CHAPTER=-II

MULTIVARIATE TFR/DFR DISTRIBUTIONS

2.1 Introduction

In this chapter we study the multivariate version of
uni?ariate IFR (DFR) class. Several extensions based on.
intuitive and mathematical appeal are discussed by various
authors out of which we study only two, the one due to
Brindley and Thompson, in section 2.2. and the other due to
Harris in section 2.3. To distinguish these classes we
call the class based on Brindley-Thompson's definition as
MIFR class while the one based on Harrids definition as MIHR
class. Both the classes coincide with IFR (DFR) class
in the univariate caée.

A parallel development of MDFR class for the former '
is stright-forward; but for the proper definition of MDHR
class needs some further mathematical concepts, and was not
discussed by Harris  while introducing MIHR class. Later on
Brindley and Thompson extended the necessary mathematical
concepts and gave a parallel version of MDHR class which
we discuss in section 2.4.

In section 2.5 we discuss a subclass of WMIHR class
which is of some practical importance.

2.2, MIFR _Class due to Brindley and Thohibsoh :

In this section we concentrate on MIFR class while it
is understood that an analogus development of MDFR class is
obtained by reversing the appropriate inequalities and by
replacing * T t by * | v
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2,2.1 Definition :

A distribution F(x) is said to be a multivariate
increasing failure rate (MIFR) distribution if it's mar-

ginal distribution FI[X(I)] satisfies

-t
Foixt) wy)
------------ l in each X5 iel, for all t > O and

ey
for every non empty subset I of {l,..a,@} .
We assume through out.that E(Q) = 1.

2.2.2 Remarks :

i)  The above definition physically demands that for every

nonempty subset of the n components, the probability of sur-
vival of additional t units of time for these components

when they are of age ¥(I) ;g decreasing in §(I)[ i.e. in
each Xy 1a 1] for all t > 0.
ii) A possible definition could be to demand that

?I[§(1)+ 1]

. | (1)_ .

. (I)~ 1l in each x;for all t _(til"'?tik) &

PI[BS ] )
for all I € gl,.,q} .

But this implies ?(xi+ti,...,xn+tn)g?(xl,..,xn) F(tyseesty)

for all X;, t;2 O,
so that

F(xl,...,xn) = F(O + X1s Xo + Oyenn,x + 0)]

& F(0,0,%5,+45% ) Filxy). E(x;)
2 -
s im Filxy) |
Thus an unde sirable constraint F(xi,..,xn)g 7 Fi(xi)

i=]l
which is a kind of negative independance is imposed on F

by this condition. Also this implies that F is both MIFR
and MDFR only when the marginals are independent,
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iii) Prom»the above definition of MIFR class, it imme-

diately follows that

a) A single MIFR random varidble is IFR in the usual sense,

b)  Any subset of MIFR random variables is MIFR. Also
using factoriration of survival function for indepnedent
random variables it can be easily proved that

c) Union of two mutually independent sets of MIFR random
variables is MIFR.

d)  (a) and (c) together imply that if X;,,..,X, are n

n
independent univariate IFR variables, then (X;,...,X

n)
is MIFR.

e) It is easy to see that if X is MIFR,a > O, b > O then
aX + b is MIFR.

iv) The following example shows that there may exist

distributions for which(2+2.1) is monotone in opposite

directions for two subsets Il and I, of {;,...g} . Such

distributions can not be classified either in MIFR class

or in MDFR class.

2,2,.3 Example :

The bivériate distribution due to Freund has survival

function given by

| - o= (o) (y=x) _ -8' (y-
Flxy = (M)x[ a+s-—s' =L VL, Y
-(a+B)y[a+ wol . ~(a+ﬁ)(X“Yl_a:§jaz @ x=v)] ¢
xty_>.. 0.
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F{x+t, y+t)

It can be easily checked that -—-—e——wmwa- is constant
in x and y. Now, F(x,y)
Fl(x) = Lo e—(a+6)x + B e_a'x x > 0,
a+Hp - al (I'HB - ! ‘
Fz(y) g —‘En:nﬁl e‘(a+6)y __g‘...._.... Q-B'y Y > O
atf - ! atp - B! g *

