
CHAPTER-11

MULTIVARIATE TFR/PFR DISTRIBUTIONS 

2,1 Introduction :
In this chapter we study the multivariate version of 

univariate IFR (DFR) class. Several extensions based on 
intuitive and mathematical appeal are discussed by various 
authors out of which we study only two, the one due to 
Brindley and Thompson, in section 2.2. and the other due to 
Harris in section 2.3. To distinguish these classes we 
call the class based on Brindley-Thompson’s definition as 
MIFR class while the one based on Harris? s definition as MIHR 
class. Both the classes coincide with IFR (DFR) class 
in the univariate case,

A parallel development of MDFR class for the former 
is stright-forward; but for the proper definition of MDHR 
class needs some further mathematical concepts, and was not 
discussed by Harris' while introducing MIHR class. Later on 
Brindley and Thompson extended the necessary mathematical 
concepts and gave a parallel version of MDHR class which 
we discuss in section 2.4.

In section 2.5 we discuss a subclass of MIHR class 
which is of some practical importance.
2 ..2 •_ filFH , Class.due to Brindley and Thompson :

In this section we concentrate on MIFR class while it 
is understood that an analogus development of MDFR class is 
obtained by reversing the appropriate inequalities and by 
replacing * f * by 1 | * .
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2,2,1 Definition :
A distribution F(x) is said to be a multivariate 

increasing failure rate (MIFR) distribution if it's mar
ginal distribution satisfies

Fj[X'1^ +id]
-------------in each x. , iel, for all t > 0 and
FjC*^]
1 r --- (^4
for every non empty subset I of ^l,,,*,nj. .

We assume through out-that F.(O) = 1,
2,2*2 Remarks :
i) The above definition physically demands that for every
nonempty subset of the n components, the probability of sur
vival of additional t units of time for these components
when they are of age is decreasing in i.e. in
each i - i] for all t > 0.
ii) A possible definition could be to demand that

Ft[x(I)+ tW]^ ------- - 1 in each x.for all t^^=(t. ,..,t.
(I)-, 1 “ xl xkFtCxvx0

But this implies F(x^+t^#,..,xn+t.n

for all I G fl
xJL,..,xn) F(tlf..,tn) 

for all x^, t^ 0,
so that

FCxj^,,.. ,xn) = F(0 + x1, x2 + 0,... ,xn 4- 0)
< F(0,x2,.4.,xn). F^)
S F(O,O,X0,,, >xn) ^2^2^* F|(x^)
< * F.(x.)

i=l 1 1
Thus an unde sirable constraint F(x.,..>Xn)< % F.(x.)x n — i i
which is a kind of negative independance is imposed on F
by this condition. Also this implies that F is both MIFR 
and MDFR only when the marginals are independent.
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iil) From the above definition of MIFR class, it imme-

..diately follows that

a) A single MIFR random variable is IFR in the usual sense,

b) Any subset of MIFR random variables is MIFR. Also 

using factorisation of survival function for indepnedent 

random variables it can be easily proved that

c) Union of two mutually independent sets of MIFR random 

variables is MIFR.

d) (a) and (c) together imply that if X^,,..,Xn are n 

independent univariate IFR variables, then (X^,...,Xn) 

is MIFR.

e) It is easy to see that if X is MIFR, a > 0, b > 0 then 
aX + b is MIFR.

iv) The following example shows that there may exist

distributions for which(2>2.1,) monotone in opposite

. Such, •..,
distributions can not be classified either in MIFR class 

or.in MDFR class.

2,2.3 Example :

The bivariate distribution due to Freund has survival 

function given by

~(a+p)(x-y' e-rf-(x-y)] y<x

x,y >_ 0.
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F{x+t, y+t)
It can be easily checked that ----------- is constant
in x and y. Now, F( x,y)

Fi(x) = JLjz.JiL e-(a+p)x + ---  e-®’* x > 0
X a+p *- a' a+p - a 1

P2(y) = 0-(a+p)y + ~s---  e-P'y y > 0
a+p •- p* a+p - p '

We show that F1(x) is IFR(DFR) .iff a < a’ (a > a').
To see this",
Let A = [ (a-a') /(aH-(3~a') ] e“(a+p)x,B Hj/(a+f3~a‘) ]e“a’ x

Then
f (x) = “M*L_ = (a+p)A + a'B, f'(x) = -(a+p)2A - a,2B 1 dx 1 ■
now
F^(x) is

i.e. iff 
i.e. iff 
i.e. iff 
i.e. iff 
i.e. iff

i.e. iff

IFR iff rt(x) = T in x1 Fl(x)
Fx(x) f^x) + f2(x) > 0 .

