
Chapter - II
REVIEW OF SOME SOFTWARE RELIABILITY MODELS 

§2.1 Introduction
Many models for software reliability exist in the 

literature. In this chapter we present some of the more popular 
software reliability models. These models have been broadly 
categorized in three classes- the first category, where the 
failure rate is constant and is proportional to the residual 
number of bugs. Second category is of Bayesian nature, where the 
failure rate is a random variable with a specified prior 
distribution and third category relates the occurrence of 
failures as a Stochastic Process.

According to Musa, Iannino and Okumoto (1987) the first 
study of software reliability appears to have been conducted by 
Hudson (1967). He viewed software development as a birth and 
death process (a type of Markov process), in which it was assumed 
that the rate of detection of fault was proportional to the 
number of faults remaining and a positive power of the time. In 
other words, the rate of detection was assumed to increase with 
time.

However the model of Jelinski and Moranda (1972), popularly 
known as JM model, was the first software reliability model to be
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used and has formed the basis for many models developed after. In 
this model, it is assumed that the rate of failure Is 
proportional to the residual number of bugs. In this model the 
failure rate changes at each fault correction by a constant 
amount, but is constant between correction. Details of the model 
is reported in section (2.2). Further Goel and Okumoto (1978) 
have made an attempt to improve upon the JM model by altering its 
assumption that a perfect fix of a bug always occurs. In section 
(2.3), we represent this model, in which it is assumed that the 
failure rate is a porbabilistic function instead of a linear 
function. Keeping all the other assumptions of JM model as it is 
and assuming that the failure rate is proportional to the elapsed 
time since last failure, Schink and Wolverton (1978) gives a 
different model from those of JM (1972) and Goel and Okumoto 
(1978) model. This is reported in section (2.4). In section 
(2.5), we present the De-eutrophication model by Moranda (1975), 
in which the failure rate is assumed constant between failures, 
but it is decreasing geometrically.

A Bayesian approach to software reliability is presented in 
sections (2.6), (2.7) and (2.8). In section (2.6) we give a 
Bayesian Reliability Growth model by Littlewood and Verrall 
(1973). In this model software reliability is viewed as a measure 
of strength of belief that a program will operate successfully.
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The failure rate is assumed to be a random variable. Mazzuchi and 
Soyer (1988) have given an extension to the model of Littlewood 
and Verrall (1973), which is introduced in section (2.7) in which 
an additional assumption of inter occurrence time to be 
exponential random variable with scale failure rate between 
failures, is made. Again Littlewood and Verrall (1973) model is 
extended by assuming failure rate as a function of the residual 
number of bugs. This model is reported in section (2.8).

Goel and Okumoto (1979), described failure detection as a 
non-homogeneous Poisson process (NHPP), with an exponential 
decaying rate function. It is assumed that, the number of 
failures in the software is a random variable, which is fixed in 
JM model and the time between failures are assumed dependent, 
which is independent in JM model. This is given in section (2.9). 
In section (2.10), we give a Logarithmic Poisson model by Musa 
and Okumoto (1984); which is based on a NHPP with an intensity 
function that decreases exponentially with failures experienced.

Now we give a table which shows various software reliability 
models In accordance with their category. In the dissertation we 
limit our discussion to only Type 1-1 and Type 11 software 
reliability models. In the subsequent section these models occur 
in a sequence as given in the table (see table 2.1).
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Table E.l

Sr.
Ho.

Category Name of the model & year Abbrivation

Type 1-1
1 I Jelinski & Moranda (1972) JM
2 I Imperfect Debugging model by Goel &

Okumoto (1978)
3 I A model by Schink & Wolverton (1978) -

4 I The De-eutrophication model by Moranda
(1975)

—

5 II Bayesian Reliability Growth model by
Littlewood & Verrall (1973)

LV73

6 II Bayes Empirical Bayes or Hierarchical
model by Mazzuchi & Soyar (1988)

—•

7 II Bayesian Differential Debugging model
by Littlewood (1980)

Type II
8 III Time-dependent Error Detection model

by Goel & Okumoto (1979b)
G079b

9 III Logarithmic Poisson Execution Time
model by Musa & Okumoto (1984)

—*
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§2.2 The JM Model
Jelinski and Moranda (1972) proposed a simple model for 

describing failures in computer software. It models time between 
failures by considering their failure rates. The model that we 
shall consider here is one that has been widely discussed in the 
literature.

