CHAPTER IV

. ‘MULTIVARIATE NBU DISTRIBUTIONS

4,1 “ntroduction :

In the last chapter we studied multivariate extens-
ions of univariate IFRA class of distfibutions. In this.
chapter we try to extend the well known univariate NBU
concept to multivariate case where the componants of a
system are interrelated.

In section 4.2 we introduce a MNBU class of distri-
butions proposed by A. W. Marshall and ). Shaked (1982)
and study some contidions that are equivalent to the
definition of this class. We call this class of distri-
butions as MNBU [1] class. In section 4.3 we study
closure properties of this class and in section 4.4 we
present some examples of distributions belonging to this
class. In section 4.5 we present another class of mult-
ivariate NBU distributions proposed by F. Prochan and
~J. Sethuraman (1983). We call this as WNBU [2] class.
Also we give some immidiate implications of the defini-
tion of this class in the some section. In section 4.6

we discuss the properties of this class and give some
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necessary and sufficient conditions for an MNBU [2] ran-
dom vector to be MVE. In section 4.7 we discuss the
relation between MNBU [1] and MNBU [2] classes. Also

we introduce some éther MNBU classes and discuss their
relation with MNBU [2].

4.2 The MNBU [1] Class :

It can be observed that the definition 1.5 of
univariate NBU class presented in chapter I can be equ-
ivalently expressed as follows

' Ar.v. T is univariate NBU if
P(T6 (a+B)A) L P(TGaA) P(TEPBA) for every
a, B 2 O and every set A = (S,») where S > O .. (4.2.1)

This follows since if (4.2.1) holds, for given
tys T, 2 O by taking a = tl/s, B = tz/s, A = (s,)
fcr s > O we get
P[T > t;+t;] = P[T 6 (a+p)A] < P[T € aA]PIT 6 Al =
P[T)tl] P[TDtQ] and thus T is NBU., On the other hand if
T is NBU, then for given a, B, s > O

P[T & (a+B)] = P[T > as+pS] < P[T > aS] P[T > BS]

It

P[T 6 aA] P[T & pA].
and hence (4.2.,1) holds.
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We try to extend condition (4.2.1) to multivariate
case, Before doing so, we observe that sets A of the
form (s,») in the condition (4.2.1) are open and have
increasing indicatdr functions. They have natural mul-
tidimentional analcgs, namely the upper sets defined in
section 3.8. of chapter III. Making use of these obse-
rvations we define our MNBU [1] class as follows :

4,2,1 Definition

A random vectcr T = (Tl,...,Tn) with joint d. f,.F
is said to be multivariate new better than used [MNBU[1]]
if F(Q) = 1 and P[T € (a+p)A] < P[T € aA] P[T 6 BA]

for every a, B 2 O and for every open upper set A ‘

Our next theorem gives a number of conditions equi-
valent to definition 4.2.1, before presenting which we
introduce some terminology useful for it's statement.

A real fﬁnction g defined on [0,»)" is said to be
subhomogenous if a g(t) < g(o t) for every a ¢ [0,1]
and every t > Q . .. (4.2.2)
Or equivalently, if a« g(t) > g(a t) for every ad>l |
and t > O . | vo (4.2.3)
If equality holds in (4.2.2) for every a 6 [0,1] and

every t 2 0
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or If equality holds in (4.,2.3) for every a % 1 *hen
it is said to be homogenous.

4.3.2 Theorem :

For a random vector T = (Tl""’Tn) such that
F(Q) = 1. The following conditions are equivalent.
(i) T is MNBU [1].
(ii) For every a > O, p > O and every increasing biiary
(i.e. indicator) function @,
E¢<§%§-z>gﬁ¢<§z_>e¢<gz>
(iii)For every a > O, § > 0, Y & (0,1) and every non-
negative increasing function h defined on [ O,w)é,

E h( &%5 T) < E hY( é;f_) E hi™Y( %1) (42,8
(iv) for every nonnegative increasing sub homogenous
function ¢, g(I) has an NBU distribution.

(v) for every nonnegative increasing homogenous Fuactlic-
n g, g(I) has an NBU distribution.
Proof :

The equivalence of these conditions is ecstablishec
q

by showing that (i)==3(ii)=s=p(iii)==y(ii)a=(iv)==3(v):
=3(1i). The proof of (iii)==y(ii) and (iv)==(v) is

trivial. Other proofs are given below :
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(i)=— (iii) : We note that ¢ is an increasing binary

function if and only if it is indicator function of an

upper set. Therefore let ¢ be the indicator function of

the upper set A. Fix «, B>0. Let A° be the interior

of A Let A = ( 1 - i)AO. ile note that A, are open

and A, 1 A%, Aalso aAk<L «A® and BAk.i,BAo. Hence for

given 6 > O we can find k such that

P[I6aA ] & PLTI6aa"] +2¢P[I6cAl+6 and

plrepal ¢ P[T6pa’]+e< P[I6pal+se

Thus noting that @( &%E T) is indicator function o*

(¢ + B)A , we get

E ¢( &31;51) =P[ L6 (atp)A] < P[T 6 (a+p)A ] S P[T G ah,]
P15 BA,]

<[P[T 6 aa] +6 ] [P[T € pAl + 6]

SEg(2T)+c ][ EG(LT) +6].
o 8

Here the 2nd inequality follows from definition 4.2.1.

