Chapter - 1V

ESTIMATION OF PARAMETERS FOR A NHPP MODEL

& 4.1 Introduction
In previous chapter we discussed inference related to the
parameters of JM model. This chapter is devoted to the study of
parameter eatimation for a NHPP model. A stochastic model for
which the software failure phenomenon based on a NHPP is
suggented by Goel and Okumoto (1979). The difference between this
model and JM model is that- for this model, the total number of
bugs in the software is a random variable with mean a, while it
is constant in the JM model. Secondly, for this model the times
between failures are assumed dependent, while the JM model
assumes independence. Like JM model, this model is also used
widely.
In section (4.2) we give some preliminary results related to
NHPP, which are useful for our further study. In this section a
Joint pdf of § = (5,,5,,...,5)) is obtained, where 5 denote the
time to k' failure. Also the distribution of residual number of
faults and conditional reliability is obtained. Section (4.3)
deals with MLE s of the parameters of GO79b model. In this

section we obtain a neceasary and sufficient condition for
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existence and uniqueness of MLE. Distribution of residual number
of bugs and conditional reliability for GO79b model is obtained
in the same section. In section (4.4) we study the modified GO79b
model given by Hossian and Dahiya (1993). Since there is a
positive probability, for no solution for ML equations inside the
parameter space for GO79b model and due to the difficulty of
improper pdf, Hossian and Dahiya modified GO79b model by
introducing a control variable c in the pdf.Hossian and Dahiya
claims that, the modified GO79b model eases the condition of
existence of solution for ML equation and gives a better estimate
for the parameters. Distribution of residual number of bugs and

conditional reliability are also obtained for this model.

§ 4.2 Some results related with NHPP

Let a sequence of random variables {IEYT=‘ represents a
sequence of time between failures associated with the counting
process defined in (2.6) of Chapter - II. iimuxik denote the time

between (i—-l)th and i&‘failure. Define,
k
5 = LT,
i=1

Which denote the time to “k” failures.
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4.2.1 The joint density function of S = CS;’Sz"“’Sn)‘
Lemma C4.2.1) : The joint density function of S = (5,8 ,...,8))

is given by,

¢}
fg(8) = expl—+(s,)]1 0

r7(8;) €4.2.D

i

where, u(t) = E[M(t)] and u”(t) = du(t)/ dt.
Proof : We have,
P[S, > t] = PIT, > ¢]

= P[{ no failure before t ]

Since the number of failures in interval (0,t] has a Poisson

distribution with mean »(t), we have,
PLS, > t] = expl-u(t)]
Therefore the pdf of S is,

fs(si) = 7 (t) expl[—u(t)] (4.2.2)
E S

In order to obtain the joint pdf of (Si,Sz), we proceed as
follows :

Given S1 = 8, we have,

PIS, > (t+8)|S, = 8,1 = P[ no failure in (s, s +t) ]

= P[ H(81+t) - M(ai) ]

1

exp [ - {u(s+t) - u(s) 3]
due to independent increment property of the Poisson process.
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Thus the conditional density function of Sz given S‘ is,

fszlst(az) = u7(s,) expl - {u(s,) - u(s8) }] (4.2.3)

Hence, the joint pdf of (S‘,Sz) i‘a,

f (8,8 ) = f.(8 ) £ (8)
s .8, 1702 S1l 1 Szls1 2

{u'(si) exp[-u(si)]} {u‘(sz) exp[—{u(sz)—u(sg}l}

;u‘(si) :u‘(sz) expl[-u(s,)] (4.2.4)

Repeating the above argument for Sa’ .- ’Sn ; we obtain the
Joint density (4.2.1).

Hence the proof.

4.2.2 Distribution of residual number of bugs
Suppose that “y” faults have been found by time t o - Since
the Poisson process {M(t), t=0} has independent increments, the
conditional distribution of M(t) given M(t )=y for t > t 6 1is

obtained as,

PL M(t)=x | M(t )=y 1 = P[ {M(t) - M(t))}= (x-y) ]

expl-cucty-pe to> » .

