
Chapter - III
PARAMETER ESTIMATION FOR JM 
AND DE-EUTROPHICATION MODEL

§ 3.1 Introduction
In previous chapter we overviewed some of popular software 

reliability models. Of them JM model is one of the oldest model 
and is used frequently. It is extremely simple and conclusions 
inferred from it have only a limited applicability. Some 
drawbacks of this model have been pointed out by Forman and 
Singpurwalla (1977) and by Littlewood and Verrall (1981). We 
present related results in this Chapter.

Section (3.2)-(3.5) are-related to JM model. In section 
(3.2) we study the behavior of likelihood function and parameter 
estimation for JM model. In section (3.3) a condition for 
finiteness of MLE is obtained and a situation for occurrence of 
finite MLE is depicted by plotting the figure. Section (3.4) is 
devoted to asymptotic distribution of MLE of parameters of JM 
model. Also asymptotic confidence intervals are given for these 
parameters. In section (3.6) we obtain MLE for parameters of 
De-eutrophication model of Moranda (1975).
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§ 3. £ Parameter estimation and behavior of the likelihood
function

Let T , T , ... , T be interoecurenee times

failures of software. We assume that T is exponential 
variable with mean {(N-i+1 )A}~4. That is we are assuming 

times have a JM model. The Likelihood function based upon

observed time intervals t , t2, ... , t^ is,
n

L(N,A|t)
'An (N-i+i>Aexpc-<N-i+i>At>

o

for N>n 

otherwise

between 

random 

failure 

the n

<3.2.1)

The likelihood function has two unknown parameters N and A. 

First we fix N and obtain MLE of A. For any specified value of N, 

say N i n, we have,

L(A|N ,t> = iOi(N*-i+l)A exp{-(N*-i+l)At.> (3.2.2)

Let,

MA|N*,t) = log L(A|N*,t)

r n * * i= log < iOi<N -i+l)A exp{-(N -i+l)At.} )

Therefore,
m n n

L(A|N ,t) = X^ogtN -i+1) + n logA - .^(N -i+lJA^} (3.2.3)

Let A(N*) be the value of A > o for which L(A|N*,t) attains 

the maximum. Since DL (A[ N ,t) is strictly concave in A, necessary
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IKand sufficient conditions which gives us A(H ), are obtained by 
setting dtL(A|H*,t)/0A = 0. Here,

0_(A|N*,t) = - J4 (liP-i+1)^

Thus aiL(A|N*,t)/£A = 0 gives,

A(|f) = n/ ^ (N*-i+1 )AtA (3.2.4)

Thus if
T = £ t4 and If k = J, (l-Dt, so that

k/T = { jt iVj, t} - 1

and
(N^-i+DA^ = N*T - k.

(3.2.5)

(3.2.6)

Hence,
A(H*) = n/(H*T-k) (3.2.7)

Substituting this value of A(N ) in place of A in the 
likelihood function (3.2.2), we get the likelihood function as a

4t ♦function of N only. We now search over those values of N ^ n 
for which l (N*) = n_(A(N* ), N* 11) is maximum.

Thus from equation (3.2.2) and (3.2.7), we get,
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l(H*) = log L(A(N*), N* 1t)

= X^ log(N*-i+l) + n log[n/(N*T-k)3 - n (3.2.8)

Let N be the value of N* for which l (N*) is maximum. Since 

H takes only discrete values necessary condition for obtaining 
are, l(N*) > l (N*+1) and l(N*) k i(H*-l).