Now the result follows by letting € -0,

(ii)===3(iii) : Let h be nonnegative increasing function
defined on R . Let us define the function hy

k=1, 2, ... as follows
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h () = -3pt  if “T‘ < h(t) < —é- i= 1,2,...,k.25

= k if  h (1) > k.

~k

Let Ay 1= 1,...,k.2%, k = 1,2,... be

L

the sets defined

-— o hi+ - .':];._ & A
by A;, = {i : h(t) > I e note that A; are

upper Sets and Ay > Ay ... > Ag.zk,k . Thus

K, 2K

by (t) = iil ég IAik (1) and hk’(i) T h‘(i)

Because of monotone convergence theorem now it is enough

to prove the result for h, i.e. for functions of the form
m
f(i) = iil ai IAi(E) ‘where a > 0O i = 2,'.'9m and

AID .o o Am are upper sets. For notational convenience,

let A, = #. Then

1
_ 1 m »
E f( a:gl> = iilai P[T & (a+B)Ai]
< L a; P[I 6 aA;] P[T 6 BA,]
i=1
m
= 1 [JElP[T 6 a(A AJ+1)]]

rﬁ
[ et
™

- S B(Aj-Aj+l)]}

=i
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m ,
min(i, ) PIL € alag=Ay )]
PIL 6 B(A4-Ay,)]

¢ I 1-
S I I (apt...+a )Y(a Footas )" YP[1 € (A=A,

i=1 j=1 Ary)]

P[T @ B(As-a; +l)]

m
Y - |
[iil(al+...+ai) PIT 6 a(A;-A; )11

[ z (ay+...+a;) ) Yp(T € B(A-A

j=1 \]-bl}J

= 5FY (2 DIEETE D]

1
We note that the last equality follows since fy( 5 i)

takes value ( Z a. )Y on a(A

).
=1 P41

(ii) = (iv) : Let ¢ bc a nonnegative subhomogencus
increcasing function. We fix a > O and se: @(&) =

¢ (_-E) = I{S s g(S) > a}(i)ﬂ

we note that ¢ is increasing binary function Now,

for « 6 (0, 1),
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P{g(T)>aa] P[g(I)>(1-a)a]2 P{Oig(élboca] P[(l—c-c)g(%:al)
>(1-a)a]

Plo(in)>a T elg(-1- 1) > a]

il

i

E¢ G EG[ 31 ]

> E ¢ (1)

=P[ g(I) >a] .
Here the first inequlaity follows by (4.2.3) and the
second by hyputhesis. Since « is ﬁ:bitrary, it follows
that g(T) has NBU distribution.
(v) =» (i) : Let ACR"™T be an open upper set, Let us
define the function g on R™* by

(1) =fsup ©>0 :éj_ cap if{eo0: é_jg c A\ £ ¢

(™

=0 = 0 otherwise

We note that g(t) is nonnegative. Further fopil > to

' 1 3 -
let 0% = g(t,) = sup §’9>o P Z Lty 6 AL . Now
Tttt DLt cAamer < supledo, Et 6 Al=g(t,)
e 2 gl Tge LT T e R

i.e, 9(32)'3 g(il) and thus g(t) is nondecreasing.

Also for a> ¢, '
g(at) = sup faovo : L« t 6 Af
L e ;
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i.e. g(t) is homogenous function. Also for every o> O,

Plo(T) > c]:P[supq§>§ : él 6 Ay>o] = P(él 6 Al= P[T 5 oA].

Since g(T) is NBU,
P{T 6(a+p)A} = P{g(I)>atg] < Pig(D) > of PLo(I)> 6}
= P[T 6 aA] P[T & gAl.

and hénce T is MNBU [1].
4.2.3 Remark :

Various modifications of the conditions given in
theorem 4.2.1 are pnossible whith are listed below :
(a) In (iii) the nonnegative increasing functions can bde
replaced by the nonnegative increasing contincous functi-
ons, since if {iii) holds for nonnegative increasing
contineous functions, then first using a similar argum-—
ent as in the proof of lemma 3.8.2 of chapter III, and
noting that ¢Y =@ for all y, it can be proved that (ii)
holds for nonnegative increasing richt, contineous binary
functions, and then:by using a similar argument as in the
proof of lemma 3.8.3 of chapter III it can be shown that

(ii) holds for all borel measurable nonnegative non-

decreasing binary functions, thus (iii)=—=(ii) follows.
Other implications do not pose any problem with this

change in (iii).
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(b) In (iii) it is sufficient to require that (4.2.4) ho-
lds for somey & (0,2). This can be observed easily.
(¢c) In condition (v) the nonnegative increasing homoge-
nous functions can be replaced by the functions g(1) of
the form g(I) = ?§¥ ?E? aijTj s (4.2.5)

