CHAPTER-III

THE MIFRA DISTARIBUTIONS

3.1 Introduction :

In this chapter we studv several conditions that
extend the univariete IFRA property to the multivariate
case. .

In section 3.2 we present six muitivariate IFRA
conditions proposed by Esary and Marshall in 1979.

In section 3.3 we study the iInterrelationships among these“
conditions and in section 3.4 we give the counter examp-
les to show that nc other relationships hold among the
cqnditions, In section 3.5 we discuss some properties

of the conditions and their relation with association,
absolute continuity and independence. In section 3.6 we
present another multivariate extension of univariate

IFRA class based on it's recent characterization proposed
by Block and Savits (1981) namely, a r.v. T is (univariate)
IFRA iff for every nonnegative nondecreasing function h,

E h(x) £ El/a h®(x/a). Also we discuss the properties

of this class in the same section., In section 3.7 we
present some families of distributions which belong to

this class. In section 3.8 we show that the definition

of MIFRA class presented in section 3.6 can be slightly
modified which leads to an easy characterization of this

MIFRA class,
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3.2 Multivariate IFRA conditions due to Esary and Marshall :

Below we present the six MIFRA conditions propo-
sed by Esary and Marshall.

Condition A : This condition can be stated through

three equivalent statements

(a) EQZ“QZ is increasing in a>0 whenever each t; > Q.

(b) R(a t) < o R(t) for all a 6[0,1] whenever each t,20.
(¢) R(t) < t. £ (%) whenever each t; 2 O provided

R(t) is differentiable,

Where R(t) = -log F(1) and 1 (1) = (ry(t), r(2),..,r (1)),

The equivalance of %a) and (b) is quite easy to demo-
nstrate while eguivalence between (a) and (c) follows by
observing that “§5 [ ~=g= is nonnegative,

Condition B ¢ The random variables Tl"”’Tn have joint
distribution such as”Q(Tl,...,Tn) has an IHRA distribution
for all coherent life functions T .

Condition C : Tl”’“’Tn have a representation as

Ti=‘tg(xl,..,xk) where X;,...,X, are independent IFRA
random variables and"Ti,,..,'{n are coherent life func-

tions of order k.
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Condition D : For some independent IHRA random variables

X1see+sX, and nonempty subsets S, of {},...,k} , T; have
a representation T, = min X, .i = 1,...,n,
L g s. I
J i
Conditicn E Min T, is IHRA for all nonempty subsets
i 68

Condition F = Tl,...,Tn have a joint distribution such

that min a

.T. is IHRA whenever cach a. > O.
i 1 1 1 =

Some comments on the MIFRA conditions :

We observe that condition A is the only condition
which is dircect analog of univariate IFRA property.

Other conditions have arisen as models appropriate for
praciical situations,

In dealing with large systems, it is common practice
to determine the life distribution of various subsystems
and then to combine such partiai results succesively as
larger subsystems are studied. Condition B has a direct
bearing on such a procedure.

When making a system analysis by combining informa-
tion from subsystems as discribed above, the subsystem
life lengths Tl,..,Tn are often dependent as a result
of the subsystems having componants in common, Condition

C is an appropriate model in such circumstances,
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Further we ncte that if each of the coherent systems
in condition C is a series system, and if ecach Xj is
expohentially distributed, then each Ti can be viewed as
minimum over subsets of indesendent exponential variables
and thus will have MVE distribution. Thus it is of some
interest to modify condition C by admitting only series
systems. This case arises very often in practice egpe=-
cially when Tl’”"’Tn are the minimal path life lengths
for a coherent system with independent componants,

This modification leads to condition D.
A similar modification of condition B gives rise to

condition E.

The condition F is shown to be equivalent to condition A,

3.3 The interrelationships among the conditions :

3.3.1 Theorem :

The following diagram summarizes the relationships
between the conditions A to F.
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Proof :

The proofs D= C, B=—3E are trivial, C =3B follows
from the fact that compositions of coherent life functi-
ons are again coherent life functions. F=3E follows
by taking a; = 1 for 1 € S and zero otherwise in condit-
ion F. The remaining implications follow as given below :
Aé&=»F : Let A holds. Therefore R{(a t) £ o R(t) for all
« & [0,1] whenever each t. > O. Let Z> O and

z \
a; = z=-—. We get,
oM

z z z Z
R((X — e 0 (l"""") i o R( T s a s e "'“"")
ai ’ ’ an al ’ ’ an

. - z z - 2 Z
i.e. =log F( @ ===,...,0 ===) £ ~a log F( ===,...,===),
8y Ay T 8y ey
oz

But E( “%%“"'°"5;“) = P[a,T,>a%,...,a T >az)
n

= P[ min a,T.>aZ]= G(a2)
where G is survival function foi Y = min aiT.. Thus we
have -log G(az) £ - &« log G(Z) and hence Y is IHRA for
every a; 2 0.
F—3A follows by exactly reversing the steps.
C=%A: Let T, ='Z£(xl,...,xk) i=l,...,n where st are

independent.

i

1 if t < Xj‘
| J=1,e..5k .
= 0 if t_}_Xj

and X(t) = (X;(t),...,% (). Let @,,...,8 be coherent

Let Xj(t)

structure functions of order K corresponding to the life-
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functions Ta,.,.,‘[n. Let pil"

.+,P, be minimal path
ik.
t
sets for fy, 5o1,...,n. In case #,(X)=0, T (X)=0 and
in case §.(X)=1, T,(X)=<=. The joint survival function
H of Tﬁ,..., <n is given by
covty) = PIE,(3(t,))=1 for all i=1,4..,n]

ﬁ(tl,.

n
=Pl m #y(x(e))= 1]

- g igl B, (X(,))]

= E[ .% [ %f T X.(t,)]] where
k K
My ve = 1 Gy

= Efg(x(t)].

where X(i)= (Xi(tj)) is k x n matrix., We hote that
g(X(t)) contains terms of the form =n = Xi(tj) and since
i3]

Xi(tj) is binary and decreasing in tj, we can replace

F 7 . ¥ RN o . N '._
T Xi(tj) by Ai(mgA ty). loreover since X; are statisti
cally independent, so are the rows of the matrix X(i).
Hence Q(tl,...,tn) depends only on the k x n matrix.
P =E X(1) = (Fi(tj)) = (pij). Thus H(t;,..,t )= h(P )
where h depends only on P , Let P% denotes the matrix

(fi(atj)). We need to prove that
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R(a t) = - log H(a 1) & - @ log H(t) = « R(t) i.e.

- log h(P%) < - « log h(P) .. (3.3.1)
We fitst prove three lemmas, using which (3.3.1)

follows. Suppose for convenience that C = to < tl <

e Sty <ty = Let d

vector with first § componants equal to 1 and remaining

= (1,...,1,0,...,0) be

componants equal to zero. Let PtFe obtained fromIP

after replacing ith row by dj .