We show that Fl(x) is IFR(DFR) iff a € a' (a > a').
To see this),

Let A = [(a-d')/(a+p-a')] e‘(“’“B)x, B =[g/(a+B=at)]e=2'% "

Then

fl(x) = ;QELE)L.._ = ((x-j-B)A + alé, fi(x) - "(a+6)2A - a'QB
ox ’
now
F.(x) is IFR iff r,(x) = LL{Xl_ 1 ;
1 X) 1s 1 1‘1 X Fl'(x) T in X

i.e. iff fl(x)'fi(x) + ff(x) > 0.

ice. iff ~[(a+8)? A + a2 B][A+B] + [(a+8) A + a'B]? 3 O
i.e. iff -AB[(a+p-a')%+ a'(a+p)] 2 O

i.e. iff AB £ O

f.e. ief (emEl)B o (aB +a) x ¢ g

On the same lines it can be proved that fz(y) is IFR
iff B < B,
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When the inequalities are strict, corresponding
failure rates will be strictly increasing or decreasing-
Taking a € a' and B > B! we see that Fl(x) is IFR while
Fz(y) is DFR.

We gilve some important properties of MIFR clags in
the next theorem.

2.2.4 Theorenm :

i) Minime of subsets of MIFR randoms Variables arc MIFR.

ii) X irc both MIFR and MDFR iff it has MVE distribution.,
[ we refer to multivariate Marshall-Olkin expcnential
distribution with distribution function given in
£1,2, as MVE].

Broof :

i) Let be MIFR,Let J,

{1,...,00 . Let Y, =min {Xj/jéaJﬂ i= 1,..,m.

i=1,2,...,m be suksets of

For given YyseeosYy 2 0 we define
X3 = max {yi/ je J&} with the condition that sz 0
if j belongs te no J;. Now, the event {X > ylis

equivalent to the event{g > x1 .
. P

Hence
Flz+td) o PlY>y+t1] e (2.2.2)
F(2) PLY>y ]
- Plx>x+t1]
P X>x]
- Flx+tl]
Flx]
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ii)

5(11;)

*

Since Xis MIFR , this is decreasing in each x, for all
t > O and since each x; is increasing in each-yj, it
follows that(2.2.2) is decreasing in each y;. A similar
argument holds for every subset of Y. Hence Y s MIFR.
If Part

Let X be MVE with survival function given by

- n _
_ _ ' 3 .
F(x) = exp[=[ I )ﬁxi + 1T N max(xi,xj, doueot thi'.:.n

i=1 i<3
max (Xl....,x n)]]
Then
F(x +t 1)
expl=[ T M (x;4t) +oeei + App. o max(Xy#tyace,x +t)]]

i=1

S ST o G s SO Bt e, VD Giin WD Y e WD W VWD W W

- o e i . ——

n | . h '
exp[—[.z }\ixi+~ 6:.01‘]?%12 . n maX(‘X’l', .’..,Xn]':”

i=1 yose

i

.: b . .-+ & 00 + |
exp[-[ ? N o+ ??j )iJ * ﬁZ...nJ]t]

+ for every t > O. Since,

This is constant in each X4

every marginal distribution of MVE is again MVE, a
similar result holds for every marginal. Hence MVE is
both MIFR and MDFR.

Only If part

Let X be both MIFR and MDFR. Then by definition

(2.2.1) we must have for every k dimentional marginal

where I, = @‘l""’ik} € {l,...f,n} ,
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ks Fl = C(t) where C(t) is independerit of 5(Ik).