Since first we observe that as indicated in the proof
of theorem 3.8.7 of chapter III, for any fundamental
upper domain A, P[T € oA] can be expressed as
P[g(I) > ¢ x] for some x > Q and for avery ¢ > O where
g(T) is of the form (4.2.%). Since g(I) is univariate
NBU, it follows that (4.2.1)holds for every fundamental
upper domain A. Now for any upper domain D, é sequence of
fundamental upper decmains Dk can be constructed as shown
in the proof of thecrem 3.8.6 of chapter III, such that
D, T Dor IDkT I, Then Ich T 1,y for every o > O. By
using monotone convergence theorem it then follows that
(4.2.1) holds for every upper domian D. Thus ihis modi-
fied form of (v)::%(i). The other implications of the
theorem do not pose any problem with this change in (v).
4.2.4 iemark :

In remark 3.8.8 of chapter III, we have seen that

T is MIFRA atcording to Block and Savits (1981) if and
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only if every function g(I) of the form (4.2.%) has uni-
variate IFRA distribution. Since univariate IFRA==:uni-
variate NBU, from remark 4.2.3{c) above it follows

that MIFRA== MNBU [1].

4.3 Closure properties of the class MNBU [1] :
4.3.1 Theorem :

The class MN3U [1] of multivariate NBU distributions
possesses the following prpperties :
(P1) If T is MNBU [1] and 93 is a nonnegative subhomo-
geous increasing function defined on [0,)",j=1,...,m
then (g,(I),...,9.(I)) is WMNBU [1].
(P2) If T is MNBU [1], then any joint marginal is MNBU[1].
(P3) If T is #NBU[1] and is the life function of a
coherent system, then <(I) is HNBU,
(P4) If T is MNBU[1] and a;>0 i=1,...,n then T a;T, is
NBU.
(PB) If T is MNBU[1] and a;20 i=1,...,n then
(a3Tyyeee,a, T ) is BNBU [1]. |
(P6) If S = (sl,...,sm) and T = (Tl,...,Tn) are MNBU and
if S and I are independent, then (S,T) is KNBU.
(P7) If TQ/;Q=1,2,... is a sequence of MNBU[2] random vec-

tors that converges in distribution to I then T is MNBU[1].
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Proof:

(P1): Let g be a nonnegative subhomogenous increasing
function defined on [0,=)™, Then the composition
g[gl(;),...,gm(g)] is a nonnegative subhomogenous incre-
asing function defined on [0,»)". Consequently the re-
sult follows from (iv) of theorem 4.2.2.

(P2): By taking gi(;) = Tj;’
(Tji,..,,Tj ) is MNBU[1] f;r cvery subset

¥l
{ase-00dn} ©

i=l,s..,m it follows that

'i{l;u!.,n‘.‘z .

[
(P3): We observe that a cohcrent life function T has the
form (4.2.9) and hence it is nonnegative, increasing sub-

T

homogeneous function of I. The result now follows from

(v) of theorem 4.2.2.
(P4): Again we observe that g(I) = Zaifi is nonnegative
of T.

increasing subhomogcnous function The result foll-

ows by (v) of theorem 4.2.2.

(P2): Since gi(l) = a;T;3 i=1,...,n are nonnegative inc-
reasing homogenous functione of T, the result follows from
from (P1).

(P6): We prove the result by showing that (S,I) satisfies
(ii) of theorem 4.2.2. Let «, B>0 and let @ be an inc-
reasing binary function defined on Rm+n. Let us denote

the distribution function of S by F and the distribution

function of T by G.
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Now,

1
E [¢( ——g S, i T)] { i ¢ (ng S a;g t)dF(s)dG(t)
< JI J@(—~§9 3;3 tydr(s) il J¢($§?, E.-t)dF(s')]dGtt)
- st B a+f

[since S satisfies (ii)]

il
fo &
fo ~,

—
ler
"=

R
jo

s DU Eet,zhet) a6l 1 (2)aF (2h)

i~
o &
W Sy
—_
et
QU
fon
=3

tt) g(gst, 1) d6(b) ] x
@ (é S, %i') @( Bs" gi')dG(t‘)]dP(s)dP(s )

[since T satisfies (ii) and product of increasing binary

function is increasing binary function].

<J S J‘J‘ ¢( t) ¢(~ %“~ £') dG{£')dG(t)dF(s')dF(s)

s s!

-_s

[since @ < 1].

=EQ (38, 3D EM S, 1)

TR et

Thus (S, T) € MNBU [1].
(P7): Let h be any bounded, contineous, nonnegative
increasing function. Then by the definition of weak
convergence,

1 1 1
E h(zzg I)-—E h(——— ), B h'(z I,)-—E hY(; I) and

T
E hl“Y(% 1) E Rt Y(% T). Further since each T, & MNBU[1],
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E h ( a%‘—g I)<ER (ZI)E hl““*’(-é T ). Taking
limit as « on both sidzs we get

E h(aiE T) CERY(Z 1) E hl-Y(% T). If h is not
bounded, we consider the functions hy= min(h,N) ,N=1,2,...
hy T h and the inequality holds using monotone converg-
ence theorem. Now our result follows waing remark
(4.2.3) (a).
4.3.2 Corollary :

If Tl,...,Tn are independent NBU random variables
then (a) T = (T;,...,T ) is MNBU.