Lemma 3,3.2

dh(P) \ ,
_____ = h(P,.) - h(P, .
a p.. ( lJ/ ( l,J"'l)
Proof : 1
Since t; £ .... £t , it follows that xi(tj§ is

increasing in j and hence we can write for given i,

It

n r -y
n ¢j[é( tj)J—

n
=1 St = X ()]

@ ;
j:l¢j(§(tj),li) X

n
A XL, 0.
LT, 0)

where (z,lij is the vector z with i®h

componant replaced
by 1 and (z, Oi) is the vecttor z with lth componant
replaced by zero. [ we note that this follows since
Xi(tg) - xi(tﬂ#l) =1 only if Xi(tﬁ») = 1 and xi=(t£+l)=o

and zero otherwise].
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n
T P(X (t ))

Thus h(P) =E
n J=1
=lioE[Xi(ti) - Xi(tx+rj3°EJ“l¢3(X(t )1 x
‘ n
T @, (x(t )50, )
N j=0+1 y
= 2 iy ™Mo h P- H P 303.2
;:o(p” Ps gr1) B (Piy ) ( )
With the convension that p;O = 1 and P n+1 =0 1=
Hence,.
ah('P) d ]
___________ h(P. R o hiP, .
o ép”[(1ol 5-17P 0@y 5 )*(Py =Py 54100 ®y5)
1] 1]
= hPy5) = h@® 50
Lemma 3.3.3.
With P(x) = -x logx , x 6 (0, 1]
éh I.r
IZ U(pyy) -=-= 2 Gin(@)].
ij dp. .
1]
Proof :

We prove this lemma by induction on r,

the coherent structure ¢¥,

g,(X) =
‘h{P) =

0 or Q (X)

h(pls'°°9p

at least one i ] or h{P)

fdr all
¢j(X3
#5()

1 for j

i ] or h(P) = p.

l or X fcr j=1,..

the order of

If & 1, then either

= X.

=1 or @.(X) Consequently either

) =0 [ This happens if ¢ (X) =0 for

1 [ This happens if ¢i(X)5 1
1 for some i [ This happens if

.,i=1 and ¢i(,><) = X with

i+l, .., nJ.

1,2,..,k.



Oh

If h(P) = p,., then ===~ =1 for j = i and zero otherwise.
1i Bpij
Consequently I $(pij) _9375 B ( pl = ¢(h) The equality
J 9P, 5 o
T lIJ(pij _oh = P(h) is trivial if h = 0 or h = 1. Thus
J 9Py

lemma holds for k = 1.
Mbw, suppose the lemma holds for all semiceherent
structure functions of order k-=1. Then for structure

functions of order k we have

22 U(py 5) 35“ -1 lpy5) 5-—-1-J[éo(pn—p?’%l)h@l’i;]
..(using 3.3.2
k. n n us12g
- §:_2 EAN )Q£O<p1rp1,1+l)g“ n(Py ) +

1]
0
55;3(‘13 pl,j+l) h(*P -)J
=9.:g(pl& pl ,O"f'l) 22 g lw(plj)s““j h( -IP]_’L)"'

; Ulpy PIRCPI-n(®) 5 )]

2 0=0 (plﬂ by Q+l)¢[h(<w i)] +

M'J H’MS
—

n
Jilw(pij)[h( Ipl,j)—h( Ipl,j—l)]
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[using the hypothesis and the fact that
P12 Py, q+1]
After rearranging the terms we get

= Pln( P o) ]+ jg_lm(pij>h< wlj)-pijw{h(wl,j_l)]ﬁ

To simplify the notation we write hj= h(lPlj) and

Pis = pj° Then the inequality becomes

J
oh n
(s ) =——— h )+ ‘ Jh.=p. . -
§§w<pij>ép.‘ 2 Y(ny) ji}[[kp(pj)h3 Py Ulhy_1)]
1] -
W(psdh. , =U(h,)p.
| [ w(pydny ) ~U(h;)py]]
n
= h + Z sil s J== il . .. o ’a
Y(hy) jzl{w(thJ) Ulpshs_y)] (3.3.3)
5 ,
We observe that Q_ggﬁﬁl -1 and hence § is cen-
dx2 X

cave on (0O,»). Therefore we have

P(x+9) = Y(x) >W(y+6) - P(y) for all 0§ x<y , ©>0.

Taking

j=1
e = (nj—hj_l)pj, x= Djhj~l’ y= ho+iil(ni~hi_l)pi it
follows that

J
w(Pjhj)-¢(Pjhjdl)Z ¢[ho+iil(hi“hi_l)pi] -
j=1 |
w[ho+ iil(hi”hi_l)pi]

summing both sides over j gives
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no_ n
jil[w(pjhj)- Ulpsh )12 $[ho+i§l(hi-hiul)pi]-w(ho)

which together with (3.3.3) gives

£z P(p.,.) _oh_ Y[h + g (h:=h, )p:]
T3 1) épij - Z j=1 * i-1/%1
= w[JE:O(pJ“pJ.*‘l)hJ]
= P{h( P)] . .. by(3.3.2)

Hence the lemma.

Lemma 3.3.4 ¢

Let n be the real valued function of k x n matrices
U = (uij) defined by n(U) = log h[(e™"iJ)]. Then
n(aU) < an{U) whenever a €[0, 1].
Proof :

It can be easily verified that this inequality is

equivalent to the statement that n(oU) is increasing in

a
a > O. Hence it is enough to prove that
-—~§§-~[ ﬂigagl] > 0 for all a > 0., With
V.. £ e%™ij this implies,

9
- ——f 1 h(V. . - V..
a 3 [ log (/13)] 2 log h( lJ)
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dhiV, .) oV, .
=Ry [ 22 -t =310 - 10g n(v, )
ij ij 6vij o
dh(V. .)
=0 [ ZL ——m-td lJ(-mud_J)] > - h(Vij)log h(Vij)
ij avij
dn(V. . )V.. log V..
=g [ 55 —m—-2d Y[ —elllBIT] > - h(Vij) log h(Vij)
1 oV a
oh
:$~ L {p(Vlj) ““““““ :\. w[h(vlj):]
ij oV

and by lemma 3.3.3 this holds. Hence the lemma.

Next, in order to prove C=A, we go back to
(3.3.1). Let R;, b2 the hazard function of X, i=1,2,..,k.
Thzn

R(atly...,atn) = - log h( ®?%)

= = log h{(F (at.))]

- log h[(g~109 (Fj(at )]
= n[(Ri(atj)]

< nle 3. tj)] [since each X; is IHRA

- 1

i

and n is increasing in
each argument]
Zanl2,(t.)] [by lemma 3.3.4]

= R (tl,...,tn).
Thus 3.3.1 and hence the result follows,

3.3.5 Remark :
We note that the MVE distribution satisfies condi-

tion D and hence all other <conditions. . -

Our next section presents counter examples to show that
no -other relationships hold among these conditions.