-[(a+p)2 A + a’2 B][A+B] + [(a+p) A + a'B]2 > 0 
-AB[(a+p-a')2+ a'(a+p)] > 0 

AB < 0
e“ (a+P +a‘) x < o

(a+p-a')^ 

a < a'

On the same lines it can be proved that F2(y) is *FR 
iff p < P».

13



When the inequalities are strict, corresponding 
failure rates will be strictly increasing or decreasing.
Taking a < a1 and p > (3 ’ we see that F-^x) is IFR while 
FgCy) is DFR.

We give some important properties of MIFR class in 
the next theorem.

2.2.4 Theorem :
i) Minima of subsets of MIFR random# Variables arc MIFR ..
ii) X ir both MIFR and MDFR iff it has MVE distribution 

[ we refer to multivariate Marshall-Olkin expcnentia 

distribution with distribution function given in
m.2; as MVE].

Proof s
i) Let X be .MIFR .Let JR, i = l,2,.,.,m be subsets of 

£lf... ,rA . Let = min [X^/j e i = 1,.. ,m.

For given yj_,...,y >. 0 we define
x. = max /yi/ j c. JA with the condition that x.= 0 
if j belongs to no 2h . Now, the event ^ Y > ;yjis 
equivalent to the event^X > x) ,

Hence
L£jLiil = p..... (2.2.2)

f(::) p [ y > x ]

= LLLLl.tJJj
P [ X > x ]

F[x]
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ii)

Since X »5 MIFR , this is decreasing in each x^ for all 
t > 0 and since each x^ is increasing in each y., it 
follows that(2e2,2) is decreasing in each y.. A similar 

argument holds for every subset of Y. Hence Y ;s MIFR. 
If Part
Let X be MVE with survival function given by 
- nF(x) = exp[-[ E X x. + EE X.. max(x,,x.) +....+ >H0..

i=l 1 1 i<j 13 ' *'
max (xx .... ,x n)] ]

Then

h

F(x +tl)
F[x]
exp[-[^2 ^(Xj.+t) + ^12-,’* .*.n maxix^t** *. ,xn+t) ]]

exp[-[ 8 A, X. + , , ... t' tN o • max(xy,. ,x ) ]]

ex*>[-[ 5 h + fL hj+ •••• +i i< j
This is constant in each x^ for every t > 0. Since, 
every marginal distribution of MVE is again MVE, a 
similar result holds for every marginal. Hence MVE is 
both MIFR and MDFR.

Let X be both MIFR and MDFR. Then by definition
(2.2.1) we must have for every k dimentional marginal
(Ik) , . , .X where Ifc = H.1,...,iA B il,...,n^ ,
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Ft, [j§^^+ t_l] /t \
----- .— = C(t) where C(t) is independent of xr k't

?ik^(Ik)]
Putting x^k) = 0 in this expression we get CCt^F^ft l]«
Hence, Fr [x^Ik^+ t l] = FT [t lj. Fx [x^k^] ___ (2.2.3)

■Lk “ 1k ” ■‘•k
Now by putting
x^Ik)=x l in(2.2.3) we get F7 [(x+t)l]=FT [x 1].FT [t 1 ]
- - ik “ xk ~ xk
i.e. P[^'Ik^>(x+t)l] = P[X^k)> x lj. P[X(lk^> t l] 
which is equivalent to
P[Y > x+t] = P[Y > x]. P[Y > t] where Y =^1° { Xi) •

From property of univariate exponential distributions, 
this implies that Y must have exponential distribution 
for some parameter © > 0. Therefore