- Xy
= () - (L)Y Y

(4.2.5

which is the distribution of additional failures during (to,t]-



Let M(t) be the number of errors remaining in the system at
time t, then M(t) = {M(w) - M(t)}. Thus substituting t = t and
t=o in the equation (4.2.5) and since M(t) and M(t) are

independent, we have,

PL M(t)=x ] = PL M(t)=x | M(t)=y ]
expl-cucom -petr> D
= @) = w8 — iy
= v(t)" exp[—(t)1/ m! ;form = 0,1,2,... (4.2.6)
where,
v(t) = E [ M(t) 1
=E[ M) 1-ET M®H) 1
= p(®) -~ p(t) (4.2.7)

and m = (x-y).

The distribution of M(t) given in (4.2.8) is important in
deciding the software system can be released or not. Such a
decision can be based on the number of faults remaining in the
software, because it plays an important role in software
reliability.

4.2.3 Conditional reliability function

The conditional reliability function given that “n” failures
occurred at time Sn is obtained as,
R(t|S =s8) =P[L T>t | § =5 1]

= P[ no failure in (sn, sn+t) ]
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Thus,
R(t!Sh= 8) = P[{H(sh+t) - H(Sh)} = 0]

Using equation (4.2.5) we have,

R(t|S = 8)) = exp[-{u(s +t) - u(g))}] 4.2.®

§ 4.3 Estimation of parameters for GO79b model
For GO79b model given in section (2.9), we have,
H(t) = a (1-exp[-bt])
and
#°(t) = a b exp[-bt]
From lemma (4.2.1), the 1likelihood function for given

8=(8,8,,...,8.) 1is,

n
L(a,b|s) = exp[-a (1 - expl-b 8 1)1 [ { a b exp(- b 8] }

Hence the log-likelihood is,

L(a,b|s) = log L(a,b|s)

n
{~a (1 - expl-b sn])} + n log(a) + n log(b) - b j}si

1=1

f

(4.3.1)

The MLE"s are the values of a and b that maximize equation
(4.3.1). Differentiating equation (4.3.1) w.r.t. a and b
separately and equating to zerol we obtain the following ML

equations.
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n/a - (1 - exp[— b 8 1=0 (4.3.2)

and
n
n/b - a 8 exp[— b 8, 1 - E‘si = O. (4.3.3)

Substituting (4.3.2) in (4.3.3) we have,

n snexpt-bsni n
- — - L8 =0
b <1-exp{-—bsn.> joq 1
n n Sn n
B " Tewpl Bs T - b8 =0
n i=a
1 *n -
b~ (expl bs_. -1> 9% Y
n
exp[bsni - 2 - bsn _
bcexpl bs_ T -1 -8=0 (4.3.4)
_ n
where 8 = }:si/n.
i=1
Now we define,
exp[bsni -1 - bsn _
g() = bcexpl bs_. -1, - 8 (4.3.5)
n

Now first we solve g(b) = O for “b” and the same in equation
(4.3.2) we get “a”. In order to see the existence of b such that

g(b) = 0 we study behavior of g(b) in the following lemma.
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Lemma (4.3.1) : The function g(b) is a decreasing function of b.

Proof : Differentiating equation (4.3.5) w.r.t. b we have,

[ acw)

d
db
[ {b(exp[bsn]~1)(exp[bsn]sn—sn)} - {(exp(b sn]—1~—b an)

g (b)

{{exp[b s 1-1} + b s explb Bn]]/ [b° {explb 8 1-1}]

1

[ {ban(exp[bsn]-l)z} - [(exp[b sn]-l)2+ bsn exp[bsn]
2 2
{explb sn}-l} - b sn(exp[b sn]-l) - b 8, exp[bsn] ]]

/ 6" {exp(b 8 1-1}']

[{bsn(exp[bsn]-l)z} - [(exp[b s,1-1)"+ bs_{exp[bs_1-1}"

- b’s’ explbs_] ]] / [6° {explb 8_1-1)°]

[2 explbs 1 - exp(2bs ]1- 1 + bzai exp[bsn]]
/ [V {exp[b an]-—l}zl
= [2 - explbs ] - expl[-bs ] + bzsi ] explbs_]
/ [b° {explb s 1-1}]
= [ - texplba ] + expl-ba,1} + (2+6°a}}] explba,)
/ v° {explb s 1-1}]
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Using result 1(b) given in appendix A, we write the right

side of above equation,

1A

g°(b) [ - {2+b°8} + {2+b’si}] explbs_ 1 / [b" {exp[b s 1-1}]

=0
Which shows that, the function g(b) is a decreasing function
of b.