Putting g(lk) = 0 in this expression we get C(t)=§1k[t g].
E (Ix) =F B (Ik) ’ .
Hence, Flk[gg T+t 1] = Flk[t 1]. FIk[g_ ] eees (242.3)

Now by putting

5(Ik)=x 1 in(2,2.3) we get flk[(x+t);]:ﬁlk[x i].flk[t 1]

i.e. P[;g':lk)>(x+t)_;] = P[gg(lk)> x 1], P[;g_(lk)> t 1]
which is equivalent to _
P(Y > x+t] = P[Y > x]. P[Y > t]  where Y :iﬂ:{xi}.
From property of univariate exponential distributions,
this implies that Y must have éxponentialvdistribution
for some parameter @ > O. Therefore

Flk(x 1) =P[Y > x] =e® for all x> 0 coee (2.2.4)
Now, we complete our proof by induction on k.,
For k = 1,(2.2.3) implies that gl(x) = e""\X for some A> O
and thus one dimensional marginals are MVE.

Now let us assume that all k = 1 dimensional marginals

are MVE. Without loss of generality we assume that

s P )
X;) = min txil""'xikﬁ . Now,

Flk(xil,...,xik) = PIk[(xil- xik)+xik,...,(xik“Ixik)+xik, xik]
= Flk[(xil_ xik) oo ,(xik_-l-xlk),OJFIk[xik;_J
by(2.2.3)
- -0X.
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Since by hypothesis, ?Ik 1 is k-1 dimensional MVE, we
must have

(x

ll,ooo,x )

1k
e %, exp[-[ 3 75(X =X3 ) ¥ oot Xo gl

FIk

I

max[(xil-x. ),...,(xik-zxik)] ]

l N
‘ k
for some N, ?ﬁu""9 A\ 12. . 2yfor all iyJ,i...=1,2,..,k-1.

)]

i

expl - [ Z fxxl T +‘)12 o1 max(x; 5..,x%;

1 b1
e -2-5)
kel k-1

- % P, - e e ]
[e iy P a1 MNpreem Mo. . k-t

If Ay 2 0,(2:42,5) represents a survival function of MVE,

I.O

where

To see that )k > 0, we note that FIk(é(Ik)) should be

nonincreasing in X; e

I k .
. Flkfﬁ(lk)] = ¢ [xT-1)1. e Ak¥i (X)) g 0

where C[é(lk—l)] > O depends §n1y cn xil,...,xi
This implies that ‘%k > 0. | kot
Thus MVE forms the boundary between MIFR and MDFR class.,
2 2,5 Remarks :

1.)  Theorem (2.2.4)(i) says that MIFR class is closed

under the formation of series systems,

ii1) An equivalent defination of MIFR class :

The hazard function R(t) is defined as

R(t) = - log F(t)

17



‘Let ri(i) = -0 R(t) i=1, «.., n. Then the vector

ot |

(1) = (:f(i),...,rn(i)) is called the hazard gradient
for distribution F,

Block has given an equivalent definition of
MIFR class as follows :
' A d.F. F is MIFR iff r(x + t1l) T in t for all x>0,
and a similar condition holds for the, hazard gradient
of every marginal distribution.

Also he shows that the quantity x(x) is stationary
(in the sense that z(x + tl) = z(x) for all t > 0)
iff F is MVE, provided that F has absolutely contineous

univariate marginals,

2.2,6 A Shock model giving rise to MIFR distribution :
Let us consider shocks to an n-componegnt system,

Let Hi’ i=1l,...,n be the IFR distributions of occurance

times of independent shocks to destroy components

i=1,...4n. Also for every subset

I = il,...,ig}_ of {;,...,§} , the IFR distribution
H

I e

H . . governs the occurance time of shocks which
(1) =75y, i

jointly destroy the components in I.
[Here, I is an unordered set.]. All shock occurance times
are independently distributed, so that the multivariate-

distribution of component survival is
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n .
) = @ H.(t,) = max(t,,t.)
= i< 1°J

s 0 0 .le‘..’n[maX(ti,cn~o ,tn)] L]

Then
F(r+x1) o0 Hi(h + 0 Higmax(ty,ty)+x)
F(t) i=1 H;(ty) i<} Hij(max(ti’tj»
Hyp,, nimax(ty,. o ptp) e xd
H

and since each H is IFR, this is decreasing in t for all
x > 0. [Note that max {}i""’td} is increasing func-
tion of each ti]. By putting ti = O,iﬁ.l, it can be
seen that similar condition holds for every marginal

distribution tI‘ Hence F is MIFRU

2.3 MIHR class due to Harxis :

2.3.1 Definition ¢

A distribution function F(x) on the nonnegative
orthant is multivariate IMR if it satisfies the conditions
(1) F(x + t 1)

—————————— 1 in each X5 for all t > O.