From equation (3.2.8) we have,

i(N*+l) = J4 log(lf-i+2) + n log[n/((N*+l)T-k)3 - n 

and

l (N*-1) = X log(N*-1-i+l) + n logCn/((N*-l)T-k)3 - n (3.2.9) 

Thus, i(N*) 2: l(H*+l) gives,

log(N*-i+l) - log(N*-i+2)j + n log[((N*+l)T-k)/(N*T-k)3 > 0

(3.2.10)

Expanding the sum in first term of right hand side 
above inequality, we get,

log(N*-i+l) - log(N*-i+2)j = log(N*-n+1) - log(N*+l)

= log[(N*-n+1) /(N*+1)]

of the

Thus the inequality (3.2.10) reduce to,
log[(N*-n+l)/(N*+l)3 + n log[((N*+l)T-k)/(N*T-k)3 £ 0 (3.2.11)
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0 4tSimilarly, from the condition l (N ) ^ l (N -1), we can have, 
logCN*/(N*-n)] + n log[((N*-l)T-k)/(N*T-k)3 >0 (3.2.12)

The value of N is obtained by numerically solving the above 
two equations. In order to assure that N is unique, we will have 
to establish that the projection of l(N ) is unimodal. Assuming 
that i (N ) is unimodal, N is unique.

Note that in order to solve (3.2.11) and (3.2.12) it is 
enough to know n and k/T only. However in section (3.3) we show 
that, not all k/T values gives finite estimate of N. We prove a

A

necessary and sufficient condition for the MLE N, to be finite. 
In the table (3.1) we give some numerical computation for the MLE 
N; for various values of n and k/T.

§ 3.3 Conditions for finite MLE
For the likelihood function given in (3.2.1) we have 

n nL(N,A|t) = qn^H-i+l)! An expC-^ (N-i+DAt^ (3.3.1)

Let, tL(N,A|t) = log L(N,A|t)
Thus,

{n n[^(N-i+l) ] An expt-jj^ (N-i+l)At.} )

n n
= log(N-i+l) + n logA - J4 (N-i+l)At.} (3.3.2)
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Theorem £3.3.15 : The likelihood function given in (3.3.2) will
have a unique maximum at finite N and non-zero A if and only if,

n n n
l (i-1)^/^ (i-DJ > Cif4 Vn 3* C3.3.3>

Proof s Define 1/A - x ix — 0).
Note that NA = <p, implies that N = <P x - 
Thus from equation (3.3.2) we have,

n
log[(N-i+l)A] - ^ (H-i+DAtj

n
log[(N-i+l)/x ] - X% (H-i+Dt/i: (3.3.4)

n n
1obH<Px-±+1)/x 3 - <P tL +.|t (i-l)t./x

n n
log(<j!>*-i+l) - n log(x) - <P tL +if1 (i-D^/ar

(3.3.5)
Differentiating equation (3.3.5) w.r.t. x gives,
. n nB_(N,x| t) = *(*x-i+l)_1 - -§- (i-Dt^2

n n= xt <p(<px-{i-i)fx - (i-l)t./*'2
n n= i|4 (l-(i-l)/4>X) Vx - (i-Dt^-2

Since N > n > i we have, 0 < (±-l)/4>X < 1.

MN,*| t) :
n

= 4^i=i
n

= Xi=i
n

: X

hence,
MN,*| t) :

jj=i

n
= Xi=i
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Hence,
a (N

■*is> = k~r {1+i?F-1 > < i-i >'
<4>X>‘

+ . ■}- n
X

n <i-i > t.
-.£ -------- 21=1 2

a n < i-1 > t,,
jMH

n r , , z x n < x-■ . . _ l J<i-i> , <i-l) 1 v ___~ ** * t ** <^,2 J 1-1 **

/ n , n x= {il, V11 -A }
n r . 2 x

Clearly, a Q_(N,x|t) /ax -- > 0 as x ---> ®.

(3.3.6)

d D-(N,xj t) /ax approaches to zero from above if,

{i, ^ -k } > °

Time —>

Fig. C3. 1J>: Natxire of Likelihood function
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This implies that,

{if, 'i-1* 'ih } > *

and it approaches to from zero below if,

{I, 'i-1* 'L f1-1)*! } < *

(3.3.7)

(3.3.8)

This situation is shown in the figure (3.1). The likelihood 
curve can be divided into two regions. In region (1) the 
likelihood has its largest value at finite N, X- In region (2) 
there will be a maximum at finite N, X- Consider the 
log-likelihood function at x ---> «> , that is,
1(0) = ^>0o MN,*|t)

lim 
X—>» {n n n x

if4 log[(0*-i+l)/* ] - 0 .|4 \ (i-l)t./* |

n n
= X IobP - 0 X t.1=1 1=1 l

n
= n log0 - 0 X± tA (3.3.9)