47



3.4 Counter Example :

(1) c9:3D.  Let (T,T,) satisfy condition D. Therefore
we have T,= min X, and T,= min X. where S,and S, are
1 . - i 27, i 1 2
ie Sl i6 52
subsets of {;,...,g} and X,...,X, are mutually indeppendent.

We can write Tl = min{X,Z) and T, = min(Y,Z) where

X = min ' X.5 Y = min X. and Z = min X,
165,-55iS¢ 16 S,-5;11S, i 6 SNS, *
[ minimum over an empty set is to be interpreted as « ]
We note that X, Y and Z are mutually independent r.v.s.
Consequently the joint survival function of (Ty,Ty) has

the form

P[Tty, Tyotyl= EX(tl)EY(tQ)EZ(max(tl,tg)] so that..(3.4.1)

T

PIT <ty , Tokt,l

Ctol= 1-Fo (t,)=F~ (t,)4F
1°? T T, R T T (g, t,)

= 1-Fy (£ )F, (£)-Fy (t,)F (t,) +

Next, consider the random variables Tiand Té of the form

T = max{U,W), T4 = max(V,W) where U,V and W are inde-

pendent and uniformaly distributed over (0,1). Then
(T{,T4) satisfy condition C and P[Tlgtl,TQStQJ =

< 1. oo : (3.4.3)

t o L

l't2 min(%ﬁtz) for O £ ty, t
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If (Ti,Té) also satisfy condition D, then (3.4.3)
must be of the form (3.4.2) for some independent random
variables X,Y,Z. , “ Putting ty= 0 in (3.4.1)
we get FTl(tl)‘z Fo(t;) Ez(tl).~ Similarly we get
?TQ(tQ)z FY(tZ) F,(t,). This together with (3.4.3) gives
Fo(t;) Fy(t)) =1 - t] and gy(ﬁiﬁz(tz) = 1-t5. Putting ‘this
in (3.4.2) and again using (3.4.3) with the convention

that tl < t2 we get

> . 0 oy, = 2
t] tp = 1 = (& -t])=(1 ~t5)+ Fy(t;)(1-t3)
2 .2 _
= 17 —(2-15) Fylt;) 2
After simplification, this gives Fu(t,) = —=—iw which
Xl 1+t

implies that Px(tl) depends upon t,, which is “a contradict-

ion. Thus (Ti,Té) can not satisfy condition D which

(2) A, Ff#?B [consequently A,F =$4C and E=AB]: Suppose
that (T19T2) has deasiﬂyl

implies that condition C=%3D

£ _ . 1
(tl,tz) = g . if tlgo, tzgo and tl+t2§ Z.
: _ . 3
=0 elsewhere,
32 64 .
Where a = =+~, b = 2a = ~~~.. , This is illustrated in
47 47

the figure bhelow :
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 lVa{(t3ﬂz):b

\/L; ‘}/Q \’L f

ARRPERY AU
Ir
From the figure it is clear that max(TrFQ) has no density in
the region (1/4,3/8) and hence it can not be IFRA.

[Since for %gtl<t2§g , R(t;) = R(t,) and R-(--E-jl:-?» .3-(-%-22-)‘].»
Thus condition B fails., [ Here we have shown that life
time of parallel system of componants is not IFRA]. Next,
we will show that (Tl’Tz) satisfiy condition F (and henée
A). Let Y =min(a; T,a, Ty). Let a; ¥ ay. We have

Fy(t) = P[T gl, T, gz}z P[T,>x, T,on x] where x=§l,m=g-l-.'

Thus to find survival function of Y, it 1s enough to find
Em(x) = P[Tl>x, To>m x] for all x > 0, m 6{0,1] .. (3.4.4)

From the joint distribution of (Tl’TQ) this probability

is obtained as follows :
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Fo(x) = 7 x[3(m+1)+2(1-m)“x] 0< x< o))
b . 2 1 3
= = “m jX] e See XL e
g *[me2(LemT)x] A(mt1)~~ A(mr1)
= bx [1+m -mx) _3__ <x <1
4(m+1) -
=0 elsewhere.

Differentiation of Fm(x) with a negative sign gives
it's density as

£.(x) = 2 [3(mr)+ax(1-m)®]  Ogxg =-E—o

[ Lmea(14m2) x] L g ol

4(m+1)~ m+1)

- 2mx) o2 ¢1.
(14m mx ) 4(m+l)$*$l

=0 elsewhere.

T DIT big

From the above expression it can be easily seen that
6210g fm(x) -C
—————— 5==== is of the form ~=—=w-- 5 where Cl,C2>O are
dx (C1+C2x)
constant!, which implies that longm is concave, so that
fm is a PP2 density. Thus Y is IFR. The case al>a2
follows by symmetry. Thus min (alTl,QQTz) is IFR for
all ay,a,> O, and hence (Tl’TZ) satisfy conditions

A and F. Thus A, F=9B,

B=k3 A, E ( consequently BSRC ande=ha,F). Let
T, be uniformly distributed on [0,1] and let T, be

1, 1 1., 1
equal to T,+ 5 it O LTy L 5 and T;-5 if 5 < T, £ 1.

51



The joint distribution function of (Tl,Tz) can be
easily computed as

F(tl»tz) =0 if (a) 0< t,t, & 1/2

= ty+t-1 if (by 1/2 £ tiity £ 1.
=t~ 5 if (o) t, & % <t and

ti~ty- 3 < O .
= t, if (d) ty¢ 2Kt and ty-ty- 5> 0.
=t é () £)< 5ty and ty-t)- é; 0.
=t (£) t,< %gtz and ty-t- %g o.

From (b),(d) and (f) it follows that marginal distribu-
tion of both T, and T, is U(0,1). Also

Plmin(T,,T5)>t] = PIT>t,T>t] = 1= Fy(t)-Fo(t)+F(t 5 t)

=1~ 2% 0 ¢ t {%|using
27 (a)
=0 otherwise 4 and
(b)

Which has density £(t) = 2, 0 & t <

NI~

. Hence min(Tl,Tz)
is uU(o, %). Also

o i L
Plmax(T,T5)<t]=P[T, t, T&t] =2 t -1, 5Ll

otherwise..

