
CHAPTER II

SINGLE LAYER ARTIFICIAL NEURAL NETWORK

2.1 INTRODUCTION

In this Chapter, we will discuss the basic structure of ANN 

called "M-P Neural Network", which was proposed by McCulloch and 

Pitts (1943). It was the first step in development of ANN 

modelling. It mimics the characteristics of human brain as 

discussed in Chapter I.

Starting with definition of M-P Neuron model, Section 2 

discusses the single layer ANN with threshold function. Also, in 

this Section, the M-P model is implemented. For this, we have 

developed a software in 'C' language and it is given in the 

Appendix. Section 3 gives the single layer ANN model with 

continuous activation function. The Section ends with some 

suitable illustrations.

2.2 McCULLOCH-PITTS ARTIFICIAL NEURON MODEL

The artificial neuron model draws the inspiration from the 
biological neural network and it was first proposed by McCulloch 

and Pitts in 1943. In honour of them, neuron model of this type
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is referred to as "M-P Neuron Model". The M-P Neuron model is

simple and was mainly designed to perform the basic logical 

operations namely AND, OR, NOT functions.

2.2.1 McCulloch-Pitts Artificial Neuron(AN) Model

The M-P neuron model or network has four major components namely

1) Input values denoted as a vector x = (x , x , . . . , x )'12 n
2) Vector of weights denoted by w = (w ,w , . . . ,w )'1 2 n
3) Output value denoted by y

4) Threshold value denoted by T

In this model, x 's assume either 0 or 1 value, weights w 's
V l.

are unknown and y is the single output value which is also 0 or 1 

and T is threshold value. The Fig. 2.1 shows the structure of 

M-P Neuron model.

Inputs

Input Combination

Figure 2.1 McCulloch-Pitts AN Model
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Here, the neuron receives a set of inputs (x ,x ,,...x ) and1 2 r<

produces corresponding output y. The output of the model is 

computed by a rule :

/ n

y =
1 , if Z w. x > T

L;1 1 ’■ (2.2.Dn
0 ,\ if Z w. x < Tl i.1 = 1

Equivalently, if we set w = o T and x =-l, (2.2.1) can be0
expressed as

. n

ii

1 , if . Z W. X. > 0
1=0 1 1 (2.2.2) n

0 ' if Z w x < 0i ii =D

for evaluating the logical operations like 'AND', 'OR', and

'NOT' by suitably choosing the weights w 's. In network}.

terminology, w 's are to be obtained by 'training ' the network
V.

with a given set of input-output pair (x,d), where d is the

actual output corresponding to the known input x. Once such a

set of w 's are obtained, then corresponding to any future input 
i.

x, the ANN model using the rule (2.2.2) produces the output 

which is 'closer' to the correct output d. This situation is 

similar to what is done in regression analysis. For instance, in 

a simple regression model

y = a + fix + £,
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using the data (x. ,y. ), a and /? are estimated and for a given
i i

future value x, the predicted value y is computed. Further, we 

observe that, essentially what ANN model accomplishes is that it 

maps the input x into the output y. Since x is a-., n-dimensional 

vector, and y is a scalar taking values either 0 or 1, we get

Y : Rn —> {0,1}

In ANN modelling, in general, the output y 'squashes' into 

discrete values e.g. {0,1} or {-1,1}. The generalization of this 

part will be discussed in later Chapter.

REMARK 2.1 : The above type of ANN model is referred to as

'single layer ANN model' for the reason that this model has only 

one processing layer (more about the term "layer" will be 

discussed in next Chapter).

For successful implementation of ANN model, we need to
determine suitable w 's using a set of training data (x ,d ),i k k
k=l,2,...P. To do this, we first note that the Eq. (2.2.2) is 
a set of P linear inequalities. When it is viewed geometrically, 

the problem is to seek a hyperplane which separates two regions. 
Then it is a linear programming problem. Many procedures for 

solving such a system of inequalities are available in the 
literature.
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Below we discuss a simple method (Rosenblatt, 1958) for

training the M-P neural network, that is for obtaining w,'s which
i

will satisfy Eq. (2.2.2).