Suppose that the total number of bugs in the software is H 
(which is unknown); and suppose that each time the software 
fails, one bug is "perfectly" corrected. Let us assume that the 
failure rate at any point of time is proportional to the residual 
number of bugs in the program. That is, for t > 0 we have,

rT(t) a ,

which implies that,

rT(t) = A Nt , (2.2.1)

where A is the constant of proportionality and Nt denote the 
number of faults remained in the software, at time t.

Thus, the failure rate of T^ (i = 1,2,__,N), the 1th time
between failure, is

rT(tlN,A) = A (N-i+1) (2.2.2)
i

for some unknown constant A and t > 0.
Since constant failure rate is characterization of
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exponential random variable, we have, for fixed A and N; TV is an 
exponential random variable with mean {A(N-i+l)>~‘. Therefore the 
cumulative distribution function (cdf) of ^ (i = 1,2, — ,N) is
given by,

FT(t> = PC T± 5 t ]

= 1 - exp{-(N-i-t-l)At} for t>0 (2.2.3)

For JM model, underlying assumptions are as follows,
i) there are N bugs in the software (N is unknown),

ii) failure rate at any point of time is proportional to the 
residual number of bugs in the program,

iii) each time a failure occurs, the fault that causes is 
immediately and perfectly removed and no new error is

Fig. C2. 1 .>.• The failure rate for JM model.

24



created. Thus it assumes that successive failure rates are
decreasing, and

iv) each error is equal in the sense that it contributes the
same amount A to the failure rate.
The figure (2.1) will illustrate the failure rate generated 

by OH model debugging process.
We now give, an alternative interpretation for JM model 

which is reported by Langberg and Singpurwalla (1985). Let N* 

represents the total number of distinct "input types" to the 
software. N* is assumed to large or conceptually infinite. Let N 

« N be the number of input types which results in the inability 
of the software system to perform its desired function (N is 
assumed unknown).

Suppose that the input arrives at the software system
according to the postulates of a Poisson Process with rate <*>.

0Then given N , N and «, the probability that the software 
encounters no failures in a time interval CO, t) is given by,

(2.2.4)

where the first term inside the summation sign denotes the 
probability that «j inputs (shocks) are received in time t, and 
the second term inside the summation sign denotes the probability 
that all a input do not lead to a failure of the software.
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Argument of this type form the basis of the theory of shook 
models and wear processes, which have played an important role in 
reliability theory (Barlow and Proschan, 1975, p.52).
From equation (2.2.4) we have,
F(t|N,N*,«) = E e""1 [(<ot> (1 - N/H*)]J / d!

F(t|N,N*,to) = e'wt exp[(tot) (1 - N/H*)J

= exp[ - (<ot) N/N* } ; for t i 0 (2.2.5)

Implying that the time to first failure of the software, say 
, has an exponential distribution with a scale parameter 

(toN/N* )"*.

Following the error correction policy, TA (i = 1,2,__ ,N),
the time between the (i-l)**1 and the 1th failure of the software, 

has survival functions,

Fx(t|N,N*,to) = P[ T S t|N*,N,to ]
i

= exp[ - (tot) (N-i+l)/N* ] for t > 0 (2.2.6)
Hence the failure rate at time t, for the 1th time between 

failure is,
r_<t|H,A) = « (N-i+l)/N* (2.2.7)

i
Thus if we assign to /if = A then we get failure rate for the

26



JM model. This implies that the JM model is a special case of the 
model described above.

Inference related to the parameters of JM model namely N and 
A will be reported in Chapter-Ill. In the following section we 
give Imperfect Debugging model by Goel and Okumoto (1978).

§2.3 Imperfect Debugging model
This model is like JM model, but it assumes that there is a 

probability p ( Q^pSl ) of fixing a bug when it is encountered. 
This means that, after i faults have been found, we expect i*p 
faults to have been corrected instead of i. Thus the failure rate 
of T± (i = 1,2, — ,N) is,
r (t|N,A,p) = A (N-p(i-l)) for t 2 0 (2.3.1)

i
This is an attempt to improve upon the JM model by altering 

its assumption that a perfect fix of a bug always occurs. JM 
model can be obtained from this model by simply putting p = 1.

§ 2.4 A model by Schink and Wolverton
In this model, the failure rate is assumed proportional to 

the product of the number of faults remaining and the elapsed 
time since last failure. All other assumptions are as it is in 
JM model.
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Fig. C2. 2>: The failure rate for the model of Schink and Wolveton.

Thus failure rate of (i = 1,2,__,N) is,

r (t|H,A) = A (N-i+l)t for t > 0 (2.4.1)
i

This model differs from those of JM model and Goel & Okumoto 
(1978) Model, in that the failure rate does not decreases 
monotonically. Immediately after the 1th failure, the failure 

rate drops to zero, and then increases linearly with slope (N-i) 
until the (i+1) failure occurs. The figure (2.2) will 
illustrate this rate.