<

L)

ot

0
Which has density f(t) = 2 < 1. Hence max(Tl,Tz)

o o

is U(“%,l). Thus all possible cbherent systems which

can be formed out of the two componants have uniform add
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hence IHRA distribution. Thus condition B holds. Next
we show that condition A is violated by(Tl,TQ}
Consider Y = min(Tl,aTz) where a > 2
Pl[y<z]l=1-P[ Yoz ]
=1 - P[Tl>z, T,> —]
=1=[1-F(2) - FQ(z/a)+ F(z, %]
L= l(z) + PQ(z/a) - F(z, z/a)

=z 4 g - F(z, z/a) [since Tl’T2 are U(0,1)]
— Z o

=zt 1 for z £ 1/2

=z +Z(z=-H =241 11

- a > - a > J l/ <Z<a/2( a"'"l) v
=z+%-%=7 for a/2(a-1)<z<1.

~ 4
ALY
5"

-1

For Y to have IFRA distribution -z logﬁy(z) must be

increasing on (0,»). The derivatiwe of S R T
-1 . - 1 , a .
z = log P [min(T,al,)< z]J for 5 < z£ 327 is non-

negative iff z o =~=Sew- - < log (§+ %) which is violated

for z < 1, hence condition F (and A) does not hold. Thus

condition B does not imply conditions A and F,

3.5 Some Propertles of the andltlons :

3.5,1 It is ea51ly varifiable that all the conditions
A to F satisfy (P1) :(Tl,..,,Tn) satisfy condition(*)=3%

each nonempty;subset of(Tl,..,,In)sat;sfy condition (*).



Condition A and C to F also satisfy

(P2) :((Sy5.:.,5 ) satisfy condition (*),(Tl,..,In)

satisfy condition (*) and (Sl"“’sn)’(Tl""’Tm)are

independent:::>(sl,.p,9s Tl"“’Tm) satisfy condition(*),

n)
Nhether or not condition 3 satisfies P2 is unknown,

3.5.2 Reletion with Assosiation

e e

The random variables Tl""’Tn of conditions ¢ And D
are generated as increasinrg functions of independent
random variables, and as csuch they are associated. On
the other hand, let U be vniformly distributed over [0,1]

and V = 1-U then §,U‘ y= PLuCUC1—v] = 1-v-u if u+wCl
\

oV

= 0 otherwise,

Hence a, + a a, a
F( 8, Y yoq-or@ 222 if u < -1 2.

a1 ) a, a aq.+a
172 172

=0 ' -~ otherwise.

s b e e . ' s 2192
¥hich implies that min (a,U;%asV, ) is ULO,EZ;gaj and

hence it is IFRA, Thus (U,V) satisfies conditions A and F.
Also,
1
F(u,u) = 2u - 1 5 Lugl
= 0 otherwise,

which implies that

Fax(U,V) is U(O, %) and is IHKA. Thus U,V, min(U,V) and
~max(U,V) are all IHRA and thus (u,v) satisfies conditions

B and E.
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Since U and V have correlation -1, the conditions A,B,E
and F do not imply association or any other notion of
positive dependance.
3.5.3 Absolute Continuity and Independen:, _ :
(a) 1If Tl,...,Tn satisfy condition D and are jointly
absolutely contineocus, then thev are independent.
Proof

Suppose that T, = min Xj and T, = min X. where X}

- JGSl 3@52

are independent.
Let §{ = sl;}sg , S5 =8,057 , 8], =50 S,. Let

Y = min X.

i Z = min . , W= min Xs;+ Then
je Si

3’ jesy jGs, )
T,= min(Y,W), To= min(Z,W) and Y,Z,W are independent.,
Since T1’T2 are jointly absolutgly contin:ousyp{leT2¥W}=O.
Hence S, and Szvare disjoint wipil. Hence T,,T, are
independent. Under conditicn D, pairwis¢ independance
implies mutual independance (since then all SE can be
taken to be disjoint). Hence the result follows.
(b) There do exist absolutely contineous distributions
satisfing condition T where the random variables are
dependent. For example, Suppose Xi has the absolutely
contineous distribution Fi i=1,2,3,4, Let T,and T, be the

1
life length of the cohercent systems given below :
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X, X3

'X2 X4

) T Ty

For t,8%t, Let
A be the cvent that Xl > t2

BrrorroorttoX, > ¢,
Cotrorrrn (X5t X)) U(XP by, Xpty)
we note that the events A,B and C are independent,and
P[a]= F (t,), P[B]= Fy(t,), PICI=[F (t))F,(t,)+
Fo(ty)F,(t))= F5(t5)F,(t,) . It follows that
F(ty,t,) = P[Tl>tl, T,>t,] = P[ANBNC] = p[a] P[B] p[cC]

- ?l(t2)§2(t2)[§3(tl)?4(t2)+ﬁs(t2)§4(tl)
"53(t2)§4(t2)]

From this expression, the absolute continuity of joint

distribution of Tl,T is evident. But since

2
= max[min(xl,x3,x4), min(Xz,X3wX4)] and .

T, = max[min(Xl,Xz,Xg), min(Xl,XQ,X4)]it follows that

Tl and T2 are dependent.
In the next section we discuss the MIFRA class
putforth by H.Block and T.H.Savits [ 1981 ] .
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3.6 The MIFRA class of Block and Savits :

In 1976 a new charactorization of unaivariate
IFRA distribution was obtained by Blecck and Savits in
terms of an integral inequality : a life distribution F

is IFRA iff for every nonnegative nondecreasing function h,

J h(x)dF(x) < [ J n%(x/a)dF(x) ] e 0<afle .. (3.6.1)
In this scition we present the natural multivariate ~xten-
sion of{3.6.1) and investigate the properties of the class

of distributions satisfing thés extension..

3.6.1 Definition :

Let 7 = (Tl,.o,Tn).be a nonnegative random vector with
distribution function F. Then T is said to have a rultivari-
ate IFRA distribution iff - A
Bl a0 EY n% (D), 0¢cagr L (3.6.7)

for all contineous, nonnegative, nondecre¢.sin¢ {urnction he

2,6.2 Eema;& :

The continuity assumption on h is a technical
'simplification. In section 3,8 we show that this assumption
on h can be relaxed.

3.6.3 Theorem :

The class n of multivariate IFRA distributions

satisfing(3.6.2) possesses the following properties :
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(P1) = is ?losed under the formationvof cohefent systems.
(P2) = is closed under limits in distributions.
(P3) 1f I € m , any joint marginal belongs to m.
(P4) 1If I = (Tl,...,Tn), S = (Sl""’ Sm) é n and are
independent, then (I, S) 6 ©n . '
(P5) = is closed under nonnegative scaling.
(P6) = is closed under convalution (when the operati-
on makes sense).
(P7) If I € = and U seees T aTe any coherent life
function of order n, then (Ti( I),...,'fm(l)) a3
Before we prove this theorem, we estanlish the
following lemma : |
8.6.4 Lomna ¢
Let T 6 7 and Y¥;,...,l be any functions of n vari-
ables which are contineous, noncecreasing and satisfy the
inequality wi(g/a) < é wi(ﬁ) for all x 6 R"™ and O<all.
Then setting S, = llii(I_) for i = 1,...,m it follows that
S = (Sl""’sm) 6 m.
Proof
Let h be any contineous, nonnegative, nondecreasing

function of m variables. Then for 0 < a £ 1,
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E[ ns)l

H

E[ h(§y(T) e, (T)]

El/a{ h“(w(l/a),...,wm(l/a)] since T 6 n
EX/9p o[ éﬂll(l),---, i—lbm(l)ﬂ by hypothesis.
= Y90 n%(g/0)].