Ft (x 1) = P[Y > x] = e-Gx for all x > 0 .... (2.2.4)
Now, we complete our proof by induction on k.
For k = 1,(2*2.3) implies that F^(x) = e~ ^x for some 0 

and thus one dimensional marginals are MVE.
Now let us assume that all k - 1 dimensional marginals 

are MVE. Without loss of generality we assume that
xik ~ mxn /x. ,...,x. i . Now, 1 xl* *kj
Ft ( X ■ , « . . , X • )_k xk‘ FI,[(xii“ x. )+X- ,...,(x. 7xi,)+X. , X, 3xk 11 ^-k ^-k xk-l xk xk xk

Ik C(X, - x. ),...,(x. -x. )»0]Ft fx. l]xk xk-l 1k Ik1 iir1- 
by(2.2.3)

^xi Txii,^e eXIk*«»
by (2.2.4)

Ik-V ' "X1 1ky 7 * ’ ’'' "ik-l"ik
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Since by hypothesis, Fx is k-1 dimensional MVE, we
ik-l

must have
Fik(xi1>----xik) 

-ex. k-l
e“ xik exp[- [ E Aj(xi1"xi ) + >12...k-l

j=l
max [ (x. —x.),...j(x. “X • ) 3 J 3 

11 xk xk-l k
fSy ,..., >12. .n°/fo3: a11 >

= exp[- ^jxi4+ + ^l2...k-l max(xii »• • »xik_1-

for some

j=l

where
Ak= Ce -

k-l k-l
EE
j<!=l 12... k-l*]

If 7sk > 0,(2*2*5) represents a survival function of MVE. 
To'see that X > 0, we note that Ft (x^k^) should be

K "™ x

nonincreasing in x. *
----- Fx [x^k^] = C [x^k-l^J. e”Akxik (- X) < 0 dx, Xk “ “ R

1k
where C[x^k-1^] > 0 depends only cn x. ,...,x.

11 xk-l
This implies that > 0.
Thus MVE forms the boundary between MIFR and MDFR class 
2.2.5 Remarks :
1) Theorem (2.2,4)(i) says that MIFR class is closed
under the formation of series systems.
ii) An equivalent defination of MIFR class :

The hazard function R(t) is defined as 
R(t) = - log F(t)

2,.. ,k-l.

]]
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Let r.(t) = —-— R(t) i = 1, ..., n. Then the vector 
1 “ dtt

r(t) = (r,(t),.,r (t)) is called the hazard gradient _ _ i ■” n ~
for distribution F,

Block has given an equivalent definition of 
MIFR class as follows :
* A d.F. F is MIFR iff r(x + tl) f in t for all x>0. 
and a similar condition holds for the, hazard gradient 
of every marginal distribution.*

Also he shows that the quantity r(,x) is stationary 
(in the sense that r(x + tl) = r(x) for all t > 0) 
iff F is MVE, provided that F has absolutely contineous 
univariate marginals.
2,2.6 A Shock model giving rise to MIFR distribution :

Let us consider shocks to an n-compongnt system.
Let H^, i = l,...,n be the IFR distributions of occurance 
times of independent shocks to destroy components 
i = l,...,n. Also for every subset
I = j£i^,... ,ij^. of ^l,...,n| , the IFR distribution
H/tn = H. . governs the occurance time of shocks whichV -L / 11 1 u

J- • • ; • ft

jointly destroy the components in I.
[Here, I is an unordered set.]. All shock occurance times 
are independently distributed, so that the multivariate 
distribution of component survival is
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n _F(t, , t ) = ic- H. (t.) % max(t. ,t.)1 n i=l 1 1 i< j 1 3i< j
. H

Then
12... fn[max(tlf.... ,tn)]

F(t + xl) 
F(t)

n HiCti + x) Hij(max(ti,tj)+x )
i=l H. (t.) i< J H. .(max( t. t.))

± ± ± J ± ? J

^12. ._tn^max^ ^ * * •
ni2..,nimax<tl'-

,tn) + -x]

and since each H is IFR, this is decreasing in t for all 
x > 0. [Note that max increasin9 func
tion of each t.]. By putting t* = Oji^kl it can be
seen that similar condition holds for every marginal 
distribution F^.* Hence F is MIFRi 
2.3 MIHR class due to Harris s
2.3.1 Definition :

A distribution function F(x) on the nonnegative 
orthant is multivariate IFR if it satisfies the conditions
(i) F(x + t 1)

—=--------J, in each x. for all t > 0.
F(x) 1

(ii) P[x > x / X > xf]fin each xl for every choice of x.