This implies that,

L(0) = antilog t 1(0) 3
n

= antilog tn log# - 0 X t.]1— 1 X
n= 0n exp {- 0 X4 tj,} (3.3.10)
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n
This likelihood is maximum at 4> = n / t^.
The global maximum must occur at finite N, x if

{"/J, »i} > {I,'1-1* /k }
which leads to,

n n n
t (i-Dti/^ (i-1)] > lgt %/n ] (3.3.3)

The converse can be proved as follow. The maximum value of„ n
the likelihood on the arc at infinity, putting <P = t^/n in 
(3.3.10), is 

- nL(0) = in/g± tA> exp{-n> (3.3.11)

It will be sufficient to show that, this exceeds the 
likelihood at all finite (N,*) points on 9 0_(N,*|t) / aX - 0-
Now 9 MN,x|t) / &X = 0 implies that, 

n--£-+& (H-i+l)V** = 0 Cfrom ©*• (3.3.4)>

This gives, 
n

«► x = £± (N-i+1)^ / n (3.3.12)

And on this the likelihood function (3.2.1) is,
L(Njt) = | ^(N-i+1) | | n/j^ (N-i+1)^ ^ exp{~n> (3.3.13)
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exp{-n}

Here we have to show that,

n f n n r n*n/ili ^*i^n exp{~n> > | (N-i+1) j -I n/X± (N-i+1 )t± j

This gives,
n

n/J. *i > { ^.(N-l+l) | | n/X± (H-l+Dtj |

Implies that,
n n f n xi/rnii4 (H-i+Dti > {i|1 V I i04 (N-i+1) I (3.3.14)

n n
Since, (i-Dt./^ (i-l)3 < lg± t./n ] ,

n n n
“iS, < CJ. Cil, *i 3

n n n n
n N i& t.] - ^(i-l)t, > n N C& t.3 - C&( 1-1)3 C& V

n n n
n > ti?* (N-i+1 >]

n n n
[^(N-i+Dtil > t±I (N-i+1) 3/n

n n .i/nBut tilt (N-i+1) 3/n > [ ^ (N-i+1) 3

This follows from the fact that the arithmetic mean of n 
non-negative number is always greater than the geometric mean of 
the same numbers. We have,
n n s n -vi/ni?4 <N-i+l)tA > CJ, t-> | ^(N-i+1) j (3.3.15)
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It is remained to prove the uniqueness. It is trivial to 
show that when the global maximum is at infinity, it is the only 
maximum at infinity and occurs at:
- n
4> = n/Xt t. = NA = N / at (3.3.16)

The first term of equation (3.3.14) is a polynomial in N 
with no root in the parameter space (N^n). The second and third 
term of the same equation together form a decreasing function in 
N. The equation (3.3.14) has at most one turning point. In fact 
the maximum of (3.3.14) could occur at N = n.

This proves that, there is only one maximum of likelihood 
for finite N and X (X>0), since X is uniquely determined by H.

Corollary C3.3.11 s MLE is finite if k/T > (n-l)/2, where
k = and T = £tr

Proof. Condition (3.3.3) is equivalent to, 
n n n

Lg± (1-1 Hi3 - Cif* (1-1)3 til, %/n 3 > 0 C3.3.1T>

Using the notations given in equation (3.3.4), we write the 
above inequality as, 
k - [n(n+l)/2 - n3(T/n) > 0

This gives us,
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k > [(n+l)/2 - 1]T 

which equivalent to,

k/T > (n-l)/2 (3.3.18)

Hence the proof.

§ 3.4 Asymptotic distribution of N and A.
a

In this section we obtain asymptotic distribution of N and 

A. Using the same, asymptotic confidence interval for N and A 

have been proposed.