Hence the lemma.

<
<

The proof of the main theorem easily follows using
this lemma, which is presented below :
Proof of .theorem.3,6,3 :

(P1) and (P7): Since (P7) reduces to (P1) when

m = 1, we only need to prove (P7). Let T;,..., T be
coherent life functions of order n, corrosponding to the
‘coherent structure functions ¢l,...,¢m of order n resp-

ectively., Let Pil""’P be the minimal path‘sets for

:'1?1

., i=1,...,m. Therefore we have 1%(§)= max min  X..
i : N
Since‘ti(& X) = max minxj[a:z i Z&(&), the result
1<k&ps  Jép ik :
follows by lemma3.6.4 .

(P2) : Suppose that for every k, lk = (TypseeesTy) 6

and converges weakly to I = (T "Tn) as k— o,

l’..
Let h be any contineous, nonnegative, nondecreasing
function. Let 0 < a £ 1 and N be any nonnegative real
number., We also let N denote the constant function whose

value is N, Then by definition of weak convergence ,-

we have that,
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E[hAN(T, ) -——>E[n »N(T)]  and

E[(m-,.N)C"(ég_k)] SE[(haN)® (2 = D] as ke, where
haAN = min(h,N). Since
ELh A N(T,) ] € EY¥0(han)%(

I

Tyx)] for all k,by let¥ing
k —» on both sides we get
E[l haAaN(T}] & El/"‘[(h/\_N)"’( -i-;g_)] for all N,

fle note that hAN T h and (h;\N)a T h% as N,
The result now follows by letting N-—>o and using
monotone convergence theorem.
(P3): By taking ’t (1) = T,, J=1,...,min (P7) it foll-

J
ows that (T, l,..., ) € n for all nonempty subsets

!‘:ll’o'c’lln._} Of 4Ll,2’.g.’n}.

(P4): Let I and S have jcint distribution function F anc
G respectively. Let h(x, y) where x 6 R” and y 6 R™ be
contineous, bounded, nonnegative and nondecreasing. Then

E[ h (I, S)]
= Jf h(x,y) oF(x)dG(y)

< J /% -i-:.;;g, v) dF(;c)]l/a dG(y) since T 6 =
[ Fpeoyl 1l foRT+ 4 + 1/
Sig‘[tjh (& Xy = ¥ ¥) dF(LXP/ J dG(x)? / since S & T
= [ ST 25, 2y (%) daly) J1/e
l/ar a 1 1 1
E Fohl s I, - S 1]

If h is not bounded,; then we consider h AN and lez

N -3, The result follows by monotone convergencc thco.o .
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(P5): Let aj, ap,...,a, 2 0 and set Polxypeeasxy) =

.

a;x; ( 1 €1 < n). Then the result follows by lemna
3.6.4.

(P6): If T = (T In) and S = (S Sn) 6 m and

Lseees 10
are independent, thé convolution corrousponds :to

(T,#5 5000, T #5,). By (P4) (I,8) € m. e set

wi((é,x) = x;+y; 1 £ 1< n. The result now follows

by lemma 3.6.4.

5 Remark :

( ) If T 6 n and b > O is vector of constants,then

(I +b) 6 m, since let W(x) = xi+bi§nd wi( é X) =

ix +by < l(x +b. ) ¢i(§) for 0 < a<fl. Again the
result follows by lemma 3.6.4.

(ii) Using lemma 3.6.4 it is easy to show that a genera-
lised version of (P6) holds. i.e. T 6 n and Sl,...,Sm are

nonempty subsets of il,2,...,n} implies that

( Gg Tisenns éS T. ) € n. To see this., we take
i i
1

¢i(5) = I X55 1 = 1,...,m and the result follows.,
j6sy

3.7 Examples of Multivariate IFRA Distributions :

(A) Gen "_m_d from univariate independent IFRA distribu-
tio

The following theorem gives functionsof independent
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IFRA distributions which are nmultivariate IFRA:

3.7.1 Theorem :

Let Xl,.-..,.xn be independent IFRA random variables
and let @ # S, {1,2,...,n; for i = 1,...,m .
(1) (Xl,...,Xn) G n

(ii) If Ti =j gig Xj i=1l,...,m. Then (Tls...,ﬁn) 6T
i

(11i)If G,..., T, are coherent life functions of order

n, then (T (X;,e0,X ) 5 ooey T (XyeeesX)) )6 T

(iv) If T, = ; é ; X5 3= 1,000,m then(T,,...,T ) € m.
Proof : 1 '

All of these easily follow from theorem 3.6.3 and
lemma 3.6940

3.7.2 Corollary :

The multivariate exnonential distribution of
Marshall and Olkin is IFRA.
Proof : i

Let T = (Tl,...,Tn) has MVE distribution. Then

it has a representation T,= min [X i6J ] i=1,2,...,n

I’
where the sets J are the elements of a class 7Tof nonempty
subsets of {1l,...,n} and random variables Xy, J € F are
independent exponentially distributed. The result now

follows by using theorem 3.7.1 (ii).
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3.7.5 Corollary :

Let Xl,...,Xn be independent identica1}y~distributed
IFRA random variapbles and Yl""’Yn be the corrouspondirg

order statistics. Then (Y Y) 6 =w.

l,.o.,

o

Proof :

Let Ty be the life function corrousponding to a
(n-k+1) out of n system. Then Yy =’(k(Xl,...,Xn). Since
(Xl”“’xn) is multivariate IFRA, it follows from theorem

3.7.1 (ii) that (Y Yq) G w.

lg.l.’
3.7.4 Remark :

It is clear in the previous corollary that the hypo-
thesis can be weakened to (Xl,...,Xn) 6 1.
(B) Multivariate Weibull gistributions :
(i) Marshall and Olkin (1967) introduced a multivariate
weibull distribution which has the form (T},...,T} ) =
(Ti/a,...,Ti/a) where «; >0 i=1,...,n and (Tl...,Tn}
has MVE distribution.

Define wi(xl,...,xn) = xil/ai i=1,.e¢.,n. Then

for c.>1, i=l,“3n,¢is satisfy the hypothesis of lemma
3.6.4, Also by corollary 3.7.2 (Tl,...,Tn) € n. Hence
by lemma 3.6.4 it follows that (Ti,...,TA) € mn,

for oy 21 i=1,...,n.
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(ii) A second type of multivariate weibull distribution
was introduced by David and by Lee and Thompson (1974) and
has the form (Tl,...,Tn) where Ti%: min(UJ: ieJ),

. - N,
@ # JC’K}""’HJ’ P{UJ > x] =e” '3 x73 x 20 and the

U, are independent.