2.2.2 Training M-P Neural Network

Let a set of input and corresponding desired output (training 

set) be as follows :

H (x ,d_) (x ,d )2 2 <X /d )P P (2.2.3)

where x is (n X 1) and d is a scalar , k=l,2..... P.“k k '
Consider the ANN model as shown in Fig. 2.1 and the rule given by

(2.2.2). Define net for k-th input vector x as
k k

net = w' x , k = 1,2,___ P (2.2.4)
k —k

where

w = (w ,w , . . . .w )'12 n

The objective is to obtain a set of weight w. 's, U = l,2,...n)I.

such that neuron output y, given by the rule (2.2.2) is 'close 

to' the expected or desired output, say d, for all patterns, 

where the 'closeness' is measured by suitable function like

For this, the procedure to obtain such w ' s consists of theL
following steps :
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Select an initial set of weights, say w (normally,

the elements in w are selected at random that is,o
numbers from U(0,1) or U(-l,l) are taken as initial 

values). Also set the error term E = 0.

Further, choose any input vector x , k=l,2,...P andk
compute

net = w ' x , (2.2.5)k O "1:

Compute the neuron output y^ , using rule (2.2.2).

After applying each input x to the ANN, weights arek
updated at r-th stage as follows :

wr+i = w + c(d- y )x , k = 1,2,...,P (2.2.6)
k: k k

where a constant c > 0 is called the 'correction term*. 

Compute error term E as

E = .i- (y - d f + E, (2.2.7)2 k k

Repeat steps 2 to 5 till all inputs are introduced.

If E < 6, where 6 is prespecified small number (usually 

0.0001) then stop the procedure. Otherwise, initialize 

error term E to zero and enter the new training cycle

by going to step 1.



REMARK 2.2 : In the above method, we observe that first an

arbitrary hyperplane is drawn (by selecting w and computing
O

w 'x ) and then afterwards by updating w’s using the expression
O "1:

(2.2.6), the hyperplane is adjusted so that the output y becomes 

'closer to' the expected output.

REMARK 2.3 : At this stage, the question arises whether the 

above iterative procedure converges. The answer is Yes, and 

since some more notations and concepts are still needed to prove 

the convergence, we postpone the proof to the next Chapter.

Since the necessary software for implementing the above 

method is not available, we have developed the same in ' C' 

language and it is enclosed in Appendix A.

Using the M-P model presented in Fig. 2.1, we implement the 

above iterative procedure for computing 'AND', 'OR' logical 
operators.

Before we present the examples, for the sake of completeness 

we describe the above logical operators, which play very 
important role in computerized data processing.

The 'AND' and 'OR' logical operators are used two '\ 
expressions. These operators act upon two operands (that are 

themselves logical expressions) which are either true or false. 

Generally, when result is true, an integer is used otherwise
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'O'. The result of a logical 'AND' operation will be true only 

if both operands are true. On the other hand, the result of a 

logical 'OR' operation will be false only if both operands are 

false. Further, the logical operator 'NOT' is a negation 

operator.

Example 2.1 : Computation of 'AND' Function.

Let x and x denote two logical expressions which means 1 2
that their values are either 1 or 0.

Consider a set of input vectors (x .x ) as shown below.12

Then the value of (x .AND.x ) are as follows :1 2

TABLE 2.1

x (0,0) (0,1) (1/0) (1/1)

x .AND.x1 2 0 0 0 1

Consider the

and produces

following

the output

ANN model that

y

accepts the input (xi 'V

Figure 2.2 ANN Model For Implementation Of 'AND' Operator
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Here, the training set consists of

j((0,0), 0), ((0,1), 0), ((1,0) , 0), ((1,1), 1)

To train the ANN, we use the program enclosed in Appendix A. The 

final estimated weights after 2 and 4 iterations are given in 
Tables 2.2 and 2.3 for different values of correction term(c) :

TABLE 2.2

Weights wo wi w2
A

Estimated (w) 0.2234 1.0239 1.2697

Number of Iterations: 2

Error = 0 c = 0.8

TABLE 2.3

Weights wo wi w2
Estimated(w) 0.608 1.4758 1,742

Number of Iterations: 4

Error = 0 c = 0.5

CONCLUSION : In a repeated runs, it is observed that, for 'AND'
function, iterative process converges in maximum four iterations.