We note that condition (i) is equivalent to
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T? ( * v. t 1) F(x’ + t 1)
for all x^>x| arid t>0.

F(x)

Condition (ii) is called 'right corner set increasing’ 

or RCSI property, written as RCSI (X).

2 RemarksO
t2

i) We note that unlike MIFR class, here the condition 

(i) neednot be satisfied for all marginals of F, but 

x needs to satisfy a form of positive dependance, 

namely the RCSI condition. In the later discussion 

it will be shown that MIHR class is subclass of 

MIFR class and we also provide an example to show 

that these two classes are distinct.

ii) We note that a single random variable is always 

RCSI and hence it immediately follows that a single 

MIHR r.v. is IFR in the usual sense.

iii) Using the property of factorization of survival functi 

on fox independent random variables it is easy to

see that irdou of two mutually independent sets of 
MIHR r.v. is itself a set of MIHR variables.

iv) Remarks (ii) and (iii) imply that if are

independent univariate IFR r.v., then X=(X]^f • * • ,xn)G 

MIHR,

v) It Is easy to see that if X 6 MIHR, then 
Y = aX + b , a > 0, b > 0 is MIHR.
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vi) A similar argument as in theorem 2.2.4(a),can be 
used to see that sets of minimums of MIHR variables 
satisfy conditions (i) and (ii) of definition 
2.3.1 and hence are MIHR. Thus MIHR class is also 
closed under formation of series systems.

vii) Remarks (iv) and (7vi) together imply that MVE is 
MIHR.
In the next theorem we prove one more property of MIHR. 
class

2.3.3. Theorem':
Subsets of MIHR random variables are MIHR.

Proof : ■ • '
Let X .c? MIHR. Let (th , x) denote the vector x with

th' ,i- componant replaced by t. rue.
(ti »2i) = ( x! > • * * »xi_1 »t,xi^1,... ,xn) and
(°i,“) = ^xl,#* *’xi-l» °» xi+l5“**,xn^*

Now by putting x. = x* =0 in (2.3.1) we get•** 1

i

+ t l]
F(Q, x)

-i-

<
F[(01,x*) + t l] 
F(02, x*)

for all x.>X?l— l
and t > 0

e.
F[°i,x«] 
FfOx,x]

F[(0X, x1) + t 1] 
F[(0lfx)+ t l]

(2.3.2)
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of

Also, from RCSI (X) we get
P[X > C(01,x') +tl]/X> [ 01>(x'+t 1)]]

i«e.

x.e.

i.e.

p[x > C >2$. r) + t 1]/ X > [ OjL,(x+ t 1)]]

"d lx v- (0i’ ^)+t 1/ X > [ 01 »(x + t 1)]] Since x^>x

1] x) + t 1]
for all

F[(0, , x»)+ t F[(0,,
X—.—— < ---- ----- —•-»- for all
(x* +“ti5J] F[[olt (x+ t i)33 xi-xi’t> 0

F[(01 ,x')+ t 1] f[[0,,
< _,_i_

(x'+ t l) j] for all
F[(01 »x)+ t .1 ] F[[01, (x + t 1)33 xi>_x| ,t>0

Combining 2. 3.2) ;and (2*3a3) we get

R°x» x'3
<

FtCOj.ti' + t 1)3] for all
F[0lf.x] F[[01,(x + t 1 )33 xi~xi’

