CHAPTER IV

MULTIVARIATE NBU DISTRIBUTIONS

4.1 Introduction:

In the last chapter we studied multivariate extensions of univariate IFRA class of distributions. In this chapter we try to extend the well known univariate NBU concept to multivariate case where the componants of a system are interrelated.

In section 4.2 we introduce a MNBU class of distributions proposed by A. W. Marshall and M. Shaked (1982) and study some contidions that are equivalent to the definition of this class. We call this class of distributions as MNBU [1] class. In section 4.3 we study closure properties of this class and in section 4.4 we present some examples of distributions belonging to this class. In section 4.5 we present another class of multivariate NBU distributions proposed by F. Prochan and J. Sethuraman (1983). We call this as WNBU [2] class. Also we give some imnidiate implications of the definition of this class in the some section. In section 4.6 we discuss the properties of this class and give some
necessary and sufficient conditions for an MNBU [2] random vector to be MVE. In section 4.7 we discuss the relation between MNBU [1] and MNBU [2] classes. Also we introduce some other MNBU classes and discuss their relation with MNBU [2].

4.2 The MNBU [1] Class :

It can be observed that the definition 1.5 of univariate NBU class presented in chapter I can be equivalently expressed as follows:
' A r.v. T is univariate NBU if
$P(T \in(\alpha+\beta) A) \leq P(T \in \alpha A) P(T \in \beta A)$ for every
$\alpha, \beta \geq 0$ and every set $A=(s, \infty)$ where $s \geq 0 \quad \ldots(4.2,1)$
This follows since if (4.2 .1) holds, for given
$t_{1}, t_{2} \geq 0$ by taking $\alpha=t_{1} / s, \beta=t_{2} / s, A=(s, \infty)$
for $s>0$ we get
$\left.P\left[T>t_{1}+t_{2}\right]=P[T \in(\alpha+\beta) A] \leq P[T \in \alpha A] P T \in \beta A\right]=$. $P\left[T>t_{1}\right] P\left[T>t_{2}\right]$ and thus T is NBU. On the other hand if T is NBU, then for given $\alpha, \beta, s>0$

$$
\begin{aligned}
\mathrm{P}[\mathrm{~T} \in(\alpha+\beta)]=\mathrm{P}[\mathrm{~T}>\alpha S+\beta S] & \leq \mathrm{P}[\mathrm{~T}>\alpha \mathrm{S}] \mathrm{P}[\mathrm{~T}>\beta \mathrm{S}] \\
& =\mathrm{P}[\mathrm{~T} \in \alpha \mathrm{~A}] \mathrm{P}[\mathrm{~T} \in \beta \mathrm{~A}]
\end{aligned}
$$

and hence (4.2.1) holds.

We try to extend condition (4.2.1) to multivariate case. Before doing so, we observe that sets A of the form (s, ∞) in the condition (4.2.1) are open and have increasing indicator functions. They have natural multidimentional analogs, namely the upper sets defined in section 3.8. of chapter III. Making use of these observations we define our mNBU [1] class as follows:

4.2.1 Definition:

A random vector $I=\left(T_{1}, \ldots, T_{n}\right)$ with joint d.f. $A F$ is said to be multivariate new better than used [MNBU[1]] if $\bar{F}(\underline{Q})=1$ and $P[T \in(\alpha+\beta) A] \leq P[T \in \alpha A] P[T \in \beta A]$ for every $\alpha, \beta \geq 0$ and for every open upper set A

Our next theorem gives a number of conditions equivalent to definition 4.2.1, before presenting which we introduce some terminology useful for it's statement.

A real function g defined on $[0, \infty)^{n}$ is said to be subhomogenous if $\alpha g(t) \leq g(\alpha, t)$ for every $\alpha \in[0,1]$ and every $t \geq 0$. .. (4.2.2)

Or equivalently, if $\alpha g(t) \geq g(\alpha t)$ for every $\alpha>1$ and $t \geq$ 。
If equality holds in (4.2.2) for every $\alpha \in[0,1]$ and every $t \geq 0$
or If equality holds in (4.2.3) for every $\alpha \mathbb{Z} 1$ then
it is said to be homogenous.
4.2.2 Theorem:

For a random vector $I=\left(T_{1}, \ldots, T_{n}\right)$ such thet
$\bar{F}(\underline{O})=1$. The following conditions are equivalent.
(i) I is MNBU [1].
(ii) For every $\alpha>0, \beta>0$ and every increasing binary
(i.e. indicator) function ϕ,
$E \emptyset\left(\frac{1}{\alpha+\frac{1}{\beta}}-I\right) \leq E \varnothing\left(\frac{1}{\alpha} I\right) E \varnothing\left(\frac{1}{\beta} I\right)$
(iii)For every $\alpha>0, \beta>0, r \in(0,1)$ and every non...
negative increasing function h defined on $[0, \infty)^{n}$,
$E h\left(\frac{1}{\alpha+\beta} I\right) \leq E h^{\gamma}\left(\frac{1}{\alpha} I\right) E h^{1-\gamma}\left(\frac{1}{\beta} I\right) \quad \cdots(4 . .2 .4)$
(iv) for every nonnegative increasing sub homogenous
function $g, g(I)$ has an NBU distribution.
(v) for every nonnegative increasing homogenous functic-
$n g, g(I)$ has an NBU distribution.
Proof:
The equivalence of these conditions is eetablisirec by showing that $(i) \Longrightarrow$ (ii) \Longrightarrow (iii) \Longrightarrow (ii) \Longrightarrow (iv) \Longrightarrow (v)
$\Rightarrow(i)$. The proof of (iii) \Longrightarrow (ii) and (iv) \Longrightarrow (v) is
trivial. Other proofs are given below:
$(\mathrm{i}) \Longrightarrow$ (iii) : We note that \varnothing is an increasing binary function if and only if it is indicator function of an upper set. Therefore let \varnothing be the indicator function of the upper set A. Fix $\alpha, \beta>0$. Let A^{0} be the interior of A. Let $A_{k}=\left(1-\frac{1}{k}\right) A^{\circ}$. We note that A_{k} are open and $A_{k} \downarrow A^{\circ}$. Also $\alpha A_{k} \downarrow \alpha A^{\circ}$ and $\beta A_{k} \downarrow \beta A^{\circ}$. Hence for given $G>0$ we can find k such that
$P\left[I \in \alpha A_{k}\right] \leq P\left[I \in \alpha A^{\circ}\right]+E \leq P[I \in \alpha A]+G$ and $P\left[I \in \beta A_{k}\right] \leq P\left[I \in \beta A^{\circ}\right]+\in \leq P[I G \beta A]+G$