(b) g(Tl,...,Tn) is NBU whenever g is a nonnegative
subhomogenous increasing function,
Proof :
(a) follows immidiately from property (P6).
(b) follows from (a) and (iv) of theorem 4.2.2.
4.4 Examples of MNBU [1] distributions :
(i) A replacement mcdel : Suppose that devices Gys9ee,0g
are available to perform ﬁasks tl,t2,t3. Upon failure
of dy (which performs all three tasks simultancously),
it is replaced by d2 (which performs tasks tl and t2)
and by dg (which performs only task t3>' ihen device d,

fails,‘it is replaced by d, (which performs only task tl)
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and by dg (which performs task tz). Let X, be the life

length of the i®P

davice i = 1,...,3 and let Tj be the
time that t. is performed using these devices j = 1,2,3.
Then Tl = X1+X2+XA, T2 = X +X,+X

T, = X+

3 1 73°
It follows from property (P1l) that if X{sees,Xg are in-
dependent NBU, then (Tl,T2;3) is MNBU [1]. Also
TKTl,TQ,T3) will be NBU where { is the life function
of a coherent sysztei.
(ii) Freund's distribution : Suppose that devices dl and
dé are placed in service together and are sudjected to
respective constant hazard rates }i and A2 untill one
or the otner fails. From the earliest failure time on,
the remaining device di is subjected tc a new constant
hazard rate p > ,RL9 such that p, # Mt N I Tj is
the life length of dj j=1,2, the joint distribution of

(Tl,Tz) as given in Brindley, Thompson (1972) is

i o e e o a———

E(X,y) - e'—( }\l+ >\2)\ " ,;\2 - p’2 e—( }\l+ /\2) (Y°X)

MF Aoy
>"l
+ }T'T‘u;n:p e “z(Y"‘X) ] X S_ y
( 7\1+ %Z)Y [ I!'--us l::} e"'( ?\l+ )‘2)()(-}’)
MF AoHy
“algan“ eﬂpl(x—Y) ] Y < X

eeo(4.4,1)
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Now coneider the random variables Xi i=1,2,3,4 where
leaexp(>l), Xo - eX (ﬁz), X5 m,exp(pl~ﬁl) and
X4ﬂ»exp(p2— #5)« The joint survival function of
(min(Xl,X2+X3), min(X,,% ;X 4)) is given by

Pl min(X19X2+X3) > X, mln(xz,xi+x4) > v

= P{Xl>x, Aoty Xy > 7, Xy+X, > v

i

P[Xl>max(x,ywx4)] P[X> max(y,me3)]

= P[Xl> max(o,y~X4~x)+x] P{X2> max(v—x, —X3)+x]
= -). 7/ N
o 2Y P[xl > max (o, me4~x)+x]
Ay T S AW (g D)
= e” 27 [ J e 1Y (o= Ay) 727 7277 cu -
o i
At - -
S e M (uo= M) e (bp= Ag)u du ]
y=-X
= \’2Y"fly[} (un AJe” (hp=hp=2)u g o (y=x) gy 53
- An . )
- “(> +A )Y[ ..i.,_m...g..... — E’Z__H__i“__ g”(uQ" :""2"’ A]_)(Y”'x)_}_
o= A= Ay Po= A= f \ .
2 . l 2 £ l (p’r\ f\2 ’_;.v'l }‘;Y"‘x /. _}
- ) .
(N +N)yy {:zm__,wf oDl ligmhom ) (=0 g
i l+z - "*)'2 ,"\l—:- ""‘9_"“2
i - M A e s AN e
= M) =(A+AXy=x) ;2“_m2 A AT

NFIS, T ARG,

!
-}
i
i
o
i
{
N
@

. cae mom G e

~ “ . }\
‘-( ?‘l+/’2)x[ / 2+ lJ: ‘__( ’/-A_l.:,_«\z) (y-x)+ . ”l e-p,o(y..x)}
r1tromHy T TR
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Similarly it can bg shown tnat this probability equals

s A ™ B (> i Yo A ot | v
e-(f«l-t-/\z)y[ 1 1~ Xe-y) 2 _ omHgix y)]

——— — e o oy o o T

if v £ Xe
We see that this cdnsides with (4.4.1). Hence (Tl,Tz)
has some joint distribution as (min(xl,X2+X3), min(XQ,Xl+X4).
Since Xi’ i=l,...,4 are indepecendent, it follows that
(T;,Tp) have MNBU [1] distribution using property (P1l)
of theorem 4,3.1. It can also be scen that (T19T2) has
MIFRA distribution according to definition 3.6.1 of

chapter II1I.