X*) t 1) for all
Cl*-X)"""’ <

Fn-l^ + t 1) xi>x?, t>0

Where F ^ is survival function for the marginal distribution 
(X2»..* ,XnX[Here, without ambiguity, we interpret 
Fn_1(x*)= F(,...jX^) etc.]. Thus condition (i) is 
satisfied for a subset of n-1 dimentions. Putting 
x1 = x| = Ot in condition ,(ii) of definition (2.3<l) we 
see that RCSI-(X2,...,Xn). Thus (X2, ,X )G MIHR, Using
a similar argument we see that all subsets of size n-*-l 
are MIHR. By induction on k, the size of the subset, it 
follows that alll subsets of x are MIHR.
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2.3.4 Remarks :
The theorem immediately implies that all marginal 

distributions of X. satisfy condition (i) of definition 
2,3.1 if X is MIHR and hence it is also MIFR. Thus MIHR 
is a subclass of MIFR. After studing some implications 
of RCSI condition, we present an example to show that 
MIHR class is a proper subset of MIFR class,
2.3.5 Some Implications of RCSI Condition :
i) Let RCSI(X), Then for every subsets K and M of

,P[XK > x^/ X^ > Xjj] is increasing in x^ for 
all x^ with the convension that X^ is the vector obtained 
from the set |x^, i <e- KJ by placing subscripts in 

assending order.
Proof ;

Since RCSI(X) t we have PfX^ > x^, X^ > Xj^ / ^ > 2l'3 
is increasing in x1 for all x^» x^- where K = £l,...,n| -K. 

Taking x^ = - °° for i£.K, we see that

P[Xm>:*K I $*>4’ 4 > 4 ] is ^creasing in x'M and ^

for all x^. In particular it is increasing in for
all xK and x^. Now taking x| = -«> for i€.M we see that 
P[XK > x^ / > ~M 3 is increasing in for all x^.
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ii) The RCSI condition implies the series bound, i.e.
If RCSI(^), then ...

n _F(x) > it F. (x.) --- (2,3.4)
i=l

Proof :
Let RCSI (X^,. .. ,Xn)„ For n = 1, the result trivially

holds as an equality. Let us assume that it is true for
n < k-1. i.e.

„ k-tl _
Fk^fC xi * * • • »Xk_i) 2 ^ ^i^ xi^ * Now,

Fj^.(xl>* • • * xj^)=PfXj^I«P-EX^>xt , a .. ,jCj^^/Xj^x^3 
2 x^,«..x}^_^/x^x•—1°°J

(using implication I)
=: J5^k'>xk^ * ^[X-^>x^,... ,X^__^ ^ xk-i-J

^k^xk^ * ^k-1^X1' '* * * ,xk-l^

> % tMx.)i=l 1 1 by hypothesis.

The result now follows by induction on k#
Now we present an example to show that MIHR class 

is proper subset of MIFR class.
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2.3t6 Example :
Gumbel's bivariate distribution has survival function 

G(x,y) = g-x-y-cxy x> y > 0, a > 0. Now,

= e-2t-at2-at(x+y)
G(x, y)

This is strictly decreasing in both x and y. Now,
G^(x) = e~x , G2(y) = e“Y and thus one diraentional

marginals also satisfy(2.2.1) and hence, (x* Y)is MIFR.
But _ vG(x,y) = e“x. e“Y. e~c Y

= G^x). G2(y). e-crxy 
< G-^x). G2(y).

Hence, implication ( ii)of subsection 2.3.5 implies
that (x* Y) are not RCSI. Hence (X, Y) is not MIHR. 
2.3.7 Some system relibility bounds ;

We can combine implication (ii) of subsection 2.3.5 
with some of the inequalities for univariate IFR distri
butions to obtain system bounds.

Barlow and Proschan (1975) give the following in
equalities for univariate IFR distributions :
(i) If F is IFR with mean , then

(e~t/^l if t<|»,
F(t) > \ 1

tO if t >
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Using (l*3.4) we modify this for MIHR case as follows :

If F( x) is IHR and if £ (x «) - p. i = 1,... ,n, then

n
F(x) > Fi(xi)

i=l
n

f exp [ - I, if ^ M-jL f°r all i

\ 0 otherwise,
(ii) If F is IFR and F(“„ ) = p, i.e. i*L is a p

r' ‘ H

percentile for F,

th

then F(t) > 

<

■at

-at

if t <

t > .
where a = [ -log(l-p)]/ % .

We modify this for MIHR case as follows ;

If F(x) is MIHR and F. (A .) = p. , i = 1,...,n, i.e.
5 *t" It.