Thus noting that $\phi\left(\frac{1}{\alpha+\beta} I\right)$ is indicator function C ? $(\alpha+\beta) A$, we get $E \phi\left(\frac{1}{\alpha+\beta} I\right)=P[I \in(\alpha+\beta) A] \leq P\left[I \in(\alpha+\beta) A_{k}\right] \leq P\left[I \in \alpha A_{k}\right]$ $P\left[I \mathcal{I}_{\beta} \beta A_{k}\right]$

$$
\begin{aligned}
& \leq[P[I \in \alpha A]+G][P[I \in \beta A]+G] \\
& =\left[E \phi\left(\frac{\ddagger}{\alpha} I\right)+\epsilon\right]\left[E \emptyset\left(\frac{1}{\beta} I\right)+G\right] .
\end{aligned}
$$

Here the and inequality follows from definition 4.2.1.
Now the result follows by letting $\epsilon \cdots \rightarrow$.
(ii) \Longrightarrow (iii) : Let h be nonnegative increasing function defined on $\mathrm{R}_{\mathrm{n}}^{+}$. Let us define the function h_{k},
$\mathrm{k}=1,2, \ldots$ as follows

$$
\begin{array}{rlrl}
h_{k}(\underline{t}) & =-\frac{i-1}{2^{k}} & & \text { if } \quad-\frac{i-1}{2^{k}} \leq h(\underline{t})<-\frac{i}{2^{k}}-\quad i=1,2, \ldots, k \cdot 2^{k} \\
& =k \quad \text { if } \quad h(\underline{t}) \geq k .
\end{array}
$$

Let $A_{i k} i=1, \ldots, k .2^{k}, k=1,2, \ldots$ be the sets defined by $A_{i k}=\left\{\underline{t}: h(\underline{t}) \geq \frac{{ }^{\frac{j}{k}}}{2^{k}}\right\}$. We note that $A_{i k}$ are upper sets and $A_{1 k}>A_{2 k} \ldots>A_{k .2^{k}, k}$. Thus

$$
h_{k}(\underline{t})=\sum_{i=1}^{k \cdot 2^{k}} \frac{1}{2^{k}} I_{A_{i k}}(\underline{t}) \quad \text { and } \quad h_{K_{-}}(\underline{t}) \uparrow n(\underline{t}) .
$$

Because of monotone convergence theorem now it is enough to prove the result for h_{k} ice. for functions of the form

$$
f(t)=\sum_{i=1}^{m} a_{i} I_{A_{i}(t)} \text { where } a_{i} \geq 0 i=2, \ldots, m \text { and }
$$

$A_{1}>\ldots A_{m}$ are upper sets. For notational convenience, let $A_{m+1}=\varnothing$. Then

$$
\begin{aligned}
E f\left(\frac{1}{\alpha+\beta}-T\right)= & \sum_{i=1}^{m} a_{i} P\left[I \in(\alpha+\beta) A_{i}\right] \\
\leq & \sum_{i=1}^{m} a_{i} P\left[I \in \alpha A_{i}\right] P\left[\underline{I} \in \beta A_{i}\right] \\
= & \sum_{i=1}^{m} a_{i}\left[\sum_{j=i}^{m} P\left[I \in \alpha\left(A_{j}-A_{j+1}\right)\right]\right] \\
& {\left[\sum_{j=i}^{m} P\left[\underline{I} \in \beta\left(A_{j}-A_{j+1}\right)\right]\right] }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=\sum}^{m} \sum_{i=i}^{m} \sum_{\sum=i}^{m} a_{i} P\left[I \in \alpha\left(A_{j}-A_{j+1}\right)\right] P\left[I \in \beta\left(A_{i}-A_{i+1}\right)\right] \\
& =\sum_{i=1 j}^{m} \sum_{j=1}^{m}\left(a_{1}+a_{2}+\ldots+a_{\min (i, j)}\right) P\left[I \in \alpha\left(A_{i}-A_{i+1}\right)\right] \\
& P\left[I \in \beta\left(A_{j}-A_{j+1}\right)\right] \\
& \leq \sum_{i=1}^{m} \sum_{j=1}^{m}\left(a_{1}+\ldots+a_{i}\right)^{\gamma}\left(a_{1}+\ldots+a_{j}\right)^{1-\gamma_{P}\left[I \in \alpha\left(A_{i}-A_{i+1}\right)\right]} \\
& P\left[I \in \beta\left(A_{j}-A_{j+1}\right)\right] \\
& {\left[\sum_{i=1}^{m}\left(a_{1}+\ldots+a_{i}\right)^{\gamma_{P}}\left[I \in \alpha\left(A_{i}-A_{i+1}\right)\right]\right] x} \\
& {\left[\sum_{j=1}^{m}\left(a_{1}+\ldots+a_{j}\right)^{1-\gamma_{P}}\left[I \in \beta\left(A_{j}-A_{j+1}\right)\right]\right.} \\
& =E\left[f^{\gamma}\left(\frac{1}{\alpha} I\right)\right] E\left[f^{l-\gamma}\left(\frac{1}{\beta} I\right)\right]
\end{aligned}
$$

We note that the last equality follows since $f^{\gamma}\left(\frac{l}{\alpha} I\right)$ takes value $\left(\sum_{j=1}^{i} a_{i}\right)^{\gamma}$ on $\alpha\left(A_{i}-A_{i+1}\right)$.
(ii) \Rightarrow (iv): Let g bo a nonnegative subhonogencus increasing function. We fix $a>0$ and set $\phi(t)=$ $\left.\phi(\underline{t})=I_{\{S}: g(S)>a\right\}(t)$.
we note that \varnothing is increasing binary function Now, for $\alpha \in(0,1)$,

$$
\begin{aligned}
& P[g(I)>\alpha a] P[g(I)>(1-\alpha) a] \geq P\left[\alpha g\left(\frac{1}{\alpha} I\right)>\alpha a\right] P\left[(1-\alpha) g\left(\frac{1}{1-\alpha}\right)\right. \\
&>(1-\alpha) a] \\
&=P\left[g\left(\frac{1}{\alpha} I\right)>a\right] P\left[g\left(\frac{1}{1-\alpha} I\right)>a\right] \\
&=E \phi\left(\frac{1}{\alpha} I\right) E \emptyset\left[\frac{1}{1-\alpha} I\right] \\
& \geq E \emptyset(I) \\
&=P[g(I)>a] .
\end{aligned}
$$