(ii) P[x > x / X > x']Tin each x} for every choice of x.

We note that condition (i) is equivalent to
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BNt Qe et for all x;>x! and ©0.
F(x) Fx') voro(263.1)

Condition (ii) is called 'right corner set increasing!
or RCSI property, written as RCSI (X).

2.3.2 Remarks ¢

i)  We ncte that unlike MIFR class, here the condition
(1) neednot be satisfied for all marginals of F, but
X needs to satisfy a form of positive dependance,
namely the RCSI condition., In the later discussion
it will be shown that MIHR class is subclass of
MIFR class and we also provide an example to show
that “hese two classes are distinct.

ii) Ve ncte that a single random variable is always
RCSI and hence it immediately follows that a single
MIHR r.v. is IFR in the usual sehse.

iii}‘Using the preperty of factorization »f survival functi-
on foi independent random varisbles it is easy to
see that volun of two mutually independent sets of
miHR r.v. is itself a set of MIHR variables.

iv) Remarks (ii) and (iii) imply that if xl,...,xn are-
independent univariate IFR r.v., then §=(xl,...,xn)g
MIHR. )

V) It is casy to see that if X 6 MIHR, then
Y=a +b, a>0, b>0 is MIHR.
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vi) A similar argument as in theorem 2.2.4(a),can be
used to see that sets of minimums of MIHR variables
satisfy conditions (i) and (ii) of definition
2,3.1 and hence are MIHR, Thus MIHR class i® also
closed under formation of series systems.

vii) Remarks (iv) and (vi) together imply that MVE is
MIHR.

In the next theorem we prove one more property of MIHR.

class
2.5.3. Theorem 3

Subsets of MIHR random variables are MIHR.

Proof : T Too
N Let X & MIHR. Let (4, x) denote the vector x with
i th componant replaced by t. ise.

(ti,l) = (Xl,cuo’xi-l,t,xi+l’.o;,xn) and'

(qi’z) = (Xl’ouo,xi-l, O, xi+lgcooyxn)o

Now by putting x; = x! =0 in (2.3.1) we get
o

F[(0y,x) + t 1] F[(0y,x") + t 1] |
——— e £ =mo=Fe—eemmmeee for all Xg2%4
F(Q, x) F(O7, x') and t > 0
l.€s o —
F[O;, x'] F[(0;, x') + t 1] |
—: ——————— S —:mw——“wmﬁ» “““““““ LI 2 (2.302)
F[Ol,x] F[(Ol,x)+ t 1]
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AY

Also, from RCSI (X) we get
P[é > [(Olt.l.(') + t ,J;.]/ X > Oly(é'+t .l)]]