Theorem (4.3.1) : The necessary and sufficient condition for

equations,
n/a - (1 - expl- b a 1= 0 (4.3.2)
and
n
n/b - a 8, exp[— b 8, ] - 1)3181 = 0. (4.3.3)

to have finite positive root is

8, > 2 8 (4.3.8)
n

where 8 = Ls /n.
iz

Proof 1 From equations (4.3.2) and (4.3.3) we have,

explbs . - 12 - bs
n n

Bcexpl bs_T -1 -8=0 (4.3.4)

It suffices to show that (4.3.6) is the necessary and
sufficient condition for the existence of positive root of

(4.3.4).The 1l.h.s. of equation (4.3.4) is the function g(b)
defined in (4.3.5).
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Now,

lim g(b)
b —o

—

lim
b —o0

Applying L °Hospital’s rule we obtain,

lim g(b) = lim

b —o

b —o

explbs I - 1 - bs
n n -
[ bcexpl bs [ -1 8 ]
n
explbs_ I s - s
n n n =
[ bs  explbs_  +(explbs_-1) 8 ]
n n n

Again applying L Hospital's rule we have,

lim g(b)
b —o

and

lim
b —o

1im

b —o

lim g(b) = 1lim

b —w

b —ow

(- 8

2 .
- Sn exp[bsn-

—2 x -
i bsn exp[bsn‘+ exp[bsn- sn+exp[bs

- [
L 8

tbs +2) ]
- n

wl

s
-———-——-———-—n —
[(bs +2) ]
n

Yy <O

Since, g(b) is decreasing function in b, using

- 8 ]
n n

(4.3.7)

(4.3.8)

(4.3.7) and

(4.3.8) we conclude that, the equation (4.3.6) has a positive

root if and only if

lim g(b)

b —o

>0
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This implies that,
s /2>8 ors >28.
Hence the proof.

Since g(b) is decreasing for all b20 [ by lemma (4.3.1),
g(b)=0 has unique solution if and only if s > 2 8. By
substituting this root into equation (4.3.2) we obtain the unique
solution for a. Hence the MLE s for a and b are unique if and

only if the condition s > 2 8 is satisfied.

4.3.1 Distribution of M(t) for GO79b Model
For this model we have,
u(t) = a (1-expl-btl)
Using (4.2.6), we obtain the distribution of number of

failures remained ; M(t) in the software as,

PL M(t)=x 1 = v(t)" exp[-v(t)1/ m! s;form= 0,1,2,...
where,
v(t) = E [ M%) 1]

ELMe)]-EIL[MGZL) ]

H(w) — p(t)

= a - a (l-expl[-btl)

= a expl[-bt] (4.3.9)
and m = (x~y) ; x failures are remained and y failures are

observed.
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4.3.2 Conditional reliability function
Using (4.2.8) we obtain the conditional reliability function as,

R(t|S = 8) = exp[-{u(s +t) - 1(8,)}]

]

exp[-{ a (l-exp[-b(s +t)]) - a (1—-exp(—bsn])]

]

exp[-{ —exp[—b(an+t)] +exp[—-bsn]} ] C4.3.10

In table (4.1), we report Maximum Likelihood Estimate for a
and b. Also we report estimate for residual number of bugs for
GO79b model. These estimates are computed for the data which

collected from an automization project at the Dutch Aerospace

Laboratory (NLR).

§ 4.4 Estimation of parameters for modified GO79b model

In the above section we have seen that, with positive
probability, there is no solution for ML equations inside the
parameter space. Because of this difficulty and the difficulty of
improper pdf {time to first failure}, Hossian and Dahiya (1993)
have suggested a modified NHPP model by introducing a control
variable “c¢” into GO79b model. They denote this modified model as
HD/G-0. The HD/G-0O model does not get rid of aforesaid problems
completely. But eases the condition of existence of solution for
ML equations of GO79b model, reduces the probability mass at

infinity and gives a better estimates of the model parameters.
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Table 4.1