4.5 The MNBU [2] class :

In this section we introduce a multivariate vorsion
of the NBU distribution based on a2 physical model., Supp-
ose shocks occur in time which cause the simultanceous
Tailure of subsets of n componants. The interval of time
until the occurence of a shock destroying a given sub-
set of componants is governed by an NBU distribution,

The occurance times are mutually independent.

Based on this shock model, F. Proschan and

J. Sethuraman (1983) have proposed the following class of

multivariate NBU distributions:
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A.5.1 Definition :

A random vector T = (Tl,...,Tn) is said tc be a
MNBU [2] random vector  if it has a rcpresentation

T. = min T, where i{T,, A 6 %! arc independent NBU rand-
1 iGA A [ A -
om variables anc -fis the class of nonempty subsets of

"‘"’Ll;oo-,n? .
-
Below we present an equivalent version of definition
4.5.1.

4,5.2 Definition :

A random vector T = (T Tn) is said to be a

lyang
MNBU [2] random vector if it has a representation

T. = min X, where Xl’“"’XN are independent NBU random
T jes, i

variable$ and € #£ S, J1,...,M0 i=1,...,n and
n 1 o 4
2 Sy = {1l,40.5M, o The cquivalance of the definition

-~

can be easily demonostrated.

4,5.3 . . Some implications of definitions 4.5.1 and 4,5.2 ¢

Let E(tl,...,tn) = P[Tl>tl,,..9Tn>tn] be the joint

survival function of T;,...,T  where I is MNBU [2].Then

(1) F(ty,es.,t ) = = F,(max t.). +.50 .. (4.5.1)
1 ntoaey Aiea Y AT S

i=1,...,n where FA is the survival function of TA’

A6 . This follows casily from definition 4.,5.1,
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(ii) F(tyts,ena,t ts) & F(tyseen,t)) Fls,..0,8)
for all s20, tigo i=l,.e05N

This follows since by (i)

F(t,+S,..0.,t +5) 7 F, ( mzx(t +3))
LA AGED 1g A
= T FA(( max *t. ) + g)
A &% i 6 A *
< m F,( max t,) F,(s)
s NMigca A

since TA is NBU for all A.
= F(tl,,.”,ﬁn). Fleeee,s)
We note that (ii) can be expresscd as

PIT >t #s,eee, T 0% 48/ 1 l>s,.“,T >8)S PIT >t T >tn].

IEXERE
This inplies that the joint survival probability n
componants each of age s 1is le¢ss than or equal o the
joint survival probability of n new componants, Another
alternative interpretation of {ii) may be obtaincd by
rewriting it as

PIT > ty+s, 00, T2t 48/ Tot 0.0, T >t IS P[T 28,000, T 6]

1
This implies that a series system of n componants of ages
tl,..,tn is stochastically shorter 1lived than is a

series system of n new componants.



4,5,4 Remark :

A multivariate new worse than used (MNWU) random
vector T can be defined as in gefinition 4.5.1 (4.5.2)
where now T,,A e ¥, (Xi’ i=l,...,M) are
assumed to be independent NWU random variables. It can
be easily shown that in.this case

F(tl'*.s.-i. 90°l9tn+sn) 2?(’tlyo609tn)g(slyaoe?s )o This

n
follows since max(ti+si) < max t, + max s, therefore,

iGA iGA T ieA
E( max(t,+s.))> F.[(max t.)+( max s.)] .
A Ggn L1 AT iea L iGA *

Now if each TA is MWU, we have

Fol(max t;) + (max s;)1 2 F,(max ti). Fp( max s.).

iGA iGA iGA iGA

the result now follows by using implica%ion (i) of 4.5.3
which is also true for NWU case,.

We note here that in the MNWU case, the s values
may differ, while in the KNBU case, the s values must be
the same

(iii) F(tl,...,tn)

v
Has

(" 4 EA(ti))

i=1

— n —
(iv) F(ty,0e0.,8t) 2> =l 1-m F,(t,)]
SR B iea A1

Since Tl,...,Tn are increasing functions of independent
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random variables, they arc associated, TFrom weliknown

inequalities for associated random variables(cf,Borlow
A

and *roscha n (1973) page 33 ) it follows that,

A

. n 7,(t.)] since
1 o qea A E

1ty K ?A(ti) from definition 4.5.1. Similarly
1GA
' ) 2m Byt = m (1= B (8)] = 7 [ (t)].
F(ty,0e.5t ) > 7 F,(t,) == [1~ F.(t, w [1- n F,(t.
rremrmt sy T g i=1 ica A

In the next section we discuss the properties of
MNBU [2] class.
4.6 Closure properties of the class MNBY [2] :
4,611 Theorem :

The class MNBU [2] of multivariate NBU distributions
possesses the following properties
(P1) Let T be &n NBU randem variable, Then T is 1- dime-
nsional MNBU .
(P2) Let Ty5...,T, be independent NBU random variables.
Then T is MNBU [2].

(P3) Let T be MNBU [2]. Then (T peeesTy } is k-~ dimen-

Tk
sional MNBU [2], 1 ¢ i<e.Kiy $nko=1,2,,..,n.
(F4) Let T be MNBU [2] and T¥ = min T,, ¢ #B g,l 525000 n‘

: J iGB i ? ?