< PLX > [00,x") +t 2]/ X> [ 0p,(x+t1)]]
= P[X> (0;, x)+t 1/ X > [ 0y,(x + t 1)]] Since x2x! .-
i.e. _ - ' for all i,
F[(0;, x)+ t 1] F[(0}, x) + t 1]
~~~~~~~~~~~~~~~ £ ~——=Fecweewe——a-  for all
Fl[oy,(x! +.t2) 1] F{[0o),(x+ t 1)I]  =x;2x!,8> O.
i.e. _
Pl )+ £ 4] - FLlo, (et € D] gor any
F[(0p,x)+t 1] ~ F[[Ol,(x +t 1)]] x;2x!,t>0 . Q3.3)
Combining 2.3.,2) and (2.3i3) we get
Flog, 2] FIIoL + 2 D11 gor an
— e — t
F[0,,x] F[lo,,(x + t 1)]]  *i2¥i» ©0-
i.es _
1 1
Pn—l(é Fn 1(3s +t 1) for all
S ———— kS S '
F_,(x) F o (x+t1) Xj2%1, t20.

Where ?n_l'is survival function for the mirginal distribution
of (X2,...,Xn)[Here, without ambiguity, we interpret-

fn_l(z')= ?(xé ,...,xg) etc.]. Thus condition (i) is

satisfied for a subset of n-1 dimentions  Putting

xy = X} =0, in nondition (ii) of definition (2.341) we

see that RCSI-(XQ;.;.,XH)Q Thus (Xpyeee ;X )6 MIHR.’ Using

a similaruargﬁmont we see that all subsets of size n-l

are MIHR, By induction on k, the size of the subset, it

follows that alll subsets of x are MIHR.
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2.3.4 Remarks :

The theorem immediately implies that all marginal
distributions of X satisfy condition (i) of definition
2.3.1 if X is MIHR and hence it is also MIFR. Thus MIHR
is a subclass of MIFR. After studing some implications
of RCSI condition, we present an example to show that
MIHR class is a proper subset of MIFR class,

2.3.5 Some Implications of RCSI Condition :

i) Let RCSI(X). Then for every subsets K and M of
r t . " Py . t
{},...,é} PLXe > éK/ Xy > éM] is increasing in x! for
all x. with the convension that XK is the vector obtained
from the set {X,, i e»K} by placing subscripts in

assending order.

Proof :
Since RCSI(X), we have P[X, > x, Xg > Xp / X > x']

. - . . ot - il — - -
is increasing in x' for all X, xg where K {},...,?} K.
Taking Xy == for iq-,lzg we see that

N Pl s s oy
PIXoxe / X% X > X ] is increasing in x M and xp

for all X+ In partibular it is increasing in 5& for
all x. and xk. Now taking xi = ~ for ieM we see that

P{Xe > % / Xy > X4 ] is increasing in xy for all x..
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ii) The RCSI condition implies the series bgund, i.e.

If RCSI(X), then ' . -
F(x) 2 m Fi(x;) ceee (2,3.4)
i=1 - :
Proof : '

Let RCSI¢(X1,...,Xn1 For n = 1, the result trivially
holds as an equality. Let us assume that it is true for

n < k-l., 1i.e.
kel .
2 = Fi(xi). Now,

Fk(xl,...,xk)=P[Xk>xk].P[Xl>xL,...,Xk_l>xk_l/xk>xk]
2 PIXox BPLX 2%y e e Xy _1>%) (/%> =]
(using implication I)

= P[Xk>xkj. P[Xl>xl""’xk~l > xk—l]

= Fk(xk). Fk—l(xl""’xk-l)

v
Hax

F.(x.) by hypothesis.
i=1 *+ 1

The result now follows by induction on ke

Now we presenﬁ'an‘examplé to show that MIHR class

is proper subset of MIFR class.
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2.3$6 Example :
Gumbel's bivariate distribution has survival function

a(x,y) = e XTYTOXY 4 vy >0, 0 > 0. Now,

. 0 A" s e ST B S . S S S WA

- e-2t—ct2—0t(x+y)

This is strictly decreasing in both x and y. Now,

al(x) = e % ’ éz(Y) = e

and thus one dimentional
marginals also satisfy(2.2.1) and hence, (X, Y)is MIFR.

But _
G(x,y) = e ., e 7. e

Gy (x). Gyly). e Y
¢ Gy(x). Byly).

Hence, implication (ii)of subsection 2.3.5 implies

—-CXYy

i

that (X, Y) are not RCSI. Hence (X, ¥) is not MIHR,

2,3.7 Some system relibility bounds :

We can combine implication (i) of subsection 2.3.5