§ 2.5 The De-eutrophication model of Moranda
In this model it is assumed that, the fixing of bugs that 

causes early failures in the system reduces the failure rate more
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than the fixing of bugs that occur later, because these early 
bugs are likely to be the bigger ones. Keeping this in mind, the 
author proposed the failure rate should remain constant for each
Ti? but that it should be made decreasing geometrically in i 
after each failure, that is, the failure rate for (1 = 
1,2,__,N) is given by,
r (11D,k) = D kW ; for t > 0, D > 0 & 0 < k < 1 (2.5.1) 

i
where D is a constant which represents the initial failure rate. 
This relationship is illustrated in the figure (2.3).

In this model, the drop in failure rate after i failure is 
D(l-k)k14, while it is A in the JM model. The assumption of 
perfect fix, with no introduction of new bugs during the fix is 
retained. Since the failure rate given in equation (2.5.1) is

Time —>
Fig. C2. 3>: The failure rate of the De-eutrophication model.
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independent of t, T^ follows an exponential distribution with 
mean (Dki-1)-4, that is,

P[ Tx > t ] = expC- Dk1"1 tl for t > 0 (2.5.2)

§3.6 Bayesian Reliability Growth model
A Bayesian approch to software reliability was taken by 

Littlewood and Verrall (1993). They viewed software reliability 
as a measure of strength of belief that a program will operate 
successfully. Littlewood and Verrall modeled failure rate as a 
random variable.

Specifically, they declared that the 1th interoccurence time 

between failures to be exponential with failure rate AjL 
(i=l,2,—,N). The probability density function (pdf) of TiP for 
i = 1,2, — ,N is given by,

fT(t|Ai> = \ expC-A± t] (2.6.1)

for t > 0 and A± > 0.
Also instead of Ai decreasing, as is assumed in JM model, 

they would merely require that the sequence of A^'s be 
stochastically decreasing, that is, for i = 1,2.... N and X > 0

PC Ai+i < X ] > P[ A± < X ] (2.6.2)

Let us assumes a Gamma distribution for Ai with shape
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parameter a and scale parameter *(i), where 9(1) is monotonically 
increasing function of i, that is, if n(„) denote the pdf 
corresponding to the failure rate Aif then we have for i=l,2,— 

and X > 0,

n (Xj«,9(i)> 
i

9(1)* X*“* e~9<i>X
rsr (2.6.3)

The function 9(1) is supposed to describe the quality of the
programmer and the programming task. The concept of failure rate
random variable reflects uncertainty in the effectiveness of the
fault correction process. Therefore the marginal distribution of
T^ (i = 1,2,__,N) is given by,

00
fT(t) = 0J f(t, X) dX 

00
= 0J f(t|x) nA(x|«,9(i)) dX

= J [x exp(-x t>] [ Sjl£ ^ •-** ] *

.....a oo . <a+i>-i -<9cb+t>X= j x e
_ 9(1 )*

rzr
f < q-f i >
< t +*< i > ><q+i>

= a [ 9< i > 
t +9< i > (t+9(i)> (2.6.4)
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^"1 ^1"!The mean time to failure (MTTF) between (i-1) and i 
failures, denoted by ® (i) and is given by,

®Ci) = K(T±)
00

= J 4 fT(4> <>4

= of 4“ [ -civ, n ]° <«•(!»"* dt

a
i> o«

, <ot+i>
dtJ t [ ct s*iii: + *]

Substituting Ct/^(i)3 = v, we get,
00®(i) = a ¥(i) oJ [ v2'1 / (l+v)a+1 ] dv

00
Using B(m,n) = QJ t vm_1 / (l+v)0-1 ] dv.n-i

= it..r^~
®(i) = « ♦(!) B(2, (a-1))

we can write,

= a *(i) 12 j <«-1 >
(Toc+TT

= *(i) / «x-l> (2.6.5)
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From equation (2.6.4) we have,

F»<*> = <J “ [ l'i ] <* + <»*

ft(x> ®tt> oJ* [ i57®rm +rj ta+i>

Substituting [x/^(i)] = u, we get,

dx

x/4ki>
Ft(x> = a of 11/ (l-w)01*4 ] du

[
■» *"- 1/ [iW* ]c

= 1 - {l+(x/»(i)]> 
which implies that,
F (x) = 1 - F (x)

i i

-a

1 + *»< i>
-a

-ar [><+#<i> 11[ «<i> J

r *< i> ia[ J

(2.6.6)

(2.6.7)

Using equations (2.6.4) and (2.6.7), the failure rate for 
resulting program is,

Ai(t) = f,(t) / fT(t)

a / CtA+ 9{x)l (2.6.8)
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Figure (2.4) will illustrate this relationship. The concept 
of failure rate random variable reflects uncertainty in the 
effectiveness of the fault correction process. The failure rate 
decreases continuously with t and experiences discontinuities of 
various heights at each failure. The heights usually but not 
necessarily decreases with failure experienced.