3 =1,...,m. Then T* is MNBU [2].Y
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(P5) Let T be MNBU [2] and a; > Oy i=l,...,n. Then

min a.T. is NBU.
1L ikn

(P6) Let T be n-dimensional MNBU [2], I' be m~dimensio-
nal MNBU [2], and T, I' be independent. Then (T,I')

is (m+n) dimensional MNBU [2].

(P7) Let T be MN3U [2] and let =i be the life function
of a coherent system. Then ~(T) is NBU,

(P8) Let g:[0,~)~—{0,=) be a nondecreasing contineous
function such that g{x+y) £ g(x)+g(y) for all x,y. Let
T be MNBU [2] such that each X; of definition 4.5.2 is
contineous , then T'= (g(Tl)?nu.,g(Tn))is MNBU [2] .
Proof : |

(P1) and (P2) are cbvious,

(P3) and {P4) : Since (P3} is a special case of (P4) by

taking Bj = éiji j=l,...,k, we need only prove (P4).
Let T, = jgén Xys i=1,000,n0. [By using definition
4.5.2]. Then® T% = min min X = min X where
i6B, 465, ¢ 485,
J 1 BN
St = L S, 3=l,...,m., Thus by definition 4.5.2,
J i6B;, T
J

I*¥ is MNBU [2] .

o]
O



(P3) : Let T, = =ain T, i=1,2,...yn. Then min a,T, =
tie A 1€ isn

min ay min TA = min min aiTA =
1< idn ieA i<isn iGA

= min min a;T, = min J(min ai) TAZ
A 6-7 iGA A Sy | iGA j
K R e

.90 (40601)
Since ( min ai) T,» A6} are independent NBU random
iGA '
variables, 4.6.1 is life function of a series system

formed cut of independent NBU (univariate) random vari-
ables and hence has NBU distribution.
(P6) : The proof is obvicus .,

(P7) : Let T(I) be the life function of a coherent sys

O

1

tem formed out of Ty,...,T . Let P P be the

17°°* %" p
minimal path sets for tne corrosponding structure func-

nc

tion. Then we have T(I) = max min T.. But since
1<i<p j 6P, -
T. = min X, for @ #5S.-1,...,M{ j=1,...,n and Xg s
J tesy ITL b

§=1,...,M are incdependent NBU random variables, we get

X(I) = max min X where A, = U S. i=1l,...,p.
1<ip iGA, * + jep, J



Thus ((I) = ' (X} is a life function of coherent system

formed out of indenendent N3U componan=ts and hence has
NBU distribution.
(P8) : Let T, = min X..,@ # sig;gi,...gﬁ§ .
j e S, - - -~
i

We note that since gl{x) is nondecreasing function
x) is also 2 nondecreasing functicn on
(0,) . Also g(x+y) < g(x) + gly) for all x,y > O,

. -1 o a .

therefore, operating g on both sides we get

(x+y) € g alx) + g'y)) .

’....l

=

Putting x = g “(g(x)) (since g is contineous) we get

— - , - : .
g l(g(x))+_g,“(g&y)) < g Ha(x)+ g(y)) for all x,y» O

Letting g(x) = s, g(y) = 1t we get
1

g“l(s)+‘g-l(i} < g—l(s+t) for all s,t > O. Thercfore,
Plg(x) > xty] = PIX > g™ (x4y)]

<P > ¢THx) o+ a1(y)]

< PX >‘g“1(x>1f’Pix.> g™ Hy)] and

hence g{x} is also bU random variable. Now since
g 1s increasing, we have

ggTi) = g(‘gén Xj) = mmég q(xj . Since g(Xi),
. I=Ry J s |

i=l,...,n are incdependent NBU randeém variables, the’

result follows,




Our next theorem gives various necessary and suffie-

cient conditions for an MNBU [2] random vector i¢ be

MVE,

4,6,2 Theorem :

Let T be MNBU [2]. Tren following conditions

are equivalent,

(
(

(

i) T is MVE,
ii) min a
1<iln

iii) T has exponential minimums.

iTi is exponential for all ai>0 i=1l,...40,

(iv) T. is exponential for i=l,...,n.

(v) min T

1

; 1s exponential,
1<i{n ~

Proof :

1t

The equivalence ¢f these conditions is established

by showing that (1) (231)auwa(iv)emy(ii)emy (V)eas (i),

The proofs (iii)-== (iv]) and (ii)===){v) are trivival,

F

it

i)==H(iii) ¢ Let T be MVE. Then

/ n
+ = A ) Wt 4 TT (o
(Ll,..oytn) eXpL :*iillvi.{i‘z’g )\-j ma)&( blytj)+"'-+

n ~
Tyoeonst)= expl=' 8 24 EL )l oot Pt
Lheeee TR G M3 M2, . .oj
‘= exp [ - 2 t] say ) .