MLE & residual number of fatlures for GO79b model

k —_ K = = =

Sr. No. ti sk”i§1 Y Ei_i§1 8 a ‘:Ls) V(sk)
1 880

2 3430

3 2860

4 11760

5 4750 23680 54970 14.3041 1.8163 9
6 240

7 2300

8 8570

9 4620

10 1060 40470 219780 * * x
11 3820

12 14800

13 1770

14 24270

15 4800 89930 559080 23.1321 1.1625 8
16 470

17 40

18 10170

19 1120
20 980 102710 1044970 * x x
21 24300
22 17500
23 4450

24 4860
25 640 154460 1773730 84.5329 0.3172 40
26 3990
27 26840
28 2270
29 200

30 39180 256940 2719730 35.4919 0.7262 5
31 14910
32 14870
33 16310
34 38410
35 1120 312380 4114530 44 5232 0.4938 10
36 30560

37 6210
38 120
39 20210
40 26400 395860 5921150 50.4479 0.3978 10
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fin the table 4.1, *x indicates that the cornddition for
existene of MLE is not satisfied and hence MLE does et exdst

for a, b arnd residual number of bugs. .

4.4.1 Development of HD/G~0 model

In the GO79b model the pdf {time to first failure} is,

]

f(t) = u"(t) expl—(t)] {from (4.2.2)}

(ab e-bt) expl-a(l - e'bt)]

(a b e™) expla e-bt]/ e (4.4.1)

]

Now consider,

oy)

® -kt -t a
JJ ftyat = _f [(abe ) explae 1/ e ] dt

Substituting (a e ) = y we get,

o

s ¢]
JJ ft)ydt = _f [ explyl/ e ] (-dy)
a a
=oJ [ explvl/ e1 dy

e - 13/ &

i

Which implies that f(t) is improper pdf. The corresponding

proper pdf is,
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£,(t) = £(t) / [[ea - 11/ ea]

- (abe™) expla et/ [e2-11 (4.4.2)

for a, b, t > 0

This led us to believe that with-
£(t) = (ab e™) expla e ™t/ [e>-c] (4.4.3)
for a, b, t >0 and 0 = ¢c = 1.

we might do better than the GO79b model. The corresponding mean

value function of this model is,
a -t
#(t) = log{(e” - c)/ (expla e 1 - c)} (4.4.4)

for a, b, t > 0 and 0 = ¢ = 1.

The model (4.4.3), when c=0, is GO79b model and when c=1,
the corresponding pdf is proper as given in (4.4.2). In this kind
of model we anticipate that u(w) is finite. But when c=1, m(®)=x

giving rise to a new problem in determining the mean total
number of failures in the system. So we try to search for a
{c:0=c<1} that gives a better (in some sense) estimated mean
number of time failures in the system than the GO79b model

estimate. Therefore we modify the condition on c as

o=c¢c <1 (4.4.5)
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From (4.4.4) we have, 2(0) = 0 and
p(o) = log{(e® - )/ (1 - ©)}

#(w) is the mean failures to be detected eventually and finite.

Lemma (4.4.1) : The conditional cdf, F(x|t) corresponding to
HD/GO79b model is DFR.
Proof : From pdf given in (4.4.3) we have,

x
F(x) = [ £(t) dt

Thus,

x

F(x) = f [ (a b &™) expla €™/ [e?-c] ] dt

Putting (a é¢i) = y we have,

~bix
Fx) = [ [ e’/ [e’-c] ] (~dy)

for x 2 0O (4.4.6)

[ " - expla e ] / [e'-c]

Hence,

F(x) = 1 - F(x)

[ expla e 1 -c ] / [e®-c1 ; for x 2 (4.4.7)

Therefore the corresponding conditional reliasbility of a
unit age t is,
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H

F(x|t) = F(x+t)/F(t)

[ expla e P - c] / [ expla € X1 - ¢ ] (4.4.8)

To show that F(x|t) is increasing in t, we show that,
(d/dt)[logF(x|t)] is positive for all x > O.
We have from (4.4.8)

logl F(x|t)] = 1og[exp[a gy _ c] - 1og[exp[a ety - c]

Thus,

—-g—{[?(xlt)] = [-ab expla e >3 e_btxw]/ [exp[a ey - ]

+ [ab expla e ') e"bt] / [ expla e 1 - ¢ ]

~bxety
e

Let u = e“wand v = e_bt; then we have, uv = and

hence,

—-g—;(-[f‘(xlt)] (-—-ab expfa uv] uv]/(exp[a uv] -c]

+ [ab expla vl v] / [exp[a v] - c]

%[’F(xh)] abv { [—- expla uv] u]/[exp[a uvl _c]

+[exp[av]]/[exp[av]—c]}

We observe that, for gilven c [ 0 = ¢ < 1 ],
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[ expla uvl u]/(exp[a uvl --c]

is decreasing function of u.