Theorem C3.4.1) : Asymptotic distributions of N and A are 

given by

Vn~ (N - N ) ——> AN (0, <?„)
N

and

Vn (A -A) ——> AN (0, o’-) as n -> oo
A

where n n
<?. = = n / j n [l/(N-i+l)f - { ^ l/(N-i+l) f
N

and

A
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Proof Based upon the n observed interoccurence time
t ,t2,__,tn we have the likelihood function as,

n

L(N,A|t) { ,n (N-i+i>
o

A 65p(-<N-i+l)At) for N>n 

otherwise

Thus for N 2: n and tj. 2: 0 (i=l,2,— ,n), we have, 
n nL(N,A| t) = [^(N-i+1) ] An expt-J^ (N-i+DA^}

Let,
n_(N,A|t) = log L(N,A|t)

{n n x[Jl^N-i+l) 3 An expt-^ (N-i+lJA^} J

n n
= log(N-i+l) + n logA - X (N-i+l)At.} (3.4.1)

is % Is* a. X

Here the parameter of interest is © = (N,A)'. Let © = (N,A)' 
be MLE for © = (N,A)'. Since Likelihood function satisfies 
regularity conditions, we have from Zacks (1973)
Vn (© -©) ——> N2 (0 , I *(©)) as n ----> ®

where I(©) is a positive definite matrix of order 2 and is given
.2

!(©)
9
9n

■2 0_<N,,A>J

[|j Ia"-™-*']
-*= [-fc -Is11- < 'i-A> ]
-*[-|a2 a-<N-A’ ]
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From equation (3.4.1) we get,

d n n
L(N,A|t> = g± [l/(N-i+l)3 -A .|t t.
d n

-» -^dL(N,A|t) = - ^ [l/(N-i+l>]

E [^IL(H,A|t) ] = ^[l/(H-i+l)3‘ (3.4.2)

aM L<M.A|t) n JL (H-14-1) t.

■> -§A*°-(N,A|t) =

E (N,A 11) | — —- (3.4.3)

•“d ~m °-CN,A| jb>
n

- .Z t. 1=1 l

-® [ 4; 4c ”-<n,a11) ] = -k (3.4.4)

Therefore using equation (3.4.2), (3.4.3) and (3.4.4), we
have,

!(©) =

n_ 2 X 1X<N-1+1> 1=1
n
X ix t<N-i+i>A; 1=1

n
.Z ix[<N-i+i>AIi=i

nxA

,-iHence, the inverse matrix of 1(6), I (©) is

I (©) =
.2n/(A o)

[n
x<N-i+i>AI I /r»

£ ti/<N-i+i>Aij /d

dIX < N— 1+1 > D
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where D = |I(©)|

{
n n an [l/(N-i+l)32 - { ^ l/(N-i+l) } j

Therefore we can write,
Vn“ (N - N ) ——> AN (0, o'.)

N
and

Vn~(A -A) ——> AN (0, o'.) as n ---- > ooA
where,

= C(®>
N r n n %

= n / | n ^ [l/(N-i+l)]z - { ^ l/(N-i+l) } \

(3.4.5)

(3.4.6)

and

o’. = I* (©) 
A 22

= A2 X [l/(N-i+l)f
lss s.

n na/(N-i+i)r {ii1 i/(N-i+i) r } (3.4.7)

Hence the proof.

Remark : In practice, o', and o', are unknown, the estimate of o'.
n A N

and o>. are obtained by replacing N and A by N and A respectively A
in (3.4.6) and (3.4.7). Thus,
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N

a ^ 
A

latt am ]
N

*» n -*n=n,A=A
Est[ o- ]A

M - -L A J n=n,A=A

and

3.4.1 Asymptotic Confidence Interval for N and A 
Since*
Vn (N - N )

Vn (A -A)
-> AN (0, ) and

N
-> AN (0, o’-) as n --- > ooA

where,
o„ = = nN
and

r n n x/ { n il* Cl/(M-i+l)f - t ^ l/(N-i+l) >2 j

no'- = A2 [l/(N-i+l>]2
AX— 3.