'3pj_ is p^ percentile for F^, then

_ n
F(x) > (exp [ - E a. x. ] if x. < %_ for all i

“ I --jll 1

\
where oc.

i=l
0
•log(l~pi)

•*P,i

Pi
otherwise

1 ““ l^avt^n*

In the next section we discuss the analogus MDHR 

class developed by Bcindely and Thompson.
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For developing MDHR class analogus to MIHR class, a 
negative dependence concept parallel to RCSI dependence
is needed,

A possible definition of such a concept would be to 
de.and that P[X > x / X > x*] to be decreasing in each x!

for every choice of x,,...,x . But unf d'rtun-afely this
< xf^ for

every choice of x.
However, Brindley and Thompson have tried to partially 

reverse the concept of RCSI as follows :
2>4,1 Definition ;

Random variables X are right corner set decreasing,
written as RCSD (X) if P[X > x/ X > x!] is decreasing in

fx! : x? > x.'! for every choice of x.\ -1- — i f ””

Using this dependence concept, Brindley and Thompson 
have defined the class of MDHR distributions as follows : 
2.4,2 Definitecn :

A d.F. F(x) on the nonnegative orthant is decreasing 
nazerd rate (MDHR) if it satisfies conditions
(i) F(x d- t 1) F(x‘ t 1)
—— > - - - - - - - - - -  for an x.>x! i=l,...,n.

F(x) “ F(x') ^ 1
(ii) RCSD(X)c

probability is always increasing in ixl : xl



2.4.3 Remarks :
i) The following properties of MDHR class can be 
easily varified.
(a) A single multivariate DHR survival time is DFR in 

the usual sense.
(b) The union of two mutually independent sets of DHR 

survival times is DHR.
(c) Any subset of DHR survival times is DHR.
ii) (c) implies that MDHR class is a subclass. of._MDFR
class discussed in the previous section. -

_ n _
iii) RCSD condition implies F(x., ...,x )< % F.(x.)

1 ' n i=i 3- 1
[Proof similar to that for ( 2*3*4)].
iv) Bivariate exponential distributions of Marshall and 
Olkin with > 0 are not DHR, since in this case,

F(x,y) = e- V- ^ - >12 ^>0;

= FjUhF^y). e ^12“>in(x.Y)

> FjJxJ.FjW) if \2>0.
Thus (X,Y) is not RCSD and hence not MDHR.
v) We have proved that all MVEs are MDFR. Thus above 
example shows that MDHR class is a proper subclass of 
MDFR class.
vi) Since the two variables of a BVE arise as minimums of 
subsets of independent exponential variables, namely
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X = minCU^ U^2) and Y = min(rJ2, U^2) where 
are independent exponential variables, the example in 
remark (iv) above also shows that minimums of subsets of 
MDHR survival times need not be MDHR.
vii) A d.F. F(x) is both MIHR and MDHR iff it is product 
of independent exponentials.

Since if F(x) is both MIHR and MDHR, it must also be
both MIFR and MDFR, and hence,F must be a MVE, Also X must
be bgth RCSI and RCSD, ahd hence,F must satisfy the inequalities

n(i) F(x) >_ te p (x ) and (ii) F(x) < it F.(x.) respectively i=l i ' i i=l 1
_ n _

which implies F(x) = it F (x.). Thus F must be MVE with
i=l

independent marginals.. i.e. it is composed of independent 
exponentials.
2.5 A subclass of bivariate IHR distributions j

Harris discusses a more restricted class of IHR 
distributions generated from an independent basis with 
appropriate marginals, which satisfies all the properties 
of MIHR class. He takes X= min(U,W) and Y= min(V,W+a) 
where U,V and W are arbitrary independent IHR random 
variables and a >. 0 Is an arbitrary constant.