Now, using the estimated weights from Table 2,3, graphical 
representation of 'AND' function is shown in Fig. 2.3. It
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clearly shows that the patterns (0,0), (0,1), (1,0) falls below a
A

line defined by w'x and the point (1,1) above the line. This
implies that patterns are separated by a line whose equation is

w'x where w = (w ,w ,w )' with their corresponding classes.
- ~ ~ 0 12

Figure 2.3 Graphical Representation Ofw^ND' Function

Once the network is trained in this manner, then in future 

whenever an input x is given to the network, the output produced 

will be approximately equal to the 'correct' output. For 
example, suppose we have x = (0,1)' then with the above w, we get

w'x = 0.134

Then following conventions are used to interpret the output :
If the output < 0.5 then it is taken as 0

If the output > 0.5 then it is taken as 1.
In the light of above, for the vectors x= (1,0)' and x= (0,0)'1 2

we get outputs equal to 0 and 0 respectively. This shows that 

the trained model correctly evaluates the 'AND' operator.
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The type of computations done above deserves some more

explanation :
It is appropriate at this stage to point out the difference 

between the neural computations and traditional programmed 

computations of say, 'AND' operator. In the programmed
computation of 'AND' operator, or.e proceeds as follows :

1. Read the values of (x ,x )1 2

2. If (x =1)l
If (x =1}2

output = 1

else If (x =0)2

output = 0
3. Repeat the steps 1 and 2 for all pairs (x ,x ).1 2

Thus, in the above computations, specific rules are specified and 

according to these rules, the outputs are computed. Obviously, 
once the input data is given, as per the instructions, the 

corresponding output will be computed. On the other hand, in 

neural computation, a 'learning process' is involved (just like a 
child learns slowly to recognize a alphabet when he is presented 

the correct form of a letter). In case of 'AND' computation the 
'relationship' between the input pattern and the target pattern 
is 'learned' and the relationship is stored in the form of 
weights w.'s .
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Example 2.2 : Computation of 'OR' Function.

Consider ANN model shown in Fig. 2.2 and the training set 

for 'OR' function presented in Table 2.4.

TABLE 2.4

x (0,0) (0,1) (1,0) (1,1)

x .OR. x 0 1 1 11 2

After executing the program enclosed in Appendix A, the final 

weights for different values of c are given in Table 2.5 and 2.6

TABLE 2.5

Weights w w wo i 2

Estimated (w) -1.1225 1.0105 -0.488

Number of Iterations: 2

Error = 0 c = 0.6

TABLE 2.6

Weights w w wo i 2

Estimated
A

(w) -0.2247 1.7689 1.296

Number of Iterations: 2

Error: 0 c: 0.8
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CONCLUSION : Prom Table 2.5 and 2.6, it is observed that, in a

repeated runs for c = 0.8 the procedure converges in two 

iterations.

Using final weights in Table 2.6, we have Fig. 2.4 and we 

see that the trained ANN model computes the output correctly for 

given x

Figure 2.4 Graphical Representation Of 'OR' Function

EXAMPLE 2.3 : Comutation of 'NOT1 Function

Training set required for implementation of 'NOT' operator 

is as follows :

X 0 1

NOT x 1 0

Like 'AND' and 'OR', 'NOT' operator is also implemented using 

the ANN model and we have obtained correct results.
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2.3 ANN WITH NONLINEAR ACTIVATION FUNCTION

In the previous section, the M-P neural network model was 

developed for computing 'AND', 'OR' and 'NOT' type of functions. 