with some of the inequalities for univariate IFR distri-
butions to obtain system bounds.

Barlow and Proschan (197%) give the following in—
equalities for univariate IFR distributions :

(i) If F is IFR with mean by, then

_ Ie“t/“l if ot <,
F(t) >
R
\'0 if  t2 opg.
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Using (1-3.4) we modify this for MIHR case as follows :

If F(x) is IHR and ifE(xi) =p; 1i=1,...,n, then

n
> fexp [ - I x./pi] if x; < pg for all i

i=1 *
{ 0 otherwise.
(11) If F is IFR and F(%)) = p, i.e. £ is a pth
percentile for F,
ther F(t) » e %t A
- ¢ oot if ot A
where a = [ -log(l—p)]/iap.

We modify this for MIHR case as follows :

: 1

If F(x) is MIHR and Fioﬁp ) =p:s 1 = l,0..,n, i.e.
i o

Ap;  is p:h percentile for F,, then

n
Y -
Zoa;x;]  1f x; £ for all i

F(x) 2 (exp [ - b3

i=1
\;O otherwise

i:lsncﬁgn.

In the next section we discuss the analogus MDHR

class developed by Brindely and Thompson.
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2,4 The MDHR Class :

For developing MDHR class znalogus to MIHR class, a
negative dependence concept parallel to RCSI dependence
is neaded.

A possible definition of such a concept would be to

de:and thet P[X > x / X > x'] to be decreasing in each x}

fox overy choice of X,

pees Xy o But unfortunately this

probapbility is always increasing in {33 : x{ < xi} for

O]

every chclce of X.
Howevor, Brindley and Thompson have tried to partially
ceverse thie concept of RCSI as follows

2,4, Definiticn :

oaown

Ran<om variables X are right corner set decreasing,
written as RCSD (X) if P{X > x/ X > x'] is decreasing in
{fi Poxy o2 xi§ for every checice of X.
Using this dezendence concept, Brindley and Thompson

=

nave defined the ciass of MDHR distributions as follows

b

2.%4.2 Definiticn

H

A d,F. F(x) on the nonnegative orthant is decreasing

nazard rate (MDHR) if it satisfies conditions

(17 Flx+t1) F(x' + t 1)
R T 5 e i i s s > ““““““““““ —— fO all X.>X! i= L] .
F(Z: 2 ?(2,‘1) T 12%5 1 ly s N

N
~3



2.4;3 Remarks

i) The following properties of MDHR class can be

easily varified.

(a) A single multivariate DHR survival time is DFR in
the usual sensze,

(b) The union of two mutually independent sets of DHR
survival times is DHR.

(c) Any subset of DHR survival times is DHR.

i1) (c) implies that MUHR class is a subclass. of NDFR

class discussed in the previous section.

n _
T Fy(xy)

iii) RCSD condition implies F(xy,s..,x )< .
i=

[Proof similar to that for ( 2.3.4)].
iv) Bivariate exponential distributions of Marshall and

Olkin with )12 > O are not DHR, since in this case,

= = NMX= MY = Ao max(x,y)
F(x,y) = e M* Mo 12 >0, P§>09f32>0-

= FL(x).Fy(y). e Mr2minCoy)

> Fi(x).Fyly) if > O.
Thus (X,Y) is not RCSD and hence not MDHR.
v)  We have proved that all MVEs are MDFR. Thus above
example shows that MDHR class is a proper subclass of
MDFR class,
vi) Since the two variables of a BVE arise as minimums of

subsets of independent exponential variables,; namely

28



X = min(Ul, U12) and Y = min(U,, U12) where U;,Uy,Uq 5
are independent exponential variablés, the example in
remark (iv) above also shows that minimums of subsets of
MDHR survival times need not be MDHR.
vii) A d.F. F(x) is both MIHR and MDHR iff it is product
of independent exponentials.
Since if F(x) is both MIHR and MDHR, it must also be
both MIFR and MDFR, and hence,F must be a MVE, Also X must
be bgth RCSI and RCSD, ahd hence,F must satisfy the inequalities