Here the first inequlaity follows by (4.2.3) and the second by hyputhesis. Since a is arbitrary, it follows that $g(I)$ has NBU distribution.
$(v) \Rightarrow(i):$ Let $^{\prime} A C R^{n+}$ be an open upper set, Let us define the function g on R^{n+} by

$$
\left.\left.\begin{array}{rlrl}
g(\underline{t}) & =\left\{\begin{array}{lcc}
\sup & \theta>0: \frac{1}{\theta} t \in A
\end{array}\right. & \text { if }\left(\theta>0: \frac{1}{\theta} \underline{t} \in A\right.
\end{array}\right) \neq \varnothing\right]
$$

We note that $g(t)$ is nonnegative. Further fort ${ }_{1}>t_{2}$ let $\theta^{*}=g\left(\underline{t}_{2}\right)=\sup \left\{\theta>0: \frac{1}{\theta} \underline{t}_{2} \in A\right\}$. Now
$\left.\frac{1}{\theta^{*}} t_{2}<\frac{1}{\theta^{*}} \underline{t}_{1} \Rightarrow \frac{1}{\theta^{*}} \underline{t}_{1} \in A \Rightarrow \theta^{*} \leq \sup \theta>0, \frac{1}{\theta} \underline{t}_{1} \in A\right\}=g\left(t_{1}\right)$
ie. $g\left(\underline{t}_{2}\right) \leq g\left(\underline{t}_{1}\right)$ and thus $g(t)$ is nondecreasing.
Also for $\alpha>0$,

$$
\begin{aligned}
g(\alpha t) & =\sup \left\{\theta>0: \frac{1}{\theta} \alpha t \in A\right\} \\
& =\alpha \sup \left\{\theta>0: \frac{1}{\theta} t \in A\right\}
\end{aligned}
$$

i.e. $g(t)$ is homogenous function. Also for every $\sigma \geq 0$, $\left.P[g(I)>\sigma]=P\left[\sup ^{\prime \prime} \theta>0: \frac{1}{\theta} I \in A\right\}>\sigma\right]=P\left[\frac{1}{-} T \in A\right]=P[I ; \sigma A]$. Since $g(I)$ is NBU,

$$
\begin{aligned}
P\{I \in(\alpha+\beta) A\}=P\{g(I)>\alpha+\beta\} & \leq P\{g(I)>\alpha\} P\{g(I)>\beta\} \\
& =P[T \in \alpha A] P[T \in \beta A] .
\end{aligned}
$$

and hence I is MNBU [1].
4.2.3 Remark :

Various modifications of the conditions given in theorem 4.2.1 are possible which are listed below: (a) In (iii) the nonnegative increasing functions can be replaced by the nonnegative increasing contineous functions, since if (iii) holds for nonnegative increasing contineous functions, then first using a similar argument as in the proof of lemma 3.8.2 of chapter III, and noting that $\phi^{\gamma} \equiv \emptyset$ for all γ, it can be proved that (ii) holds for nonnegative increasing right, contineous binary functions, and theasy using a similar argument as in the proof of lemma 3.8 .3 of chapter III it can be shown that (ii) holds for all borel measurable nonnegative nondecreasing binary functions, thus (iii) \Longrightarrow (ii) follows. Other implications do not pose any problem with this change in (iii).
(b) In (iii) it is sufficient to require that (4.2.4) holds for some $\gamma \in(0,1)$. This can be observed easily. (c) In condition (v) the nonnegative increasing homogenous functions can be replaced by the functions $g(I)$ of the form $g(I)=\max _{i=1} \min _{j=1}^{n} a_{i j} T_{j} \quad \ldots(4.2 .5)$

Since first we observe that as indicated in the proof of theorem 3.8 .7 of chapter III, for any fundamental upper domain $A, P[T \in \sigma A]$ can be expressed as $P[g(I)>\sigma x]$ for some $x>0$ and for nvery $\sigma>0$ where $g(T)$ is of the form (4.2.5). Since $g(I)$ is univariate NBU, it follows that (4.2.1) holds for every fundamental upper domain A. Now for any upper domain D, a sequence of fundamental upper domains D_{k} can be constructed as shown in the proof of theorem 3.3 .6 of chapter III, such that $D_{k} \uparrow D$ or $I_{D_{k}} \uparrow I_{D}$. Then $I_{o D_{k}} \uparrow I_{\sigma D}$ for every $\sigma>0$. By using monotone convergence theorem it then follows that (4.2.1) holds for every upper domian D. Thus this modified form of $(v) \Longrightarrow(i)$. The other implications of the theorem do not pose any problem with this change in (v). 4.2.4 Remark:

In remark 3.8 .8 of chapter III, we have seen that I is MIFRA according to Block and Savits (1981) if and
only if every function $g(I)$ of the form (4.2.5) has univariate IFRA distribution. Since univariate IFRA=univariate NBU, from remark $4.2 .3(\mathrm{c})$ above it follows that MIFRA $=\Rightarrow$, MNBU [1].
4.3 Closure properties of the class MMBU [1]:
4.3.1 Theorem:

The class MNBU [1] of multivariate NBU distributions possesses the following prpperties :
(PI) If I is MNBU [1] and g_{j} is a nonnegative subhomogeous increasing function defined on $[0, \infty)^{n}, j=1, \ldots, m$ then $\left(g_{1}(I), \ldots, g_{m}(I)\right)$ is MNBU [1].
(P2) If I is MNBU [1], then any joint marginal is MNBU[I].
(P3) If I is MNBU[I] and is the life function of a coherent system, then $\mathbb{T}_{(I)}$ is NBU.
(P4) If I is MNBU[1] and $a_{i} \geq 0, i=1, \ldots, n$ then $\Sigma a_{i} T_{i}$ is NBU.
(P5) If I is $\operatorname{MNBU}[1]$ and $a_{i} \geq 0 \quad i=1, \ldots, n$ then
$\left(a_{1} T_{1}, \ldots, a_{n} T_{n}\right)$ is MNBU [1].
(P6) If $\underline{S}=\left(S_{1}, \ldots, S_{m}\right)$ and $T=\left(T_{1}, \ldots, T_{n}\right)$ are MNBU and if \underline{S} and I are independent, then $(\underline{S}, \underline{T})$ is MNBU.
(P7) If $T_{l}, \ell=1,2, \ldots$ is a sequence of NNBU[2] random vectors that converges in distribution to I then I is WNBU[1].