As O=u<l1 for all x>0, we can write,

]

-—%[?(xlt)] abv { [- expla v] ]/[exp[a v]-c]
+ [eﬁp[av]]/ [exp[av] —c]}
=0

Hence the proof.

4.4.2 Estimation of parameters

For HD/G-0 model we have,

H(t) = log{(e® - ¢)/ (expla e '] - ¢)}
= log{(ea - ¢)} - log{(expla ewbt] - C)}
Therefore,

u ) = g¢ [uen]

_ exp[ae-bti aePlin
- -bt.

cexplae - o
_ cab exp[ae—bt— bt 1)
- -bt.

cexplae - o
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Let £(a,b,t) = a et then,
u(t) = log{(e® - c)} - log{(exp(Z(a,b,t)] - ¢c)} and

- _ <ab expl#ca,b,ty - bt
Ho(t) = (expl®ca,b, t). - <

Thus from lemma (4.2.1), the likelihood function for given

8 = (8,,8,,...,8) is,

1

n
L(a,b,c|8) = exp[-~(s8,)1 0, {u‘(si) }

—

a igi

(exp[§<a,b,sn>2-c> n exp[§<a,b,si> - bsii
[ o |
(e - <}

<exp[§(a,b,sixi -c»

Hence the log-likelihood, for given c such that 0=<c«<1, is,

L(a,b|c,8) = log L(a,b|c,s)

n
= n log(a) + n log(b) - log(e>-c) +L%(a,b,s,)
i=1

n n-1
- b Is - I loglexp[-2(a,b,s;)] - c} (4.4.9)

i=1 i=1

The MILE's are the values of a and b that maximize equation

(4.4.1). Differentiating equation (4.4.1) w.r.t. a and b
separately and equating to zero we obtain the following ML

equations. Here, —g;EL(a,blc,g)] = O implies that,

84



=0

a n n-t. expl@ca.b,s,» ! expli-bs,
n e i i

. cexpl®ca,b,s
(@ ~-C) =4 L

Yo -
i

n o2 n n-1 exp[§<a,b,si)1 exp[—bsii
a _a +L%(a,b,s)/a - L [ (expldca,b,s,). -~ ] =0
(e ~¢)  i=1 i=2 i
n e®
2 -~ *+2%(a,b,8)/a
@ -
n-i <exp[§<a,b,si)3 -c> - expl@®ca,b,s .,y !
+ L [ (expl@ca,b,s.). - < ]Q(a’b’si)/a =0
i=a i
n . n-1 (cran §<a.b,si>
a —— + %(a,b,s,)/a - L [<exp[§<a,b,s.)2 - < ] =0
(1-ce i=1 i
(4.4.10)
d
and —as[ﬂ-(a,blc,g)] = 0 implies that,
n B n n-i exp[Q(a,b,si>I §<a,b,si)2
g ~L%(a,b,8) 5-L g+ L [ (expl®ca,b,s,) .- ]si =0
i=1 i=a i=4 i
n n
5 ~ 84 i(a,b,sn)-z 8,
i=1
n-t exp£§<a,b,si)1
- L [1_ cexpl@ca,b,s_ > .- c>]8i§(&’b’8i) =0
i=sa 1
n n n-1 o
B ~ 8, %(a,b,8))-Ls +1L [(oxpta(a b, s, > '—c>]8i§(a’b’si) =0
i=g i=a R

(4.4.11)
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Lemma (4.4.2> ¢ Let

n . n-1 (Cran §<a,b,si>
f(a) =7 - = *+ %(a,b,g))/a - L [<exp{5<a,b,s.)2 - c ]
(4-C@ i=1 i

(4.4.12)
then for given b, the function fb(a) is decreasing function of a.