(1) F(x) 2> % T.(x )and (ii) F(x) £ = Fi(xi) respectively
i=1 b+ i=1

. - n - -
which implies F(x) = = Fi(xi). Thus F must be MVE with
S i=1 -
independent marginals. i.e., it is composed of independent

exponentials.

2.5 A subclass of bivariate IHR distributions :

Harris discusses a more restricted class of IHR
distributions generated from an independent basis with
appropriate marginals, which satisfies all the properties
of MIHR class., He takes X= min(U,W) and Y= min{(V,W+a)
where U,V and W are arbitrary independent IHR random
variables and a > O is an arbitrary constant,

The following theorem and it's corollary reveal the

importance of such a class,
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2.5.1 Theorem :

If Y = ¢(X), where ¢ is a strictly increasing non-
negative function which is not identically zero or infinity
and X has a marginal exponential distribution, then the
pair (X,Y) has a bivariate IHR distribution iff

F(x) =x+a ap 0.

Proof

Let U be the inverse function of @ defined by

b(y) = inf {00x) > v}
X N -

Since X is non-negative r.v,, the function w will be
non-ncgative, moreover since @ is strictly increasing in
(0, =), we must have J(0)=0 [o.w. if pcssible, let
y(0)=C » 0. i.e, inf {¢(x) > Q} = C which implies that
@(x) =0 for all x § C, contradicting the strictly in-
creasing property of @J]. Then we have
PLX>x, F(X)>y]=P[X> max(x,P(y)I=exp[- Amax(x,{(y)]

for all x, y 2 O and for some )\) 0.
For F to be IHR, it must satisfy condition (i) and (ii)
of definition 2.3.1,

Now, condition (i) will be satisfied by F  iff
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F(x+t, y+t) F(x'+t, y'+t)
e R — for all x >
FOx, v) = FGx', v) .5

0 and
0, t>0.

x' 2
y' o2
i.e. iff exp[= max(x+t,P{y+t)) -max(x,¥(y))]]
< expl=Nmax(x'+t,§(y'+t))-max(x*,P(y"))i]
| for all x2>x', y2y', t50,
ice. iff max(x+t, P(y+t)) -max(x, §(y)) |
> max[x'+t, P(vr+t)] - max(x',+P(y*))
for all x2x'20, y>y'20, 130.
ceee (2.5.1)

Further proof depends on the following lemmas :
Lemma 1 :

If (2.5.1) holds, then Y(y+t) < U(y)+t

for all y20 and t > O,

Proof |

Suppose, if possible, there exists a 2 O and t > O
such that

Pla+t) > Y(a)+t cees ) s (3

let x' = {Y{a) and x = ${a+t)~t, then x > x' > O,

let vy = y!' = a. Putting these values in (2.5.1) we
get P(a+t) - [P(a+t)-t] > Y(a+t) - Y(a). i.e. - ol
t> P(a+t)-U(a) which is contradiction to (i), hence the

claim.
Lemma 2 :
Conditionf1:5.1) is equivalent to

max(x+t, P(y+t)) -max(x, §(y)) = t .o (2.5.2)
for all x20, y20, t>0.
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Proof
Let (2.5.1) holds. Than from Lemma 1 putting y=0,
we get P(t)<t for all t>0. Therefore by putting
x'" = y!' =0 in (2.%.1) we get
max{x+t, P(y+t)) —max(x,U(y)) > max(t,{(t)) =t .....( ii)
Again from Lemme 1 we get
max(x+t, W(y+t)) -max(x, P(y))
< max(x+t, P(y)+t) -max(x, P(y)) = t. coa e e(1ii)
from (ii) and (iii) we conclude that
max{ x+t,{{y+t)) -max(x, P(v)) = t.
on the other hand, if (2.9.2) holds, c¢ondition (2.5.1)
reduces to t > t wnich is trivially true. Hence the Claim.

Lenme 3 :

Condition (2.5.2) is equivalent to
U(y+t)=P(y)+t for all t>0 whencver P(y)>0. .. (2.5.3)
Proof :

Let {2.5.2) holds. For v such that Y(y)>C, take
x such that 0 < x < Y(yJ). Then (2.5.2) becomes
max(x+t, Ulv+t)) -mox(x, U(y))
= max (x+t, P(v+t)) - U(y) = t.
i.e. max {x+t, U(y+t)) = U(y) + t
Since x < Y(y), x+t # Y(y)+t. Therefore Y(y+t)=(y)+t,