Proof:

(P1): Let g be a nonnegative subhomogenous increasing function defined on $[0, \infty)^{m}$. Then the composition $g\left[g_{1}(\pm), \ldots, g_{m}(\pm)\right]$ is a nonnegative subhomogenous increasing function defined on $[0, \infty)^{n}$. Consequently the result follows from (iv) of theorem 4.2.2.
(P2): By taking $g_{i}(\underline{Z})=I_{j_{i}}, i=1, \ldots, m$ it follows that $\left(T_{j_{1}}, \ldots, T_{j_{n}}\right)$ is MNOU[1] for cvory subset $\left\{j_{1}, \ldots, j_{m}\right\}$ C $\{1, \ldots, n\} \quad$. (P3): We observe that a cohorent life function \mathbb{T} has the form (4.2.5) and hence it is nonnegative, increasing subhomogeneous function of I. The result now follows from (v) of theorem 4.2.2.
(P4): Again we observe that $g(I)=\sum a_{i} \bar{r}_{i}$ is nonnecative increasing subhonogenous function of I. The result follows by (v) of theorem 4.2.2.
$(P 5)$: Since $g_{i}(I)=a_{i} T_{i} ; i=1, \ldots, n$ are nonnegative increasing homogenous functions of I., the result follows from from (P1).
(P6): We prove the result by showing that (S, I) satisfies (ii) of theorem 4.2.2. Let $a, \beta \geq 0$ and let \varnothing be an increasing binary function defined on R^{m+n}. Let us denote the distribution function of S by F and the distribution function of I by G.

Now,
$E\left[\phi\left(\frac{1}{\alpha+\beta}-\frac{1}{\alpha+\beta} I\right)\right]=\int_{t} \int_{S} \phi\left(\frac{1}{\alpha+\beta} s, \frac{1}{\alpha+\beta} t\right) d F(\underline{s}) d G(\underline{t})$
$\leq \int_{t}\left[\int \phi\left(\frac{1}{\alpha}-s, \frac{1}{\alpha+\beta} t\right) d E(s)\right]\left[\int_{s^{s}} \phi\left(\frac{1}{s^{\prime}}, \frac{1}{\alpha+\beta^{1}}\right) d F\left(s^{\prime}\right)\right] d G(t)$ [since S satisfies (ii)]:
$=\int_{\underline{s}} \int_{s^{\prime}}\left[\int \phi\left(\frac{1}{\alpha} \underline{s}, \frac{1}{\alpha+\beta} \underline{t}\right) \phi\left(\frac{1}{\bar{\beta}^{\prime}}, \frac{1}{\alpha}+\frac{1}{\alpha} t\right) d G(t)\right] d F(\underline{s}) d F\left(s^{\prime}\right)$
$\leq \int_{\underline{s}} \int_{\underline{s}}\left[\int_{t}\left(\frac{1}{\alpha} s, \frac{1}{\alpha} t\right) \phi\left(\frac{1}{\beta} s^{\prime}, \frac{1}{\alpha} t\right) d G(t)\right] x$ $\left[\int_{ \pm} \phi\left(\frac{1}{\alpha} s, \frac{1}{\beta} t^{\prime}\right) \phi\left(\frac{1}{\beta} s^{\prime}, \frac{1}{\beta} t^{\prime}\right) d G\left(t^{\prime}\right)\right] d F(\underline{s}) d F\left(s^{\prime}\right)$
[since I satisfies (ii) and product of increasing binary
function is increasing binary function].
$\leq \int_{\underline{S}} \int_{S^{\prime}} \int_{\underline{t}} \int_{t^{\prime}} \phi\left(\frac{1}{\alpha} s, \frac{1}{\alpha} t\right) \phi\left(\frac{1}{\beta} s^{\prime}, \frac{1}{\beta} t^{\prime}\right) d G\left(t^{\prime}\right) d G(t) d F\left(s^{\prime}\right) d F(s)$ $[$ since $\varnothing \leq 1]$.
$=E \phi\left(\frac{1}{\alpha} S, \frac{1}{\alpha} I\right) E \phi\left(\frac{1}{\beta} S, \frac{1}{\beta} I\right)$
Thus (S, I) G MNBU [1].
(P7): Let h be any bounded, contineous, nonnegative increasing function. Then by the definition of weak convergence,
$E h\left(\frac{1}{\alpha+\beta} I_{l}\right) \rightarrow E h\left(\frac{1}{\alpha}+\frac{1}{\alpha}\right), E h^{\gamma}\left(\frac{1}{\alpha} I_{\ell}\right) \longrightarrow E h^{\gamma}\left(\frac{1}{x} I\right)$ and
$E h^{1-\gamma}\left(\frac{1}{\beta} I_{l}\right) \quad E r^{1-\gamma}\left(\frac{1}{\tilde{\beta}} I\right)$. Further since each $T_{l} \in \operatorname{MNBU}[I]$,
$E n\left(\frac{1}{\alpha+\beta} I\right) \leq E n^{\gamma}\left(\frac{1}{\alpha} I\right) E h^{l-\gamma}\left(\frac{1}{F} I\right)$. Taking limit as $\quad \infty$ on both sides we get
$E h\left(\frac{1}{\alpha+\beta}-\frac{I}{\beta}\right) \leq E h^{\gamma}\left(\frac{1}{c} I\right) E h^{1-\gamma}\left(\frac{1}{\beta} I\right)$. If h is not bounded, we consider the functions $h_{N}=\min (h, N), N=1,2, \ldots$ $h_{N} \uparrow h$ and the inequality holds using monotone convergence theorem. Now our result follows uaing remark (4.2.3) (a).
4.3.2 Corollary:

If T_{1}, \ldots, T_{n} are independent NBU random variables then (a) $I=\left(T_{1}, \ldots, T_{n}\right)$ is MNBU.
(b) $g\left(T_{1}, \ldots, T_{n}\right)$ is NBU whenever g is a nonnegative subhomogenous increasing function.