Since we can choose the reliability growth function 4(1) 
arbitrarily, the model is general and flexible. The model can 
fall in different classifications depending upon the form of the 
reliability growth function 4(i).

Littlewood and Verrall (1973) have suggested two forms for 
4(i); which are given by,
4t(i) = ftQ + 1 ftt (2.6.9)

Fig. C2. 42: The failure rate for the LV73 model
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and
* (i) = ftQ + i* ftt (2.6.10)

For the both cases there Is no restriction on i. Hence 
Infinite failures can be experienced. The families are inverse 
linear and inverse polynomial (2nd degree), respectively. Values 

of parameters for a growth function and comparisons determining 
growth function is best established by testing goodness of fit to 
the data.

§2.7 Bayes Empirical Bayes or Hierarchical model This is an 
extension to the LV73 model which is discussed in the previous 
section. As with the original model, they assumed T^ to be 
exponentially distributed with scale Then they proposed two 
ideas for describing Ai here called model A and B respectively. 
These are given as follows.
2.7.1 Model A

Assume that A± is a Gamma variate with parameters a and ft 

and also assume that a and ft are described by Uniform and another 
Gamma distribution respectively. In other words,

nA(x|a,^)
[«

x > o

rr(a|v) = 1/v o C* 2s V (2.7.1)
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(2.7.1)7T(/?|a,b) = ba ^a_1 e_hr?/ja ft * 0 , a, b >0 

where v, a and b are known.
7< 2 Model B

Assume that Ai

nA(\|«,*(!)) = *<1)
i

Is described described as In LV73,

X > 0_ X01-1 -®(1>Aot a. e

that isf 

(2.7.2)

and that *(i) = ftQ + 1 ft± except a, ftQ and P± are described by
probability distribution as follows,
nr(otjv) = 1/v o S. a < v

nift0 |a,b,/?4) = ba (^0^)a_1 exp(-b(^0-^4) / fa (2.7.3)

-ft0 * ftt , a, b >0

rc(/?Jc,d) = dc exp(-d^i)/ fc £ 0 , c, d >0

So a is described by a Uniform distribution, ftQ by a shifted 
Gamma and ftt by another Gamma and there is dependence between ft 

and . By assuming ftM to be degenerate at 0, model A is obtained1 i

from model B.

§ 2.8 Bayesian Differential Debugging model
This model can be considered as an elaboration of the model 

LV73. In LV73 model it is assumed that A^, the failure rate of 
the 1th time between failure, is described as a Gamma random
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variable. In addition to this, in this model it is assumed that 
there are N bugs in the system and Ai is specified as a function 
of the remaining bugs.

In particular, if t time has been elapsed and (1-1) bugs 
have been removed then the failure rate of the program is ,

A. - <(> +<£ +__+ 4> . (2.8.1)

where 4>^et are independent and identically distributed Gamma 
variants with shape parameter o and scale parameter ft.

Thus, A± has a Gamma distribution with shape [a (N~i+1)] and 
scale ft. Hence the pdf of Ai is given by,

_ou n- i +1> . a<N-i+i>-i -ftXnA (X|o,/3,H) = g.....- A ° ; A > 0
i |a<H~i+i>

(2.8.2)
Thus,
E( Aa| a,ft,H ) = a (N-i+l)//3 (2.8.3)
which is linearly decreasing function of i. Other assumptions are 
identical as that of original LV73 model.

§2*9 Time-dependent Error detection model
In this model, Goal and Ockumoto reasoning from assumptions 

similar to those of JM model, describing failure detection as a 
NHPP with an exponential decaying rate function. The assumptions
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for the model are as follow.
i) there are no failure experienced at time 0, 

that is, PC M(0) = 0 ] = 1,
11) the counting process {M( t); t£0> has independent

increments. This implies that, the number of failure 
experienced during (t-n5t) is independent of its past history. 
That is, the future M(t+6t) of the process depends only on 
the present state M(t) and is independent of its past M(x) 
for x < t.

iii) the probability that a failure will occur during (t, t+<5t)
is X(t)«5t + o(<5t), where X(t) is the failure intensity of 
the process and o(<5t) is a function such that, o(<5t)/<5t 

tends to zero as <5t tends to zero. (In practice the second 
or higher effects of <5t are negligible), 

iv) the probability that more than one failure will occur 
during (t, t+<5t) is o(«5t).<5t).
Also expected number of failures pi(t), is assumed to be 

non-decreasing and bounded above function of t with following 
boundary conditions,

Ct= O
(2.9.1)

t-- > 00
where 'a' denotes expected numbers of errors in the software.