A specific rule namely (2.2.2) was used to compute the output of 

neuron model. At this stage, a natural question arises as to 

whether there exists any other rule which will perform similar 

computations. To answer this question, first we rewrite (2.2.2) 

as follows :

" 1 , if f(net) > 0 
y _ 1 0 , if f(net) < 0

s

where

net = w* x,

(2.3.1)

and

f(net) = net (2.3.2)

As discussed in Chapter I, there exist^ many functions f(.) 

called 'activation functions', which maps the input x to output 

y. We note that (2.3.2) represents the identity function. One 

of the widely used activation functions is sigmoid function 

(which is nonlinear in nature) among other functions.

REMARK 2.4 : In the literature on neural network, the function

f(.) is called 'activation function', since it has some physical
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meaning. Essentially, as noted earlier f(net) squashes or limits

the output value. This is something similar to what happens in 

responses (or outputs) given by the brain.

Now, we discuss ANN model with sigmoid type nonlinear 

activation function :

Consider an ANN model with nonlinear activation function as shown 

in Fig. 2.5

Inputs

Figure 2.5 ANN Model With Nonlinear Activation Function

The above Fij.shows that the input x is mapped into y that is

Y = f (w* x), (2.3.3)

The choice of f(.), for further discussion, will be the sigmoid 

function, given by

2
f(net) = ----------------  - 1 , (2.3.4)

1 + exp (-Xnet)
where
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net= w' x ,

and activation constant X=l.

Let d be the desired output corresponding to the input x. Then, 

the ANN model is so designed that the neuron output y 

corresponding to x is approximately equal to d the desired 

output, that is

y = f(net) ~ d

Thus, in order to implement the ANN model, we need to find w, and 

below, we discuss a method of training the above ANN.

2.3.1 Training ANN with Nonlinear Activation function:

Consider a training data in the form of P pairs (x ,d ) :k k

< <W' 1 * i'2....p> (2-3'5)

For a given pattern k, the network maps into neuron's output 

y using nonlinear operation as follows

Y, = f(w' x ), (2.3.6)
iC *C

or

y = f(net ), (2.3.7)
J?: k

As discussed earlier, the goal of the training the ANN is to 

produce y such that it replicates corresponding expected output

d , that isk
y = f(net ) ^ d k k k
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The quality of approximation is determined by the error term

E
k = i

f(w'x )Y
k

(2.3.8)

Note that the expression (2.3.8) is a function of only w.'s and

hence the problem is to find w.'s such that E is minimumi
(here the factor 1/2 is taken for simplifying the algebra).

REMARK 2.5 : Finding w.'s by minimizing E is similar to
i

estimation of parameters in regression model using Least-Squares 

method.

Finding Weights w 's ------------------ i.--

To find minimum of (2.3.8) with respect to w , we proceed as 

follows :

On differentiating equation (2.3.8) with respect to weight 

w, we get,

dE
dw

a
dw

£ -- (d- f(w'x))2' (2.3.9)

Here, for the sake of convenience we have suppressed the 

subscript k.

Equivalently, we get

dE
dw

d
dw

” ~y- <d- f (net ))21 , (2.3.10)
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Now, expanding (2.3.10) using chain rule, we get

«?E _ <?E <9f(net) <?net
dw ~ df (net) d net d w

but,
dE_____
df(net) -(<3- f (net)) , (2.3.12)

df(net)
dnet

Since, net = w'x, we have

d(net)
dw

and (2.3.11) can be rewritten as

f' (net)

x

(2.3.13)

(2.3.14)

dE
dw -(d- f(net)) f'(net) x, (2.3.15)

Or for i-th component in w, we get

jap
-7T-- = -(d- f(net)) f* (net) x ,aw ii.

(2.3.16)

We observe that, a solution for equation (2.3.16) is not in the 

closed form. Therefore, an iterative procedure is used to find 

w 1 s.
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Initially, choosing arbitrary weights w's, the weicrht
V

adjustment for iterative procedure is given by

w = w - j) dE/3w, (2.3,17)

where r/ is positive constant called 'learning constant' or 

'learning rate parameter* (more on this will be discussed later).