Proof:
(a) follows immidiately from property (P6).
(b) follows from (a) and (iv) of theorem 4.2.2.
4.4 Examples of MNBU [I] distributions:
(i) A replacement model: Suppose that devices d_{1}, \ldots, d_{5} are available to perform tasks t_{1}, t_{2}, t_{3}. Upon failure of d_{1} (which performs all three tasks simultaneously), it is replaced by d_{2} (which performs tasks t_{1} and t_{2}) and by d_{3} (which performs only task t_{3}). When device d_{2} fails, it is replaced by d_{4} (which performs only task t_{1})
and by d_{5} (which performs task t_{2}). Let X_{i} be the life length of the $i^{\text {th }}$ device $i=1, \ldots, 5$ and let T_{j} be the time that t_{j} is performed using these devices $j=1,2,3$.
Then $T_{1}=X_{1}+X_{2}+X_{4}, \quad T_{2}=X_{1}+X_{2}+X_{5}, \quad T_{3}=X_{1}+X_{3}$.
It follows from property (PI) that if X_{1}, \ldots, X_{5} are independent NBU, then $\left(T_{1}, T_{2} T_{3}\right)$ is MNBU [1]. Also
$T\left(T_{1}, T_{2}, T_{3}\right)$ will be NBU where T is the life function of a coherent system.
(ii) Freund's distribution: Suppose that devices d_{1} and d_{2} are placed in service together and are subjected to respective constant hazard rates λ_{1} and λ_{2} untill one or the other fails. From the earliest failure time on, the remaining device d_{i} is subjected to a new constant hazard rate $\mu_{\perp}>\lambda_{\perp}$, such that $\mu_{2} \neq \lambda_{1}+\lambda_{2}$. If T_{j} is the life length of $d_{j} j=1,2$, the joint distribution of $\left(T_{1}, T_{2}\right)$ as given in Brindley, Thompson (1972) is

$$
\begin{aligned}
\bar{F}(x, y)= & e^{-\left(\lambda_{1}+\lambda_{2}\right) x}\left[\frac{\lambda_{2}-\mu_{2}}{\lambda_{1}+\lambda_{2}-\mu_{2}} e^{-\left(\lambda_{1}+\lambda_{2}\right)(y-x)}\right. \\
& \left.+\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}-\mu_{2}} e^{-\mu_{2}(y-x)}\right] x \leq y \\
= & e^{-\left(\lambda_{1}+\lambda_{2}\right) y\left[\frac{\lambda_{1}-\mu_{1}}{\lambda_{1}+\lambda_{2}^{-\mu_{1}}} e^{-\left(\lambda_{1}+\lambda_{2}\right)(x-y)}\right.} \begin{aligned}
\lambda_{1}+\lambda_{2}-\mu_{1} & \left.e^{-\mu_{1}(x-y)}\right] \quad y \leq x
\end{aligned} \\
& \ldots(4.4 .1)
\end{aligned}
$$

Now consider the random variables $x_{ \pm} i=1,2,3,4$ where $X_{1} \sim \exp \left(\lambda_{1}\right), X_{2} \sim \exp \left(\lambda_{2}\right), X_{3} \sim \exp \left(\mu_{1}-\lambda_{1}\right)$ and. $x_{4} \sim \exp \left(\mu_{2}-\lambda_{2}\right)$. The joint survival function of $\left(\min \left(x_{1}, x_{2}+x_{3}\right), \min \left(x_{2}, x_{1}+x_{4}\right)\right)$ is given by $P\left[\min \left(X_{1}, X_{2}+X_{3}\right)>x, \min \left(X_{2}, X_{1}+X_{4}\right)>y\right]$
$=P\left[X_{1}>x, X_{2}+X_{3}>x, X_{2}>y, X_{1}+X_{4}>y\right]$
$=P\left[X_{1}>\max \left(x, y-X_{4}\right)\right] P\left[X_{2}>\max \left(y, x-X_{3}\right)\right]$
$=P\left[X_{1}>\max \left(0, y-X_{4}-x\right)+x\right] P\left[X_{2}>\max \left(y-x,-X_{3}\right)+x\right]$
$=\quad e^{-\lambda_{2} y} P\left[X_{1}>\max \left(0, y-X_{4}-x\right)+x\right]$
$=\quad e^{-\lambda_{2} y}\left[\int_{0}^{y-x} e^{-\lambda_{2}(y-u)}\left(\mu_{2}-\lambda_{2}\right) e^{-\left(\mu_{2}-\lambda_{2}\right) u} \dot{\operatorname{ciu}}+\right.$
$\left.\int_{y-x}^{\infty} e^{-\lambda_{1} x}\left(\mu_{2}-\lambda_{2}\right) e^{-\left(\mu_{2}-\lambda_{2}\right) u} d u\right]$
$=e^{-\lambda_{2} y-\lambda_{1} y}\left[\int_{0}^{y-x}\left(\mu_{2} \lambda_{2}\right) e^{-\left(\mu_{2}-\lambda_{2}-\lambda_{1}\right) u} d u+e^{\lambda_{1}(y-x)} e^{-\left(\mu_{2}-\lambda_{2}\right)(y-\cdots)}\right.$
$=e^{-\left(\lambda_{1}+\lambda_{2}\right) y}\left[\frac{\mu_{2}-\lambda_{2}}{\mu_{2}-\lambda_{2}-\lambda_{1}}-\frac{\mu_{2}-\lambda_{2}}{\mu_{2}-\lambda_{2}-\lambda_{1}} e^{-\left(\mu_{2}-\lambda_{2}-\lambda_{1}!(y-x)\right.}+\right.$
$\left.\mu_{2}-\lambda_{2}-\lambda_{1} \quad \mu_{2}-\lambda_{2}-\lambda_{1} \quad e^{-\left(\mu_{2}-\lambda_{2}-\lambda_{1}\right)} \lambda(y-x)\right]$
$=e^{-\left(\lambda_{1}+\lambda_{2}\right) y_{l}}\left[\frac{\lambda_{2}-\mu_{2}}{\lambda_{1}+\lambda_{2}-\mu_{2}}+\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}-\mu_{2}} e^{-\left(\mu_{2}-\lambda_{2}-\lambda_{1}\right)(y-x)}\right]$
$=e^{-\left(1+\lambda_{2}\right) x} e^{-\left(\lambda_{1}+\lambda_{2}\right)(y-x)} \frac{\lambda_{2}-\mu_{2}}{\lambda_{1}+\lambda_{2}-\mu_{2}}+\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}-\mu_{2}} e^{-\left(\mu_{2}-\lambda_{2}-\lambda_{1}\right)}$
$=e^{-\left(\lambda_{1}+\lambda_{2}\right) x}\left[\frac{\lambda_{2}-\mu_{2}}{\lambda_{1}+\lambda_{2}-\mu_{2}} e^{-\left(\lambda_{1}+\lambda_{2}\right)(y-x)}+\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}-\mu_{2}} e^{-\mu_{2}(y-x)}\right]$
if $x \leq y$ "