Proof : Differentiating equation (4.4.12) w.r.t. a, we get,

- _ d -
fb(a) = ""a*s[ fb(A)]

-a n-t c<cray &ca,b,s.>
- _n + c e -7 d _ i
- 2 -a_ 2 da |(expi¢ca,b,s,2. - c
a (4-ce ) i=g i
Thus,
£ (a) = - n . c &2 -ni; d :C/a> §(a,b,si>
&) = 2 a 2 . da j(expl®ca,b,s.>». - ¢
a (e -c ) i=1 i
Here,
d :C/a) §(a,b,si> _d ~c exp[-—bsi_
da <exp[§(a.b,si>1 - ¢ »| T da (exp[§<a,b,si)2 - c
c exp[-zbsii expt&ca,b,;g'
= [ - <exp[$(a,b,si)1 —cr "2 ]
Therefore,
a n-1,. ¢ expl-2zbs, . expl@ca,b,s):
f(a) = -2+ —=Z— 4+ ¥ — *
b 2 a F texpl&®ca,b,s,». ~cr”2
a {e -C ) 1=4 1
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Hence,

. _ c e 1
fb(a) - [ 2 z]
ce -¢c a
1 c exp{-zbsii exp[§<a,b,§fi
+L [ (expl¥(a,b,s.). -cr"2 - z]
i=1 i a

2 a a 2
_ ace - (e -
- a 2 2

{& ~C )

a

n-1 zc exp[~zbsii exp[i«a,b,si>2 - <exp[§<a,b,si>2~c>z

+ L
i=1

<exp[§<a,b,si>i -c) "2 ]

(4.4.13)

Now the expression
F - a 2 2 a 23 a 2
cae - (e—-¢c) =—cae -e + 2ce - ¢
is increasing in ¢ (0=c¢<l), therefore,
2 A a 2 2 a 23 a 2
cae — (e-¢c)y =cae - e + 26 - ¢
2 a 23 a&
“ae -e + 2 -1

2 a —ak a
[a -~ e +2-e Je

i

[(2+4a°) - (& + e )] &

H

Using result 1(b) given in appendix A, we have,

cace” - (e7-c)® = (e - ) - (&% + e¥)1 &7

87



Which is equivalent to,
a .2 - a
ca‘e” - (e —c) = [ -2 ea] e

=-2 <0
Similarly we can show that, the numerator of second term in
expression (4.4.13) is negative. Thus we conclude that fb(a)

defined above is a decreasing function

Lemma (4.4.3) : The upper and lower bounds of a is the solution

of fb(a)zo are,
0 <ac< n/(1~exp[~b8n]) (4.4.14)

Proof : In the above lemma we have seen that fb(a) is decreasing
function of a ( a>0).

Also we observe that, the term in the expression of fS(a) .

. n-1 (Ccran §<a,b,si>
5~ ~.L [<exp[§<a.b.s.>2 - c ]
(4-C© ) i1=4 3

is decreasing in a and

. n-i (cran §<a,b,si>
o [ = S
j— C1-ca® o (exXp (&< a,b,spT - c >
Therefore,
f (a) S 7 + ¥(a,b,5 )/a - 1 (4.4.15)
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By (4.4.15) we have,
£ (a) < 0 if [2 + ®(a,b,8 )/a - 1 ] <0

Which implies that,

az n/(l—exp[*bsn]) (4.4.186)

and

fb(a) 2 0 as a > 0. (4.4.17)

From equations (4.4.16), (4.4.17) and lemma (4.4.1) we
conclude that for given b, the root of a of fb(a):O lies in the
interval (0, n(l-exp[-bs 1)7").

Theorem (4.4.1) ¢ The sufficient condition for ML equations

(4.4.10) and (4.4.11) to have finite root is s > 2 8 where

n
s =Ls /n.
i=1

Proof : Define,

n r-1
_n_ - £
g (b) = ¢ - 8, Q(a’b’sn)jEiQL+}§i[<exp£§<a.b,si>I-c>}81§(a’b’ai)

We need to determine the sufficient condition for fg(a) and
gé(b) to have finite zeros. Here we observe that , gé(b) is
decreasing function in a. To get the sufficient condition for the

existence of finite zeros, we need to determine inf;{gé(b)} and
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aupa{ga(b)}.