And the expected failures in the the time interval (t, t+£t)
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is proportional to the number of undetected errors in the 
software; or

- M(t) = b ( a - M(t)) <5t + o(<5t) (2.9.2)
where b is a constant of proportionality (fault detection rate).
Thus from equation (2.9.2) we get,
.... lim t+<5t)-jj< t >^ (t) = ^-------

— b< a-^< t > ><5t+o < <5t >
_ ^—>0

= b (a - ^(t)) (2.9.3)
This implies that, 
fj'(t) + b p(t) = ab
Multiplying both sides of above equation by e , we get
bt .... bt . ... bt „e v (t) + e b t) = e ab

'which equivalent to,

(2.9.4)

Integrating both sides of equation (2.9.4) w.r.t. t, we have,

bt ... bt e /j( t) = e a + c (2.9.5)

where c is constant of integration.
Since from (2.9.1), p(0) = 0 ; we get c = -a. 
Thus equation (2.9.5) reduces to,
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bt . bte #i(t) = e a - a

Hence,
-btjj(t) = a (1-e ) (2-9.6)

Therefore, Mt) = fJ'(t)
gives,Mt) = a b e_bt V2.-S.7-)

(2.9.7)
We Illustrate this relation by using figure (2.5). The 

function M(t) completely specifies a particular Poisson process, 
and the distribution of M(t) is given by,

PC M(t) = n 3 =  'n e1*** n = 0,1,... (2.9.8)

Two assumptions of JM model are modifided here. First, the

rxt>

Fig.C2.5y: The intensity function for the GO?9b model,
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total number of errors in the software is a random variable with
mean 'a', which is fixed in the JM model. Secondly, the times 
between successive failures are assumed dependent, while the JM 
model assumes independence. Authors claim that these 
modifications are a better description of the actual occurrence 
of failure in software. The inference regarding parameters of 
this model is studied in Chapter - IV.

§ 2.10 Logarithmic Poisson Execution Time model
In this model, the failure rate X(t) is expressed in terms 

of expected number of failures £*(t), in time [0,t) as,

\(t) = \Q exp(-e vit)) ; © > 0 (2.10.1)

where XQ denote the initial failure rate and © the failure rate 
decay parameter.

From above equation we see that Mt) decreases exponentially 
with fj{t). Observe that the fixing of earlier failures will 
reduce X(t) more than the fixing of later once, because these 
earlier failures are assumed to be those that occur more 
frequently.

Since we are modeling the number of failures by Poisson 
Process, we have another relationship between Mt) and M(t) as,
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(2.10.2)IJ(t) = X(s) da

That Is,

X(t) = M(t)

From equation (2.10.1) and (2.10.3) we get,

-g* *i(t) = Xo exp(-© *i(t)) ; © > 0

or

{-St M(t) | exp(© t)) = X
o ; © > 0

Multiplying by © to both sides of above equation gives,

^(t) | © exp(© *u(t)) = © Xo ; © > 0

which is equivalent to,
exp(© ju(t))^=©Xo ; © > 0

Integrating equation (2.10.4) w.r.t. 't', we get, 
exp(© M(t))=©XQt+c4 ; © > 0
where ct is the constant of integration.

Since p(0) = 0, c4 = 1;

exp(© fJ(t)) = ©XQt + l ; © > 0

Thus the mean value function is obtained as,

(2.10.3)

(2.10.4)
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(U(t) = {lo^( © \ t + 1 )> / © (2.10.5)

From equation (2.10.1) and (2.10.5), we obtain X(t) as,

X(t) = XQ / ( © XQ t + 1) ; © > 0 (2.10.6)

which is the inverse linear function of t. This relationship is 
illustrated in the figure (2.6).

It is similar to the plot of intensity function for G079b 
model, except that the tail is thicker. By using equation 
(2.9.8), we can write for n = 0,1,2,—

f log <X et+i >PC M(t) = n ] = | ---^2-----  l (Xoe t + VT / n! (2.10.7)

Fig. C2.82: The failure rate for Musa & Ohumoto C19842 model.

* * * * *
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