Similarly it can be shown that this probability equals $e^{-\left(\lambda_{1}+\lambda_{2}\right) y}\left[\frac{\lambda_{1}-\mu_{1}}{\lambda_{1}+\lambda_{2}-\mu_{1}} e^{-\left(\lambda_{1}+\lambda_{2}\right.}(x-y)+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}-\mu_{1}} e^{-\mu_{1}(x-y)}\right]$
if $y \leq x$.
We see that this coinsides with (4.4.1). Hence (T_{1}, T_{2}) has sone joint distribution as (min $\left(X_{1}, X_{2}+X_{3}\right), \min \left(X_{2}, X_{1}+X_{4}\right)$.
Since $X_{i}, i=1, \ldots, 4$ are independent, it follows that $\left(T_{1}, T_{2}\right)$ have MNBU [1] distribution using property (P1) of theorem 4.3.1. It can also be seen that $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ has MIFRA distribution according to definition 3.6.1 of chapter III.
4.5 The MNBU [2] class:

In this section we introduce a multivariate version of the NBU distribution based on a physical model. Suppose shocks occur in time which cause the simultaneous failure of subsets of n componants. The interval of time until the occurence of a shock destroying a given subset of componants is governed by an NBU distribution. The occurance times are mutually independent. Based on this shock model, F. Proschan and J. Sethuraman (1983) have proposed the following class of multivariate NBU distributions:
4.5.1 Definition :

A random vector $I=\left(T_{1}, \ldots, T_{n}\right)$ is said to be a MNBU [2] random voctor if it has a representation $T_{i}=\min _{i \in A} T_{A}$ where $\left\{T_{A}, A \in\right\}$ are independent NBU random variables and \mathcal{F} is the class of nonempty subsets of $\{1, \ldots, n\}$ -

Below we present an equivalent version of definition 4.5.1.

4.5.2 Definition :

A random vector $I=\left(T_{1}, \ldots, T_{n}\right)$ is said to be a NNBU [2] random vector if it has a representation $T_{i}=\min _{j \in S_{i}} X_{j}$ where X_{1}, \ldots, X_{M} are independent NBU random variables and $\varnothing \neq S_{i}-(1, \ldots, M) \quad i=1, \ldots, n$ and ${ }_{i=1}^{n} S_{i}=1, \ldots, M_{i}$. The cquivalance of the definition can be easily demonostrated.
4.5.3 - Some implications of definitions 4.5.1 and 4.5.2:

Let $\bar{F}\left(t_{1}, \ldots, t_{n}\right)=P\left[T_{1}>t_{1}, \ldots, T_{n}>t_{n}\right]$ be the joint survival function of T_{1}, \ldots, T_{n} where I is NNBU [2]. Then (i) $\bar{F}\left(t_{1}, \ldots, t_{n}\right)=\pi_{A G G} \bar{F}_{A}\left(\max _{i \in A} t_{i}\right), \quad t_{i} \geq 0, \ldots$ (4.5.1) $i=1, \ldots, n$ where \bar{F}_{A} is the survival function of T_{A}, A 6 . This follows easily from definition 4.5.l.
(ii) $\bar{F}\left(t_{1}+s, \ldots, t_{n}+s\right) \leq \bar{F}\left(t_{1}, \ldots, t_{n}\right) \bar{F}(s, \ldots, s)$

$$
\text { for all } s \geq 0, t_{i}>0 \quad i=1, \ldots, n \text {. }
$$

This follows since by (i)
$\bar{F}\left(t_{1}+s, \ldots, t_{n}+s\right)=\operatorname{m}_{A} \bar{F}_{A}\left(\underset{i \in A}{\left.\max \left(t_{i}+s\right)\right)}\right.$

$$
=\operatorname{m}_{G \mathcal{F}} \bar{F}_{A}\left(\left(\max _{i \in A} t_{i}\right)+s\right)
$$

$$
\leq \prod_{A G-f} \bar{F}_{A}\left(\max _{i \in A} t_{i}\right) \bar{F}_{A}(s)
$$

$$
\text { since } T_{A} \text { is NBU for all } A \text {. }
$$

$$
=\bar{F}\left(t_{1}, \ldots, t_{n}\right) \cdot \bar{F}(s, \ldots, s)
$$

We note that (ii) can be expressed as
$P\left[T_{1}>t_{1}+s, \ldots, T_{n}>t_{n}+s / T_{1}>s, \ldots, T_{n}>s\right) \leq P\left[T_{1}>t_{1}, \ldots, T_{n}>t_{n}\right]$.
This implies that the joint survival probability of n components each of age s is less than or equal to the joint survival probability of n new components. Another alternative interpretation of (ii) may be obtained by rewriting it as
$P\left[T_{1}>t_{1}+s, \ldots, T_{n}>t_{n}+s / T_{1}>t_{1}, \ldots, T_{n}>t_{n}\right] \leq P\left[T_{1}>s, \ldots, T_{n}>s\right]$.
This implies that a series system of n components of ages t_{1}, \ldots, t_{n} is stochastically shorter lived than is a series system of n new components.
4.5.4 Remark:

A multivariate new worse than used (MNWU) random vector I can be defined as in definition 4.5.1 (4.5.2) where now $I_{A}, A \in \mathcal{F},\left(X_{i}, i=1, \ldots, M\right)$ are assumed to be independent NW random variables. It can be easily shown that in this case
$\bar{F}\left(t_{1}+s_{1}, \ldots, t_{n}+s_{n}\right) \geq \bar{F}\left(t_{1}, \ldots, t_{n}\right) \bar{F}\left(s_{1}, \ldots, s_{n}\right)$. This
follows since $\max _{i \in A}\left(t_{i}+s_{i}\right) \leq \max _{i \in A} t_{i}+\max _{i \in A} s_{i}$, therefore,
$\bar{F}_{A}\left(\max _{i \in A}\left(t_{i}+s_{i}\right)\right) \geq \bar{F}_{A}\left[\left(\max _{i \in A} t_{i}\right)+\left(\max _{i \in A} s_{i}\right)\right]$.
Now if each T_{A} is NWU, we have

$$
\bar{F}_{A}\left[\left(\max _{i \in A} t_{i}\right)+\left(\max _{i \in A} s_{i}\right)\right] \geq \bar{F}_{A}\left(\max _{i \in A} t_{i}\right) \cdot \bar{F}_{A}\left(\max _{i \in A} s_{i}\right)
$$

the result now follows by using implication (i) of 4.5 .3 which is also true for WWU case.