The following theorem and it's corollary reveal the 
importance of such a class.
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2.5.1 Theorem ;
If Y = 0(X), where 0 is a strictly increasing non

negative function which is not identically zero or infinity 
and X has a marginal exponential distribution, then the 
pair (X,Y) has a bivariate IHR distribution iff 

0(x) =x+a a ) 0.
Proof

Let ijj be the inverse function of 0 defined by

x

Since X is non-negative r.v. , the function ijj will be 
non-negative, moreover since 0 is strictly increasing in 
(0, °°) , we must have ljj(0)=0 [o.w. if possible, let 
ljj(0)= C > 0. i.e. inf j 0(x) > O] = C which implies that

x 10(x) = 0 for all x > C, contradicting the strictly in
creasing property of 0]. Then we have 
P[X>x, 0(X)>y]=P[X> max(x,l}j(y) ]=exp[- /\max(x,l)j(y) ]

for all x, y >. 0 and for some ^> 0. 
For F to be IHR, it must satisfy condition (i) and (ii) 
of definition 2.3.1,
Now, condition (i) will be satisfied by F iff
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F(x+t, y+t) F(x'+t, y’+t) 
F( x, y ) ” F(x', y') for all x >_ x' >_ 0 and

y > y' > Q, t>0.

i.e. iff exp[“/l[max( x+t ,ljj( y+t)) -max( x ,ljj( y)) ] ]
< exp[-)\.[max( x '+t ,l|j( y ’ + t) )-max( x1 ,l|7(y*))j]

for all x_>x’ , y>y' , t>0, 
i.e. iff max(x+t, l|j (yH-t)) -max(x, l|j (y))

>_ max[xf+t, ljJ(y'+t) ] - max( x' ,(y*))
for all x>x'>0, y2LY,2P> t>0.

___  (2.5.1)
Further proof depends on the following lemmas ;
Lemma 1 :

If (2.5.1) holds, then l|j(y-i-t) < l[l(y)+t
for all y>0 and t > 0,

Proof ;
Suppose, if possible, there exists a 0 and t > 0 

such that
ijj (a+t) > l|j(a)+t .... '
let x’ = ijj(a) and x = ljj^a+t)-t, then x > x’ > 0.
let y = y’ = a. Putting these values in (2,5.1) we

get ljj(a+t) - [ljj(a+t)-t] >, lji(a+t) - l|j(a). i.e. * ' '
t> ljl( a+t)-l(j( a) which is contradiction to (i), hence the
claim.
Lemma 2 t

Condition^*5.1) is equivalent to
max(x+t, l|j(y+t)) -rnax(x, ljj(y)) = t ... (2.5.2)

for all xX), y H), t>0.
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Proof *
Let (2,5.1) holds. Than from Lemma 1 putting y=0, 

we get ty(t)<t for all t>0. Therefore by putting 

x' = y! =0 in (2.5.1) we get
max( x+t, l|j(y+t)) ~max( x ,l)( y)) > max( 1,l|j( t)) = t --- .( ii)

Again from Lemma 1 we get 
max(x+t, ljj(y+t)) -niax(x, ijj('y))

< max(x+t, ty(y)+t) -max(x; l(j(y))'= t. * • * **(iii)

from (ii) and (iii) we conclude that 

max( x+t ,lj;{ y+t)) -ma:;(x, tjj(y)) = t.

on the other hand, if (2.5.2) holds, Condition (2.5.1) 

reduces to t >_ t which is trivially true. Hence the Claim. 

Lemma 3 ;
Condition (2.5.2) is equivalent to 

ljj(y+t)=l|j(y)+t for all t>0 whenever l[l(y)>0. .. (2.5.3)

Proof %

Let (2.5.2) holds. For y such that tjj(y)>0, take 

x such that 0 < x <_ ljj(y). Then (2.5.2) becomes 

max(x+t, ljj(y+t)) -max(x, ijj(y))

= max (x+t, l{l(y+t)) - l|j(y) = t. 

i.e. max (x+t, lji(y+t)) = ijj(v) + t

Since x < ljj(y), x+t ^ l)j(y)+t. Therefore lJj(y+t)=^J(y)+t, 

thus (2.5.3) holds. On the other hand if (2.5.3) holds, 

we have max (x+t, l|j(y+t)) -max(x, ijj(y)) = t for all y 

such that l}j(y) > 0. Hence the claim.
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Mow we continue with the proof of the theorem.