J

\ : s »
We note that for *52 1, UJ are univariate IFRA and

hence by theorem 3.7.1 (ii) it follows that (Tl,...,Tn) e m.
(C) Multivariate gamma distribution :

'Let xo,xl,...an are independent random variables,
Xj having standard gamma distribution with parameter Gj

j=0,1,...,m. We define Yj = XO+ Xj j=1l...,m,

Johnscn and Kotz (1977) have shown that (Y Ym) has

l,‘oc,
multivariate gamma distribution given by

..Y. © -1 m 1 )
=) x° [ (y.-x )@j *1 e (m—l)xo
) J ©

F
o j=1

dx

Yl":?’ym (yl""’ym) V)

where ¥ = min (yl,...,ym). Since for @jg 1, Xj has univa-
riate IFRA distribution, it follows by theorem 3.7.1 (iv)

(D) A Bivariate exponential distribution :

Johnson and Kotz (1977) give the following bivariate
exponential distribution,

Let Uo’Ul’UZ be independent standard normal variates.

64



Define Xj = U§+ U? j=1,2, Then it has been claimed

that (X;,X,) has bivariate IFRA distribution. Also it
has been claimed that this follows by a similar argument
as for the multivariate gamma distribution given in (C).
But we find that this argument is not correct, and

the problem of determining whether (XL’XZ) is bivariate
IFRA or not remains unsolved,

(E) Construction of MIFRA distributions :

—e o Attt e

Supoose that(X Xn) has a MIFRA distribution and

l,c.o’

let Y be any nonnegative random variable on the same prob-
apility space. 1In this section we investigate conditions
un+<ier which (Xl,...,Xn, Y) has also multivariate IFRA

‘distribution.

Let @(y/xl,...,xn)= P[Y>y/Xl=x1,...,Xn:xn] for

X5 20, 1i=1,...,n and v > O. The random variable Y is

'said to be stochastically increasing in (Xl”"’xn) if

G(y/xl,...,xn) is nondecreasing in Xy, ...,X If

n
a(y/xl,...,xn) is contineous in x;,...,x, we say Y is
stochastically contineous in Xl,...,Xn.

First we prove the following two lemmas.
3.7.5 Lemma :

e

Assume Y is stochastically increasing and contineous
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in X;,e¢.,X, s Then E[¢(Y)/Xl=xl,...,xn=xn] is contineous
nonnegative and nondecreasing in Xypeee Xy for every con-
tineous, nonnegative, nondecreasing and bounded function ¢.
Proof :

We note thatE[@(y)/X=x] = [ #(y) dG(y/x) and is
nonnegative for every x 6 R since @(y) is nonnegative.
Next, for @(y) =ClI(y ,)(y) we have E[@(y)/x]=c.G(t/x)
where C > O is constant and by hypothesis, this is conti-
neous and nondecreasing in XqgeeesXy for all t > 0. (3.7.1,
| Now let ¢ be any continedus, nqndecreasing, nonnega-
tive and bounded function of y. Let

- A=k k
Dip = {v * #(y) > i2 k} i=1,2,...,ke27 k =1,2,...

k.2K

k s 1

We define ¢k(y) =27 It follows from

= Dik(y) .
(3.7.1) that for all k, E[QK(Y)/ng] is contineous and(3.7°2}
nondecreasing in X;,...,x . We observe that ¢k(y)=2"'k i
Cfor 27K 1 ¢ #(y) £ 2’#(i+l) N " " 2nd hence as
k ——3o0 ¢k(y)-ﬁ¢(y) for all y. It is easy to see that
¢k(y) is increasing in k and hence by monotone convergence
theorem it follows that

S @y) dG(y/x)—> J@(y) dG(y/x) for all x 6 R".
i.e. E[@, (Y)/X=x]—>E[@(Y)/X=x] for all x 6 R". By
(3.7.2) now it follows that E[@(Y)/X=x] is nondecreasing

in Xl,‘.."xn.
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To prove the confinuity, we proceed as follows :
Consider a sequence of points in R", 5k:(xlk”"’xnk)
which converges in x. Since y is stochastically conti-
neous in x, it follows that G(y/gk)~7 G(y/x) for cvery vy.
Now by using Helly-Bray theorem it fcllows that
JB(y)d6(y/x, )—JB(y) dG(y/x) . i.e. E[B(y)/X=x, J-E[F(y) /x=x]
for every sequence zk ¢ rR" converging to x. Hence
E[@(y)/%X=x] is contineous in x.

3.7.6 Lemma :

If G(y/ ég) <G l/a(ay/z) 0 <‘a < 1 then for every
nonncgative and nondecreasing @,
Bl ¢(v)/ £ x1 < BYOL ¢(y/a)/ 5]
Proof :
For @(y) =C. I(t,=)(y) t
E[8(v)/ 3 x] = c. &(¢/

0,

Rik v

x)
<Cc. @G l/a[at/z] by hypothesis
= EY g% (y/a) /x] JsinceB(1)=C.I(,; Ly(Y)

LI (30703)
Now let @ be any nonnegative, nondecreasing function of

Y. As in the proof o£ previous lemma, we construct the
k.2
k » i

L I, of simple functiorswhich increa-

sequence ¢k = 27
i=1 ik

ses to ¢.
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k .
k.2 L
Let us write ¢k = T ¢.k where ¢. oK Ip. » We note
i=1 ik
that for each i, . k(y o, J|¥. k(yﬂdG(y/x)( = and
S !¢k(y)]a dG(v ' |x) < » for a 6.(0,1). Hence minkowski,

ineguality is applicable wnhich gives
k

k.2

[ /18, ()% aclylx)1¥/® 2 N8, (1% dalylx) 1/°
[
1

tee. EV/O0%(y) /x] 2 § eV/%19%,(¢)/x 1] for all « &(0,1)

i
and all x > O. : vee (3.7.4)

Also application ofk(3 .7.3) on each @. ik glﬁes

0] bl = E B | d i o /o0 (/e 1s)
S e (3.7.5)

combining (3.15.%63.7,4) with ¢k(y) replaced by‘dk(y/a)

we get Eg {y)] i x] ¢ BV g ( é YIx]. Thus the

lemm» holds for every ¢k. lNow letting k —> < on both

sides and using monotone convergence thecrem the result

follows for the reguired function .

Making use of these two lemmas we prove the following
theorem.