We note here that in the wNW case, the s values may differ, while in the WNBU case, the s values must be the same
(iii) $\bar{F}\left(t_{1}, \ldots, t_{n}\right) \geq{\underset{i=1}{n}\left({ }_{i \in A} \bar{F}_{A}\left(t_{i}\right)\right)}^{n}$
(iv) $\bar{F}\left(t_{1}, \ldots, t_{n}\right) \geq \prod_{i=1}^{n}\left[1-\prod_{i G A} \bar{F}_{A}\left(t_{i}\right)\right]$

Since T_{1}, \ldots, T_{n} are increasing functions of independent
random variables, they are associated. From weliknown inequalities for associated random variables(Cf. Borlow and Proscha n (1975) page 33) it follows that,

$$
\begin{aligned}
& \bar{F}\left(t_{I}, \ldots, t_{n}\right) \geq \prod_{i=1}^{n} \bar{F}_{i}\left(t_{j}\right)=\underset{i=1}{n}\left[\prod_{i G A} \overline{\bar{F}}_{A}\left(t_{i}\right)\right] \text { since } \\
& \bar{F}_{i}\left(t_{i}\right)=\prod_{i \in A} \bar{F}_{A}\left(t_{i}\right) \text { from definition 4.5.1. Similarly } \\
& F\left(t_{1}, \ldots, t_{n}\right) \geq \prod_{i=1}^{n} F_{i}\left(t_{i}\right)=\underset{i=1}{n}\left[1-\mathbb{F}_{i}\left(t_{i}\right)\right]=\underset{i=1}{n}\left[1-\underset{i G A}{\pi} \bar{F}_{A}\left(t_{i}\right)\right] .
\end{aligned}
$$

In the next section we discuss the properties of MNBU [2] class.
4.6 Closure properties of the class MNBU [2]:
4.611 Theorem:

The class MNBIj [2] of multivariate NBU distributions possesses the following properties :
(P1) Let F be an NBU ranciom variable. Then T is l - dimensional RNBU.
(P2) Let T_{1}, \ldots, T_{n} be independent NBU random variables.
Then I is iwNBU [2].
(P3) Let I be MNBU [2]. Then ($\left.T_{i_{1}}, \ldots, T_{i_{k}}\right)$ is k-dimensional MNBU [2], $i \leq i_{1}<\ldots<i_{k} \leq n k=1,2, \ldots, n$.
(F4) Let I be MNBU [2] and $T_{j}=\min _{i G B} T_{i}, \varnothing \neq B_{j} \subset\{1,2, \ldots, n\}$, $j=1, \ldots, m$. Then I^{*} is MNBU [2]. j
(P5) Let I be MNBU [2] and $a_{i}>0, i=1, \ldots, n$. Then $\min _{i \leq n} a_{i} T_{i}$ is NBU.
(P6) Let I be n-dimensional MNBU [2], I' be m-dimensional MNBU [2], and I, I^{\prime} be independent. Then (I, I^{\prime}) is $(m+n)$ dimensionai fiNBU [2].
(P7) Let I be mNSU [2] and let be the life function of a coherent system. Then $\mathrm{E}(\mathrm{I})$ is NBU.
(P8) Let $g:[0, \infty) \quad[0, \infty)$ be a nondecreasing contineous function such that $g(x+y) \leq g(x)+g(y)$ for all x, y. Let I be MiNBU [2] such that each x_{i} of definition 4.5 .2 is contineous, then $I^{\prime}=\left(g\left(T_{1}\right), \ldots, g\left(T_{n}\right)\right)$ is MNSU [2].

Proof:
(P1) and (P2) are obvious.
(P3) and (P4): Since (P3) is a special case of (P4) by taking $B_{j}=\left\{i_{j} j=1, \ldots, k\right.$, we need only prove (P4).
Let $T_{i}=\min _{\mathcal{G},} X_{i}, i=1, \ldots, n$. [By using definition
4.5.2]. Then $T_{j}^{*}=\min _{i G B_{j}} \min _{i} X_{i}=\min _{U G S_{j}^{\prime}} X_{y}$ where
$S_{j}^{i}=\underbrace{}_{i \in B_{j}} S_{i} j=1, \ldots, m$. Thus by definition 4.5.2,
I^{*} is MNBU [2].
(P5) : Let $T_{i}=\operatorname{iin}_{i \in A} T_{A} i=1,2, \ldots, n$. Then $\min _{i \leq n} a_{i} T_{i}=$ $1 \leq \min _{i \leq n} a_{i} \min _{i \in A} T_{A}=\min _{i \leq i \leq n} \min _{i G A} a_{i} T_{A}=$

$$
=\min _{A G T \min _{i \in A}} a_{i} T A=\min _{A G f}\left\{\left(\min _{i \in A} a_{i}\right) T_{A}\right\}
$$

Since ($\min _{i \in A} a_{i}$) $T_{A}, A G f$ are independent NBU random variables, 4.6 .1 is life function of a series system formed cut of independent NBU (univariaie) random variaabies and hence has NBU distribution.
(P6) : The proof is obvious.
(P7) : Let $\mathbb{C}(I)$ be the life function of a coherent syst ten formed out of T_{1}, \ldots, T_{n}. Let P_{1}, \ldots, P_{p} be the minimal path sets for the corresponding structure fundsion. Then we have $G(I)=\max _{I \leq i \leq p} \min _{j \in P_{i}} T_{j}$. But since $T_{j}=\min _{l G S_{j}} X_{i}$ for $\phi \neq S_{j}\{1, \ldots, M\}, j=1, \ldots, n$ and X_{ℓ}, Q $=1, \ldots, \mathrm{M}$ are independent NBU random variables, we get $T(I)=\max _{1 \leq i \leq p} \min _{\ell \in A_{i}} X_{Q} \quad$ where $A_{i}=\bigcup_{j \in P_{i}} S_{j} i=1, \ldots, p$.