It follows now that it is enough to prove that 
(2.5.3) holds iff 0(x) = x-i-a for some a > 0. 
we note that (2.5,3) implies
ljj(y+t)'= $(y)+t= l{j(t)+y for all y, t such that ljj(y)>0,
l[j( t) >0. Thus l|J(y)~l|j( t)= y-t for ally,tsuch that l(j (y) 9

ljj(t)>0. Let us fix t= a for some a such that l|j'(a)>0.

Then we have l}j(y)=y+ l)j(a)-a = y- C where C =M)(a).

note that by Lemma 1, C _> 0. Thus we must have ljj(y) of

the form l(f(y) = y- C, C > 0 for all y>C if (2.5.3) holds-.*
...(2,5.4)

Also since (p is increasing, so is IjJ and hence we must 
have l|j(C) = 0 [o.w. if possible, let ^J(C)= h > 0.

Let 0 < x < h. Then from (2.5.4) lJj(x+C) = x < h contra

dicting increasing nature of ijj] and ljj(y) = 0 for y < C.

Thus we have

^(y) = y - c y > c
= o y < o, c > o.

which gives 0(x) =x-C. x >. 0 C _> 0 
RCSI (X, 0(x)) follows from

P[X > x, 0(X) > y / X > x', 0(x) > y1 ]
= P[X > max (x, 4J(y))/ X > max (x1, ijKy’))]. 
and since max (x‘, ^(y1)) is ihcreasirtg function of
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x*and y*, this probability is increasing in both x' and y’« 

Hence the theorem.
Corollary : If X = min(U,W), Y = min(V^(W)) where 

U,V and W are independent exponential random variables 

and 0 is strictly increasing function then the pair 
(X,Y) has a bivariate IHR distribution iff 0(x)=x+a,a>0. 
Proof ;

Let U^expO^) , Vz-^expC^) » W«—-exp( ^2^ *
Then we have F(x,y) = e" ^ x~ >2^ *12 ">ax( x,l|l(y)).

F will satisfy condition (i) of definition fc3,l) iff 

F(x+t, y+t) F(x’+t, y*+t)
--- -— < —.—-———.— for all x>x1 >0, y>y!>0,
F(x,y) F(x', y») t > 0.

i.e. iff e“^l+'^2^. e-\.2[max(x+t ,ljj(y+t))]- max( x ,l|l(y))]

< e ~ (^l+^2) "k . e""^12[max( x t+t, l{j(y’+t)]~ max(x, tjj(y) 3

i.e. iff max(x+t, ljj(y+t))- max(x, i|j( y))

> max ( x'+t, l|l(y'+t)) -max ( x1 , l|l(y'))

for all x^x’X), y>y,>0, t > 0. 
Which is exactly same as condition(2.5.1) and hence from 

Theorem2.5.1,we must have 0(x) = x+a a > 0.
To see that RCSl(X,Y) we observe that
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P[X > x, Y > y / X > x', Y > y']
= P[U>x, V>y, W>max( x ,ljj(y)yu>x* ,V>y1 ,W>max(x1 ,l[l( y'))] 

since (U,V,W) is MIHR and max( x' ,l(j(y ’ )) is increasing 

function of x’ and y' . it follows that the above proba- 

bility is increasing in x1 and y*. Hence RCSI (X,Y).

Thus (X ,Y) is MIFR iff 0(x) = x + a.
A practical situation where such type of model is 

appropriate, is described below ;

Suppose, thvee independent sources of shocks are 

present in the environment, A shoe’: from source 1 destro- 

yes component 1 at a random time U. A shock from source 

2 destroyes componant 2 at random time V. A shock from 
source 3 destroyes componant 1 at a random time W and 

the componant 2 at a random time, which is known to be 

an increasing function 0(W), of W. Then the life time X 
of componant 1 is given by X= min(U,W), Y= min(V,0(W)).

Suppose U?V and W are exponentially distributed.

Then corollary of theorem 2.5,1 says that life times X 
and Y have bivariate IHR distribution iff 0(W)=W+a for 

some a>0. Hence if it is known that say 0(W)=aX for some 

a>0, then (X,Y) will not have an IHR distribution. Note 

however that in this case, the marginals X,Y will have 

univariate IHR distribution. Thus the marginal distri

butions are IFR need not mean that the joint distributi

on is IHR.
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