thus (2.5.3) holds. On the other hand if (2.5.3) holds,
we have max (x+t, U(v+t)) -max(x, §(v)) =t for ally

such that §(y) > 0. Hence the claim.



Now we continue with the proof of the theorem,

It follows now that it is cnough to prove that
(2.5.3) holds iff @(x) = x+a for some 2 > O.
we note that (2.5.3) implies
Ply+t)= Ply)+t= U(t)+y for all y, t such that y(y)>0,
U(t)>0. Thus W(y)-U(t)= y-t for ally,tsuch that U(y),
P(t)>0. Let us fix t= a for some a such that {a)>0.
Then we have U(y)=y+ Y(a)-a = y- C where C =a-{i(a).
note that by Lemsa 1, C > O. Thus we must have U(y) of
the form W(y)= y- C, C > O for all y>C if (2.5.3) holdsy
Also since ¢ is increasing, so is § and hence Qé.é§é§.4)
have U(C) = 0 [o.w. if possible, let U(C)= h > O,
Let 0 < x < h. Then from (2.5.4) P(x+C) = x < h contra-
dicting increasing nature of §] and Y(y) = O for y < C.
Thus we have

Ply) =y -¢C y > C

=0 y £ 0, C2 0.

which gives @(x) = x - C. x> 0C > 0
RCSI (X, (X)) follows from

PIX > x, gX) >y / X> x', ¢x) > y']
= P[X > max (x, P(y))/ X > max (x', Y(y'))].
and since max (x', P(y')) is increasing function of

.
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x'and y', this probability is increasing in both x' and y'.
Hence the theorem.,
Corollary : If X = min(U,W), Y = min(V,#(W)) where
U,V and W are indenendent exponential random variables
and @ is strictly increasing function then the pair
(X,Y) has a bivariate IHR distribution iff ¢(x)=x+a,a&0.
Proof :
Let Uﬁgexp(kl), Vﬁ*exp(%Q), W~vexp()\12).
Then we have E(x,y) = e~ ! X= Aoy N2 max(x,P(y).
F will satisfy condition (i) of definition &3.1) iff

F(x+t, y+t) ?(x'+t, yi+t)
- A ettt for all x2x'20, y2y'20,

| F(x,y) E(x', y") t > 0.

tie. 168 O T, Nofmax(xet, Bly+t)]- max(x,B(y)]

< e*()i+}2)t; e_th[max(x'+t; U(yr+t)]= max(x, P(y)]
i.e; iff max(x+t, W(y+t)); maé(x, P(v))
> max ((x'+t, P(y'+t)) -max ( x', Y(y'))
for all x2>x'20, y2y'20, t > O,
Which is exactly same as condition(2.5.1) and hence from

Theorem?2,5.1,we must have @(x) = x+a a > O,

To see that RCSI(X,Y) we observe that
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PIX>x,¥Y>y /X>x',Y> vy']
= P[U>x, Wy, Wnax{x,J(y)yu>xt,v>y Wnax(x',P(y')}]
since (U,V,W) is MIHR and max(x',J(y')) is increasing
function of x' and y'. 1t follows that the above proba-
bility is increasing in x' and y'. Hence RCSI (X,Y).

Thus (X,Y) is MIFR iff @(x) = x + a.

A practical situation where such type of model is
appropriate, is described Lelow :

Suppose, thvee independent sources of shocks are
present in the environment, A shoc’s from source 1 destro-
yes componant 1 at a random time U. A shock from source
2 destroyes componant 2 at rafldom time V. A shock from
source 3 destroyes componant 1 at a random time ¥ and
the componant 2 al a random time,; which is known to be
an increasing function @(W), of W. Then the life tine X
of componant 1 is given by X= min(U,W), Y= nin(V,@d(W)).

Supnose U,V and W are exponentially distributed.
Then corollary of theorem 2.5.1 says that life times X
and Y have bivariate IHR distribution iff ¢@(W)=W+a for
some a>0. Hence if it is known that say @(W)=aX for some
a>0, then (X,Y) will not have an IHR distribution. Note
however that in this case, the marginals X,Y will have
univariate IHR distribution. Thus the marginal distri-
butions are IFR need not mean that the joint distributi-

on is IHR.
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