho 1
are applied to the network and the error rate observed is 0.09^, 
that is, out of 100 cases, approximately 1 is rejected.

Using the same data, N-P test statistic was also computed 
and it was observed that the conclusion drawn by N-P method and 

P-PK method are similar.
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Before we conclude, we note that the P-PK learning algorithm

(for that matter many existing neural network learning algorithms 

including the famous back-propagation algorithm) is an 

application of Robbins and Monro stochastic approximation 
theorem (1951). Therefore, as pointed out by P-PK (1995), 

further learning algorithmic improvements are possible, for the 

literature on stochastic approximation is encouraging.
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