The computation of weight adjustment as in (2.3.16) requires 

the specification for the activation function used.

Let us express f' (net) in terms of nonlinear activation 

function (2.3.4) we obtain

f (net) 2 exp (-net)[1 V exp(-net)]z ' (2.3.18)

After rearranging the terms in (2.3.18) and letting y =f(net), we 

get

2 exp (-net) i .. z.
" rr 1 " 1 , , v2 *** ' 'r' ( 1 ““y f ftl + exp(-net’] 2 (2.3.19)

Then (2.3.15) become

dE/dw = - — (d - y) (l-yz) x 
2

Therefore, at r-th training stage, we have

(2.3.20)

wr+1 = wr + -i™ 7, (d - y ) (1-y2) x (2.3.21)
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And the process is terminated as soon as

E < 6
where 6 is a small allowable error for a given problem.

Since the Software to implement the above procedure is not 

available here, we have developed a Program 'SANN1 in 'C' 
language for implementing the same , The source code is given in 

Appendix B.

Here, we illustrate the above model with given training 

procedure for computation of logical operators using sigmoid 
function.

Example 2.4 : Computation of 'OR' Function

Consider the ANN model with nonlinear activation function as 

shown in Fig. 2.6, The training set required for computation of 

'OR' function as given in Table 2.4.

Figure 2.6 ANN Model With Nonlinear Activation Function For 
Implementation Of 'OR' Function
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Table 2.7 and 2.8 gives the estimated weights after execution of

the Program enclosed in Appendix B.

TABLE 2.7

Weights wo wi w2
A

Estimated (w) -0.0054 4.3161 4.3191

Number of Iterations: 1000

Error = 0.006 '0 = 1

TABLE 2.8

Weights w w wo i 2

Estimated (w) -0.03814 3.293 3.3048

Number of Iterations: 180

Error = 0.017 COo
II

CONCLUSION: From the above tables, we conclude that error

decreases as number of iterations increases. In a repeated runs 

we observed that for learning constant(r>) mostly in between 0.8 to 

1.2 error become very small in maximum iterations 1000. Also, 

note that the number of iterations required for this procedure is 

more as compared to earlier results given in Table 2.5 and 2.6.
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Example 2.5 : Computation of 'AND' Function.

For computing 'AND' function training set is given in Table 

2.1 and ANN model shown in Fig.2.6.

After executing program enclosed in Appendix B we get an 

estimated weights as shown in Table 2.9 and 2.10 for different 

values of learning constant (>)).

TABLE 2.9

Weights w w w0 i 2 i
.......................... i

Estimated (w) 0.4899 1.2224 1.1007

Number of Iterations: 876

Error = 0 01 n o 00

TABLE 2.10

Weights w w wo l 2

Estimated 0.628 1.256 1.118
!
1

Number of Iterations: 1000

Error = 0 058 '0 = 1

CONCLUSION: From the above tables, we conclude that process

converges in maximum 1000 iteration.
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Example 2.5: Computation of 'NOT' Operator.

Note that 'NOT' operation is applied on a single operand, 

that is, it is an unary operator, therefore a set of input vector 

contains only one variable x. The training set for 'NOT' 

operator is given in Table 2.11

TABLE 2.11

X 0 1

NOT x 1 0

Consider the following ANN model useful for computation of 'NOT' 

operator

Inputs

Figure 2.7 ANN Model For Implementation of 'NOT' Operator

Table 2.12 gives the estimated weights after execution of Program 

enclosed in Appendix B
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TABLE 2.12

Weights w wo i

Estimated (w) -3 7806 -3.7767

Number of Iterations 617

Error = 0 01 '0 = 0.9

Like 'AND' and 'OR' , here alsc we see that the ANN model 

correctly evaluates the 'NOT' operator.

In the next Chapter, we discuss how single layer ANN models 

can be useful for certain types of classification problems. 

Also, applications of single layer ANN in statistical data 

analysis will be discussed in Chapter IV.

■
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