n
inf g (b) 2 'g' - n a8 exP[—bsn]/ (1-expl-bs_1 )—iz 8,
=3

n-4
C
+i§i[<exp[ei<b)2 - c:]aiei(b)

n n-4
= -g- -n sn/(exp[bsn]—-l)- Ls +i§‘[ <. ]Biei(b)

. texple, (b (-
i=1 i

exp[bsn —1-bsn n n-1 o
= n[ b(explbs .-1> ]""2 8 +L [<exp£e (b Z-—C)]Biei(b)
n i=4 i=ge i

where,

n exp[~bsn2

e,(b) =

(1—exp[—bsn2)

and it tends to » as b tends to zero.

explbs -t-bs n
| sremee =]

blim inf g (b) 2 n lim Brexpibs =5 -Ls
> O b ——— O n i=q
n-1 c
* bl_if>j i}=:1 [<expiei<b> I—c»]siei(b)
Since,
exp[bsni—t—bsn
1im [ bcexplbs .- 1) ] = 8,/2 {..from eq.(4.3.2)}
b —o0 n’

and applying L Hospital“s rule,

90



n-1
C
lim .z [texp{e. «by I—c>]Biei(b
b —ro i=sa i

)

n-1 e.'i(b)
= 1lim r [ —— ]8
b —>0 iz exp[ei<b> N ei(b> i
n-1 .
R e
b —>s0 ica exp[ei<b> . i

n

lim i.n:i:‘a ga(b) Z n sn/2 - 5 8
b —>0 i=g
Again,

n
sup, g,(b) = n/b - igisi

n
lim sup g (b) = [—— pX s]
b—> ara i=1 3

From (4.4.18) and (4.4.19) it is clear that,

finite zeros if,
lim infa ga(b) >0
b —>0

which implies that,

n

n s /2 —E,Si >0 or s > 2 s.

0 {due to ei(b) -—>0 as b —>0}.

we

(4.4.18)

(4.4.19)

will have

Therefore, the ML equations have finite roots if 8 > 2 8.

Hence the proof.
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How to control the regularity variable ¢ remaina an opean
chal;enge. One possibility is to look at the sum of square of
deviations of the observed and estimated values. In HD/GO79b
model, as c increases from 0 to 1, the sum of square of deviation
decreases. Therefore the method suggested by Hossian and Dahiya
to control ¢ is to use the mean square deviation (MSD) :

n -
MSD = T (g - 8)° (4.4.20)
i=14

The estimated ¢ is the minimum for which this MSD is almost

unchanged for any further increase in c.

4.4.3 Distribution of M(t)
For this model we have,
H(t) = log{(e” - ¢)} - log{(exp[Z(a,b,t)] - ¢)}
Using (4.2.8), we obtain the distribution of number of failures
remained ; M(t) in the software as,
P[ M(t)=x 1 = »(t)" exp{-v(t)1/ m! ;form = 0,1,2,...
where,
»(t) = E [ M(t) 1
=E[ M) ] -EL[ M®) 1]
= (o) - u(t)
= log{(e” - ¢)/(1- ¢)} - log{(e” - c)/(exp[Z(a,b,t)]1 - c)}
= log{(exp[®(a,b,t)] - c)/(1 - c)} (4.4.21)
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and m = (x-y) ; x failures are remained and y failures are

observed.

4.4.4 Conditional reliability function

Using (4.2.8) we obtain the conditional reliability function as,

R(t|S,= 8)) = expl-{u(8 +t) - u(s,)}]

= exp[——[log{(e“ - ¢)} - log{(expl%®(a,b,s +t)] ~ c)}
- log{(e” - c)} + log{(exp[%(a,b,s )] - c)}]]
= exp[los{(exp[ﬂa,b,sn*-t)] - c)}

- log{(exptﬁ(a,b.sn)] - c)}]

exp[log{ (exp[Z(a,b,s +t)]-c)/(exp(®(a,b,s, )]-c) }]

= {(exp[%(a,b,s +t)]1-c)/(exp(Z(a,b,s )]-c)} (4.4.22)

4.5 Scope for Further Research
In practice, it is sometimes impossible to achieve "Perfect”

debugging procedure. Whenever a fault 1is encountered, software
engineer tries to remove the same from the software. Therefore we

expect from our modeling strategies that, the failure rate should
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