/{»&n nCl/(N-i+l)]2 - { l/(N~i+l) f }
Asymptotic Confidence Interval for N and A, are

[ » - f** > . S + /« }]' N N **
and 
A( al /*n y , A + <r z^2 //n >]

(3.4.8)

(3.4.9)
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§3.5 Empirical Study
In table 3.1 we present computations for MLE for some values 

of n as given in Forman and Singpurwalla (1977).

Table 3.1
Maximum. Likelihood Estimate for N

n = 2 n = 10
k/T N k/T N

1.9 2.0 9.0 10.0
0.8 2.0 7.0 10.00.7 2.0 6.0 11.17
0.55 3.06 5.5 13.52
0.54 5.44 5.0 21.30
0.53 8.81 4.8 32.30
0.52 12.93 4.7 45.90
0.51 25.60 4.65 59.90
0.50 10550.00

From the table we observe that7
i) for some values of k/T, the MLE turns out to be finite. But 

for other values of k/T, it is vary large,
ii) as n increases range over finiteness of MLE is observed also 

increases.
iii) on the boundary, where k/T = (n-l)/2 MLE is relatively

large.
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Below we give some graphs of empirical distribution of k/T, 
wherein we take H = 50 and A = 1. For different values of n, say 
10, 20, 30 and 40; samples have generated and empirical 
distribution of k/T is plotted. Further from the empirical 
distribution we estimate probability that the MLE is finite. That 
is, P[ k/T > (n-l)/2 ] for different values of n (see table 3.2). 
We observe that, as n increases to N; distribution of k/T goes 
away from origin (it moves towards right along X-axis) and 
P[k/T>(n-1)/2] increases as desired.

Table 3.2
Estimate of PC k/T > Cn-i2/23

Sr. No. n Est{ PC k/T > (n-l)/2 ] >
1 10 0.5870
2 20 0.7217
3 30 0.8891
4 40 0.9879

t The values are obtained fcr n = so and A * * I.
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EMPIRICAL DISTRIBUTION OF k/T
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§3.6 MLE for parameters of De-eutrophication model by Moranda 
Consider the De-dutrophication model given in section (2.5)

of Chapter - II. If t±, tz, t are the observed successiven
time between failures of a piece of software, then by using 
equation (2.5.2), we can write the likelihood function as,

n
L( D, k ) = ±ni Dk exp {- Dk t±> ; t±> 0, 0 < k < 1

_ , n ,_ Dn exp {_ Dki-‘ t j . t > o, 0<k<l
1-1 XX

The summation is taken over i = 1, 2, __ , n. Thus,
MD,k) = loe^ L(D,k)

n n .
= n log(D) + ^ (i-1) log(k) - D k tA (3.6.1)

Then the MLE of k and D are the solutions of the equations, 
d 0_ (D,k) /dk = 0 and d 0_(D,k) / dD = 0. Here,

nd tL(D,k)
dk i=i

n X-2(i-1)/ k - D (i-1) k t± and

n* aDP,k> = (n/D) - if. %

Thus d IL (D,k) /dk = 0 and d 1L (D,k) / dD = 0 gives,
n n ,
^ (i-1)/ k-DIt (i-1) k tA = 0 and

»=»/ { St ^ %}

(3.6.2)

(3.6.3)
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From equation (3.6.2) and (3.6.3), we get,

k k - { k f1-1* k” } "^ { J. kl" % } = 0
nSince, 0 < k < 1, k 4 tA * 0.

■» I, ^ *i { I, (i-D/ k } - { n J, (i-l)k1-* tx } = 0

^ -1 } k k1" *1 - { n k d-l)kt! t± } = 0
” k ^ -i -i+ l} = °

<“/k2) k k1 *i { ^ -i} = 0
2Since 0 <k < 1, we have (n/k ) * o and hence,

k k1 t± { -i } =0 (3.6.4)

Hence the HLE of k, k, is the solution to the polynomial equation 
(3.6.4). Having obtained the MLE of k, the MLE for D, D is 

n
(3.6.5)

* ♦ * ♦
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