n .
where ' = I A4+ I AL 4+ ...+ Alp e Hence

min T. has exponential cistribution, Since every
1<isn

marginal distributicon of T also has MVE distribution,

it folliows that min T,
ien 7

;
S C4lyeaen

is exponentially distributed for

every subset 7

,j L 3
(iv)==2 (ii1) : Let T, i=l,...,n have marginal expon-

ential distribution. Since T, = min X, , @ # S;=i1,...,n}
3654 J ) -
are independent, it follows that each X.

and Xl,.gc,X j

m
is alsc exponentially distributed.[ If not, let u,v>0
be such that EX.(U+V) < EX.(U)° EX.(V). Then
i 5] 3
P[Ti > utv] = m p[xj > utv] < m P[xj > u]. P{xj>vj.

j 6 5. €S,
i i
If T, has exponential distribution with parameter Ai’
e

- A ) - ] - AL
Ai(u+v; ¢ e A.(u)‘ o Ai\v)

this implies that e i

which is a contradiction]. Now,

M . .
min aiTi = min min aiX. = min{ %Qég aﬁr X. J.
i<ign i<i¢n  jes, * j=1 ¥ F
Since é.min ai@ Xj s 3=l,...,M are independent expon-
QJgSi !
ential variables, it follows that min a.Ti has expon=-

1£iln
ential distribution,



(vy====3(1i) ¢ By a similar argument as above it follows
that each Xj, j=l,...,M has expcnential distribution,
Thus eacn Ti has a representation T, = min X. where
' i6S .
Jooy
Xj are independent exponcntial variables. Hence T

has MVE distribhuiion,

4,7 Relation between MNBU [1] and MNBU [2] :

4.7.1 Lemna :
Let T be MNBU [2]. Then T is also MNBU [1].

[ i.e, MNBU [2] is a subclass of MNBU [1] distributions].

By definition 4,5.1 it immidiately follows that

1. Now by definiticn 4.95.2 we have T, = min X,
) .
JGSi
where Xl""’XM are independent NBU randcoim variables and

1l

Fl(o)

@ # Sig il,,gﬁ,Mj i=l,...,n. By corollary 4.2.2(a)
it follows that X = (Xl""’xﬁ) has MNBU [1] distribution.
Since each Ti is nondecreesing, nonnegative homegenous

function of X it follows by property (P1l) of theorem
4.3.1 that T = (T;,...,T ) has MNBU [1] distribution,
The following example shows that MNBU [1] and

MNBU [2] classes are distinct.



4,7.2 Example ¢

- 2.2
Let F(x,y) = Q“VX ox, oy > 0.

. _-_-tj[- .
Since P[al X > t, = Y > t] =e ql/a% + l/aé’ it

follows that min gal X, a29Y3

{ has exponential distri-

bution for every choice of n&%negative ;s hence by
theorem 3.8.7 of chapter III, it follows that (X,Y) has
multivariate IHRA distribution of Block and Savits

[ i.e. (X,Y) 6 ®]. From remark 4.,2.4 it now fcllows
that (X,Y) has MNBU [1] distributicn. But according to
theorem 4.6.2 {i) and {(ii) it follows that (X,Y) can not
be MNBU [2].

Next we introduce some more multivariate NBU cla—
sses and compare them,

Consider nonnegative random variables Tl”"’Tn
whose joint distribution satisfics anc of the following
conditions,

[A] Ty,...,T, are independent and each T; is NBU
random variable,

[B] (Tl,.,,,Tn) is MNBU [2].

[C] for all a; > 0 i=l,...,n min a,T, is NBU,

ii<n * %
[D] For each @ # Acil,...,n{ , min T; is NBU.
: 416 A

[E] Each T, is NBU.
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Zach of these classes of multivariate distributions
may be désignated as a class of multivariate new better
than used distributions. We now compare these classes,

4,7.3 Lenma :

The following relations hold among the classes

(A} to [E] s [Afwmswg[BJonmy [Clumsy [D]ey [E]

Proof

The proofs [A]l===3[B] and [B}==[C] are discussed
/ 4

in the earlier scciions. (Cle==3[D] ard [D]«~7[E] are

7

trivi al.

The following examples show that no other relations

)

hold amonca these classcs,

[62]
pe

4.7,4 Example :

Let T, = min{U,W), T, = min (V,W) where U,V,W are
independent exponential random variables with parameters

)

M o= Do = %12: 1. Then it 3

n

clear from property
(P2) and (P4) of theorem 4.6.1 that (Tl,TQ) is MNBU [2],
but T,,T, are not iudependent. Thus {B]:#ﬁ:[A].
4.7.5 Example 3

Let Ti = 2Tl, Té = T2 where Tl,T2 are defined in

Example 4.7.4 « Now min (alTi9 aQTé] = min(Qa]Tl, a5T5)
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has NBU distribution [since (Tl,TQ) 6 MNBU [2]] for all

ay5a5 > O, hence(Ti,TA) 6 [C]. However i,Té)is not MVE
and hence by Theorem 4.6.2, (Tl,Tz)lS not MNBU [2]. Thus

[c] [B].