S.7.7 Theorem :

Let X = (Xl,...,X ) € © and let Y be stochastically
increasing and contineous in xl,...,xn and satisfy the in-
equality in the hypothesis of lemma 3.7.6. Then(X,Y) is
MIFRA.
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Proof :

Let h(X,Y) be any contineous, nonnegatiVe, nondecrea-
sing and bounded function. Then
E[ h(x,Y)] = JJ h(x,y) dG(v/x) dF(x). ‘Since h(x,y) is
nonnegative and nondecreasing in vy, it folloWs{from lemma

3.7.6 that
S n(x,y) d6ly/x) < I n%x, 1) da(y/ax)1® for all o & (0,1]

e (3.7.6)

Now since ha(é, g) is contineous, mondecreasing, non-—
negative and bounded function of y, by appling lemma
3.7.5 it follows that

_ 1/« :

n*(x) =[ /h%(x, é) dG(y/ax) ] is contineous, non-
negative and nondecreasing in XpsesesXpe Consequently
since X 6 m, taking expectation w.r.t. X on both sides of
(3.7.6) we get

E h(x,y) € E h*(X)
< El/a[h*“( éz)] | since X 6w

=[J [n%( éé,i)dmyéﬂldﬂg)]]/“
= pl/e e ( iy, Yy
a—" o

If h is not bounded, we consider hN= h A N. For every N,

hy is bounded and satisfies inequality (3.6.2).
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Also hy T h. How using monotone convergence theorem it
follows that (3.6.2) holds for h. Hence (£,Y) € =.

| The following corollary is immidiate consequence
of the above theorem.

3.7,.8 Corollary :

Let T = (Tl,...,Tn) be a nonnegative random vector
such that (i) T, is (univariate) IFRA and (ii) for
K=1,...,n=1, Tk is stochastically increasing and con-
tineous in Tlg...,Tk_l and satisfies the inequality of
lemma 3.7.6. Then T 6 7w .

Using above corollary we construct the following
IFRA randem variable,

Let X be exponential with parameter Al > 0 and set

G (y/x) = exp (= A, ¥) y < x

= exp [=( Mk M)y + Ao xI ¥ 2 x
where %12, 12 > 0. Then (X,Y) is MIFRA with joint dist-

f

ribution .
Fy y(xsy) = exp (=2 x = psy) vy <x
. A : ' ‘
= S22 espl-( 2+ X)) ¥] -
127 M

_______ exp[—'( ?‘l"' 2\12)){"( A2+>i2)y}
7\12 1 '

for y 2 x.
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In the next section we try to modify the definition
3.6.1 of MIFRA class.

3.8 A Modification of definition of MIFRA class :

In this section we will remove thé continuity assum-
ption on h in the definition of MIFRA class. Other deri-
ved results lead to alternative charactorizations of
MIFRA class.

First’we introduce a few concepts necessary in the
discussion,

A subset DeR™ is said to be an upper set if whenever
x6e D and y Z‘l,.then y € D. When D is open, it is called
as an upper domain. A set of the form{y : ¥ > 5} is
called as upper quedrant domain. A finite union, of upper
quadrant demains is a fundamental upper domain.

3.8.1 Remark :

It is easy to cbserve that f = ID where D is an upper
set 1ff f is binary increasing function. Furthemore f is
a left (right) contineous binary increasing function if
and only if f = ID where D is an upper domain
(closed upper set),

The following results allow us to remove continuity

assumption on h.
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3.8.2 Lemma 3

Let D be either an upper closed set or an uppei domai~

n in R™. For T=(T "Tn) multivariate IFRA,(3.6.2)

lyo'-

holds for h = I, i.e. P[T 6 D] ¢ Pl/“[T € aD) O0< af 1.

D
Proof :

Let D be the closed upper set, Forik = 2,3,... con-
sider the sets Dk =(1~ i)D. We observe that'Dkl D. For

dvery point X = (Xl""’xn) ¢ D - D° (D° is interior of D)
ZJ____YQ__ '"Ynl

X1 %2 Xn J
We note that every point in Dk-D belongs to one and

we define the set D = {Z :

only onc Dy for every k. ‘le define

-

h (¥) =1 if¥ 6D,
_ ey o C
=0 if ¥ 6 D]

|
x%?v
1
<
o}
!
ot
I
I
St
x
b
H
H
~
o
O
o
ey
()

We observe that hk l ID.

When D is upper domain, we define Dk= KgID k=2,3,¢44
and note that DkT D. Nqw for every point 5=(xl...,xn)
6 D - D we define the set D, as above. Where D is the
closure of set D. B

Every point in D - Dk belongs to one and only one

Dx for every k.

e
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We define

n(y) =1 ifY 6D

k
=0 ifye D°
= éié“{yn Xn] ify & D i1 (D - Dk) for some X 6 C-D.

we observe that hy T‘ID. Since in botﬁ the cases h; are
bounded contineous functionsand since the inequality
(3.6.2) holds for every h, , the result follows by monoto:sz
convergence theoren.

3.8.3 Lemne :

Let D be any Borel measurable upper set in R", Then it

T = (Tl"°"Tn) is multivariate IFRA,(3.6.2) holds for

o

i.e. P[Te D] < PYo[T 6 aD] 0< o< 1.

h = I,
Proof :

Let D be any borel measurahle upper set in R". For
k = 2,... and positive integers 119""in—l let
a (ip,e.e i )=inf {t: (1,275,001 278 4) e o},
If = @, set 3y (1ly...,1q l) = oo, We set Dk (il’°°"irm1)
= tﬁ P X2 (127%,.00,1 27K, 2 (iyyeenip ) )} af
(2701 27K, apipseeerip ()6 D and Dip,cen,d )
= Jx X2 52- (1,27%,.000,1 278, a(ig,eeeyiy 1))} s
(i 2“‘*,...,10 1275, a(ig,eeesi_ )¢ D,
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D= L) Dy (iy,eve,i_y). Clearly

each D, 1is closed upper demain and Dk 1 D. Hence for
given € > O, there exists a k such that

P[T e D] - ¢ < P[T & Dk] < Pl/“(T GaDk) g Pl/“(T 6 aD).
Here the second ineguality follows by lemma 3.8.2 and the
third ineguality follows since uchzaD. Now by letting

6 | O we get the desired result.

3.8.4 Remark :

It saould be noted that lemma 3.8.2 gives that if
(3.6.2) holds for contineous nonnegative nondecreasing
functions;then it also holds for binary nondecreasing
right and left contineous functions. Similar}y the proof
of lemma 3.8.3 shows that if (3.6.2) holds for nondecrea-
sing binary right contincous {or left ccntineous) then
it holds for binary nondecreasing borel measurable functi-
ons. It only remains to show that if(2.6.2) holds for
binary nondecreasing Borel measurable functions, then it
holds for arbitrarv nondecreasing Borel measurable func-

tions. This 1s contained in our next result.
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2.0 Theorem

The random vector T = (Tl""’Tn) is MIFRA (i.e.
belongs to mn) iff (3.6.2) is valid for all Borel measu-
rable nonnegative nondecreasing functions h,

Proof :

The if part of the theorem is trivial. To prove
the ‘'only if'!' part we proceed as follows :

Let h be any Borel measurable nohnegative nondecrea-
sing function., As in the proof of lemma 3.7.5 we con-

struct a sequence of functions

K, oK
-k i » . k
hk = 2 'El ID'k i=l,..0,ke27;, k = 1,2,..., where
1= 1
. =k ; o
D\ = {5 : h(x) > i2 }- . Ue observe that h, T h.