4,7.6 Example :

Let T19T2 be as in Example 4.7.4 anc let
(T#,T%)= (min(U,%), 1/2 W). Then ?T*yTé(tl,tz) =

P[ min(U,W) > t Ly > t, 1 =PlU> &

103 W > max(t192t2)]

10
= expl- (tl+ ma,\(tl,w 2))}. Let
F(ty,tp) = p Fy 1,1, E1r )+ (1mp) FTﬁgTJ(tlﬂb ) where O<p<1.

= p exp ~{tl+t2+max(tl,t2)1+(l—p)exp[tl+ max(tl,2t2)].
Let (T’ Té) be the bivariate random vector whosc joint

survival function is F(t,, tz). Now

FTi(tl) = FT{ ,Té(‘tlgo) = panp(—Ztl) + (l"p) @Xp(—-2tl);*
- - = €eXp ( 2t ),:’
FTé(tQ) = PT T4 (0,%5) = p exp[-2t,]+(1-p) exp[-2t,] =

exp (-2t,) and F (t,t)= p exp[-3t]+(1-p) exp(-3t) =

T

t T
1772
cxp(=3t). Thus Ti Té and min 'Ti, Té) are exponentially
distributed. Hence (T! ,’é) satisfies D, But

F(t, = P[ T 1>t, TA> t] = P[1i>2t, Té>t} = p.exp(-5t)+

(1~p) exp(~4t) and
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F(24)-[F(£)]% = 8% pli-p) [c” 513%>0for t>0. Hence
min[ ; 1 ] is not NRU. Hence (7T T'2) does not
satisfy [C]. Hence [D]:ﬁf;VLCJ,.
4.7.7 Example :

Let U,V and W be as in Example 4,7.4.
Let F(tg,t,)

i

P Fy V(tl,t2)+(l ~p) FW W(tl’t“) where
0<p< 1.

P[expu(tl+t2)]+(l—p)[exp—(max(tl,tz))]o

il

Let (Tlpfz)'be the bivariate random vector whose joint
survival function is F(t ) ). Now ET (tl) = F(tl,O) =
pe exp(=t;) + (1-p) exp[-t;] = exp(~t ), T (ty) =
f(O,tQ) = P, exp(étz) + (1-p) exp (ntz). = exp(—tz)
Thus Tl, T2 have marginal exponential and hence NBU
distribution. Hence (Ti,T2) satisfies [E], Let
T*=min (T19T2)° Then

?T*(t) = P[T>t, T>t] = p. exp(-2t)+(1-p) exp(~t) and
fT*(Qt)m[?T*(t)]Q = o2t p[l~p}[e"thl]y> 0 for t > O.
Hence min (TI’TQ) is not NBU. Hence (Tl,TQ),does not
satisfy D. Hence [E]:;#:?[D],
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Finally we present an additional class of multi-
variate new betier than used distributions due to
Block and Savits (1981) and compare this

with the MNBU [2] class.

4,7.1 Definition :

A random vector T 1s said to be multivariate new
better than used.( according to Block and Savits) or
MNBU [F] if T has a reprcsentation.,

T. = L Xj where Xl"“’xm are independent NBU

1 . I3
S .
3655 .
and¢#si(::fl’.oc,l\ﬁj 9 i:lgaovno
The following two examples show that none of the

classes MNBU [F] and MNBU [2] is a subclass of the other.

4,7.8 Example

Let U,V and W be indevendent exponential random
variables with parameters »; £ Ay anc Mo > O. respec-

tively. Let T;= min(U,W) and T, = minl{V,W). Clearly

1
(Tl,TQ) have MVE and hence ®NBU [2] distribution, If
(Tl,T2) alsc satisfy definition 7.1, then it has the
form le X+Z T2 = Y+Z where X,Y and Z are independent
NBU random variables. Since Tl is exponential, it foll-

ows that cither X Is exponential and Z is degenerate at
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O or vice versa. Same is *true about Y and Z since T,
has exponential distribution. Thus either X =Y =0
and Z has exponential distribution or Z = C,
Consequently either Tl”and T2 are independently distrib-
uted or identically distributed which is not possible.
Hence (T;,T,) does not belong to the class MNBU [F].
Thus MNBU [2] <5 wBU [Fl.
4.7.9 Example :

Let X,Y and Z be indépendent with absolutely contin-
eous distributions. Let Tl= X+Z and sz Y+Z, 1t follows

that(T,,T,) is MNBU [F]. But if T,, T, has the form

17 "2
T.= miniT, , T, ‘and To= nin' 7T, ,T, Lwhere T, ,T
1 LRy TAo: 2 1 AT Al A7 Ags
T are independent NBU r.v., since {(T,,T,) have joint
A12 17°2
absolutely contineous distribution, an agrument similar

N

to that of 3.9.3 (2) of chapter III, it follows =hat Tys
and T2 are inderendent, which is a contradiction. Hence
(Tl,Tz) do not have MMBU [2] distribution.
4.7.1 Remark ¢

In Example 4.7.9 we observe that (Tl,T2)= (X,Y)+(2,2).
This shows that MNBJ [2] class is not closed under

convolution.
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