Further since h is an increasing function, it follows
that for every i and k, Dik is upper set and hence by

lemma 3.8.3 every I  satisfies (3.6.2)., Hence

ik

k k

k.2 k.2

En(X) =E = 271, (%) ¢ 27% 1 pl/eg 5 (X)
i=1 ik i=1 ik
k
1/ k.2
<2®E [ T o1 % g E”"‘[hﬁ (x/0)] .
i=1 %Mik

Here second inequality follows by using minkovaskey

inequality.
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Thus hk

by using monotone convergence theorem it follows that h

satisfies (3.6.2) for every k. Now since hkT h,

satisfies (3.6.2), Hence the theorem.

The next theorem gives a charactorization of MIFRA
in terms of idicator functions of fundamental upper do-
mains. Tha2 condition E(Q) = 1 is assumed here only beca-
use we restrict ourselves to fundamental upper domains of

R"™ = i; : X; > 0 for all i} . If we use fundamental
upner domains of R" instead, no such condition ig
necessary.

3.8.6 Theotzem <

Assume ?(9) = 1. Then T = (T;,...,T ) & n if and
only if inequality (3.6.2) is valid for the indicator

. . . , .. n*
function of every fundamental upper domain in R’ .
Proof

The ncecessitv of the ccendition follows from lcmma
3.8.2. Thus we need only prove the sufficiency. Let
D= R"™ be any upper domain. For k = 1,2,... and any
vositive integers il""’in—l let

. . . e a=k . -k
a (iy,eeeyiy )= inf it.(llz peessig 1277,t) 6 D}. If

{ f = ¢ We Se‘t ak (il’eoc ,in-l) = <o » ‘Me define

. . (L . -k . =k . :
Dy(igeeen,i )= 2>(3,2 peeesd 42 ,ak(ll,...,ln_l)z}



and p‘ut D!{: i‘*;’ 9k Dk(ily .« 0 ’in"‘l) °

i€ dgsenerig_ 1S ke

Clearly Dk is a fundamentel ﬁéper domain being a finite
union of tpper quadrant domains., By hypothesis, (3.6.2)
is true for ID, and for every k. Also it is easy to
varify that IDE%)and thus fromvmonofone convergence thco--
rem it foliows that Pl/a(T 6 aD) > P[T 6 D] for O<a%l.
From remark 3.8.4 it follows that the result follows foo
all Borel measvrable nonncgative nondecgeasing functions

~nY

restricted to R . But since P(O) = 1 we may remove u.il3

ccncition so that T 1is VIFR

Qur next theorem3,& 7is an application of theorem
3.8.6.
3.8.7 Thecxem :

Let (Tl;...,Tn) be a .nonnegative random vector such
that for every choice of nonnegative a; we have .
min (aiTi)is exponential. Then (Ti""’Tn) is multiva-
riate IFRA
Proof :

Let aij be nonnegative constants and let us define
Tij = aijTj (1 £ 1<k, 1% 3<&n). Let
@ #SC{(i,j) : 1< 1<k, 1¢3<n} , letting

77



s. ={i: (i,j) ¢ S} we can sce that

J
min T.. = min ( min a..) T. = min a! T. where
(i,5)6 s *J j 165, 37 5 04
al = min a.. and by assumption, this is exponc¢ntially
i6S, 1)

distributed, and hencc the collection of random varia-

bles {Tij : 1< i<k, i<3¢ ?} has exponential

minimums. Using the application 5.3 of corollary 4.3
from Esary and Marshall (1974 ) it follows that any coh~
erent life function of these random variables has a uni-
variate IFRA distribution R .. (3.8.1)
Now in order to prove I € m using theorem 3.8.6 it
is enough to prove that incquality (3.6.2) is valid for
indicator functions of every fundamental upper domain in
Rn* i.es for eVery fundamental upper domain D,
[T ¢ D] < PY/9[T & ap].

-+
Let D be any fundamental upper domain in R . Let

D be the union of k upper quadrant domains Di i=l,...,k

where no Di is subset of the other, It can be easily scen

o m—

_— ( - ] o
that D; has $he form D, = XX > xi} where Y. =

(ail Xpeoopay x) for some constants ay 5 i=l,...,k ;

j =1,...,n with a;; = 1 and x > O. Now ID(g) =1 if

— em

and if £ 2 vy , 0r L 2 vy, or ... 0or t 2 Y, s and zero

otherwise,
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t v
That is , Ij(%) = 1 if and only if ‘z=2=dx,...,==2->x

a
t) t g £10
OT ====0 Xj,4say 5—-—) X OT ... OT —55—>x,;..,~3~—>x and
a1 2n k1 kn
zero otherwise. That is :
k n 1.
ID(L) = 1 if an only if max min 5—1— > x. Thus
i=1 j=1 "1ij
P[T 6 D] = PJ ID=l]= P[X > x] = EX (x) where
k n T.
X = max min 7-1- . Similarly it is easy to see that

i=1  j=1 °ij

P[ T 6 aD] = P[I =1] = F y- Now since by (3.8.1)

X (ax
X is (univariate) IFRA, it follows that .

gxtx) < Fi{gx)j for all a 6 (0,1]. Hence the theorem.
3.8.8 Remark :

From the arguments in theorem 3,8.7 it becomes clear
that T = (Tl’°"’Tn) is MIFEA ithhe functions g(T) of
the form g(I) = max min =-d gla, .{ = i=1,...,k

a i=l  j=1 “ij AT i=1,000,m
... (3.8.2)

have univariate IFRA distribution[[since this implies

that indicator functions of every fundamental upper

domain satisfy (3.6.2)]conversly, let (Tl,...,Tn) € 7,
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and £f(I) = h(g(I)) be any nonnegative, nondecfeasing
function of g(I). Note that f = hig is-a nonnegative,
nondecreasing'function of T and hence we have by (3.6.2)

Enlo(D] =& £(D) ¢EY* (i

<= BYOL g0 £ 1)] ] = BYOL 0¥ L g(D)]]

and hence by (3.6.1) g(I) has univariate IFRA distribution.
Thus we can state the following remark :

'I = (Tl,...,Tn) € n if and only if every
function g(I) of the form (3.8.2) haé an univariate

IFRA distribution'.
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