Thus $Z_{(\underline{I})}=\mathbb{Z}^{\prime}(\underline{X})$ is a life function of coherent system formed out of independent, NBU components and hence has NBU distribution.
(P8): Let $\left.T_{i}=\min _{j \in S_{i}} X_{\cdot} \not \subset \neq S_{i} \in 1, \ldots, M\right\} \quad$.
We note that since $g(x)$ is nondecreasing function on $(0, \infty), g^{-1}(x)$ is also a nondecreasing function on $(0, \infty)$. Also $g(x+y) \leq g(x)+g(y)$ for all $x, y \geq 0$, therefore, operating g^{-1} on both sides we get

$$
(x+y) \leq g^{-1}(g(x)+g(y)) .
$$

Putting $x=g^{-1}(g(x))$ (since g is contineous) we get $g^{-1}(g(x))+g^{-1}\left(g(y) \leq g^{-1}(g(x)+g(y))\right.$ for all $x, y \geq 0$. Letting $g(x)=s, g(y)=t$ wo gat
$g^{-1}(s)+g^{-1}(t) \leq g^{-1}(s+t)$ for all $s, t \geq 0$. Therefore, $P[g(x)>x+y]=P\left[x>g^{-1}(x+y)\right]$

$$
\begin{aligned}
& \leq P\left[x>G^{-1}(x)+g^{-1}(y)\right] \\
& \leq P\left[x>g^{-1}(x)\right] \cdot P\left[X>G^{-1}(y)\right] \text { and } .
\end{aligned}
$$

hence $g(x)$ is also vise random variable. Now since g is increasing, we have
$g\left(T_{i}\right)=g\left(\min _{j \in S_{i}} X_{j}\right)=\min _{j G S_{i}} g\left(X_{j}\right)$. Since $g\left(X_{i}\right)$,
$\mathrm{i}=1, \ldots, \mathrm{n}$ are independent NBU random variables, the
result follows.

Our next theorem gives various necessary and sufficlient conditions for an MNBU [2] random vector to be ME

4.6.2 Theorem:

Let I be MNBU [2]. Tree following conditions are equivalent.
(i) I is MVE.
(ii) $\min _{1 \leq i \leq n} a_{i} T_{i}$ is exponential for all $a_{i}>0 \quad i=1, \ldots, n$.
(iii) I has exponential minimums.
(iv) T_{i} is exponential for $i=l, \ldots, n$.
(v) $\quad \min _{l \leq i \leq n} T_{i}$ is exponential.

Proof:
The equivalence of these conditions is established by showing that $(i) \Longrightarrow(i j i)=(i v) \Longrightarrow(i i) \Longrightarrow(v) \Longrightarrow \quad$ (i) \Rightarrow The proofs (iii) \Rightarrow (iv) and (ii) \Rightarrow (v) are trivival. $(i) \Longrightarrow$ (iii) : Let T behave. Then $\bar{F}\left(t_{1}, \ldots, t_{n}\right)=\exp \left[-\sum_{i=1}^{n} \lambda_{i} t_{i}+\sum_{i<j} \lambda_{i j} \max \left(t_{1}, t_{j}\right)+\ldots+\right.$ $\lambda_{12}, \ldots, n^{\left.\max \left(t_{1}, \ldots, t_{n}\right)\right] \text {]. Hence }{ }^{\prime}, \ldots}$ $\bar{F}(t, \ldots, i)=\exp \left[-\sum_{i=1}^{n} \lambda_{i}+\sum_{i<j} \lambda_{i j}+\ldots+\lambda_{12} \ldots n\right\}$ $=\exp \left[-\dot{n}^{\prime} t\right]$ say
where $\lambda^{\prime}=\sum_{i=1}^{n} \lambda_{i}+\sum_{i<j=1}^{n} \lambda_{i j}+\ldots+\lambda_{12 \ldots n}$. Hence $\min _{1 \leq i \leq n} T_{i}$ has exponential distribution, Since every marginal distribution of I also has MVE distribution, it follows that $\min _{i G A} T_{i}$ is exponentially distributed for every subset $S \subset\{1, \ldots, n\}$ 。
(iv) \Longrightarrow (ii) : Let $T_{i}, i=1, \ldots, n$ have marginal expoential distribution. Since $T_{i}=\min _{j G S_{i}} X_{j}, ~ \varnothing \neq S_{i} \in\{, \ldots, n\}$ and X_{1}, \ldots, X_{m} are independent, it follows that each X_{j} is also exponentially distributed.[If not, let $u, v>0$ be such that $\bar{F}_{X_{i}}(u+v)<\bar{F}_{X_{i}}(u) \cdot \bar{F}_{X_{j}}(v)$. Then $P\left[T_{i}>u+v\right]=\operatorname{j}_{j \in S_{i}}^{\pi} P\left[X_{j}>u+v\right]<\prod_{j \in S_{i}} P\left[X_{j}>u\right] . P\left[X_{j}>v\right]$. If T_{i} has exponential distribution with parameter λ_{i}, this implies that $e^{-\lambda_{i}(u+v)}<e^{-\lambda_{i}}(u) \cdot e^{-\lambda_{i}(v)}$ which is a contradiction]. Now, $\min _{i \leq i \leq n} a_{i} T_{i}=\min _{i \leq i \leq n} \min _{j \in S_{i}} a_{i} x_{j}=\min _{j=1}^{M}\left[\sum_{j \in S_{i}}^{\min } a_{i} x_{j}\right]$. Since $\left\{\min _{j \in S_{i}}{ }_{i}\right\} X_{j}, j=1, \ldots . .1$ are independent expoential variables, \dot{t} follows that $\underset{1 \leq i \leq n}{ } a_{i} T_{i}$ has exponential distribution.
$(v) \Longrightarrow$ (i) : By a similar argumient as above it follows that each $X_{j}, j=1, \ldots, M$ has exponential distribution.
Thus each T_{i} has arepresentation $T_{i}=\min _{j \in S_{i}} X_{j}$, where X_{j} are independent exponential variables. Hence I has MVE distribution.
4.7 Relation between MNBU [1] and MNBU [2]:
4.7.1 Lemna :

Let I be minb [$\%$]. Then I is also MNBU [I]. [i.e. MNBU [2] is a subclass of MNBU [1] distributions]. Proof:

By definition 4.5.3. it immidiately follows that $\bar{F}_{\underline{T}}(0)=1$. Now by definition 4.5 .2 we have $T_{i}=\min _{j \in S_{i}} X_{j}$ where X_{1}, \ldots, K_{M} are independent NBU random variables and $\phi \neq S_{i}=\left\{1, \ldots, M_{i} \quad i=1, \ldots, n\right.$. By corollary 4.3.2(a) it follows that $\underset{X}{ }=\left(X_{1}, \ldots, X_{M}\right)$ has MNBU [1] distribution. Since each T_{i} is nondecreasing, nonnegative homegenous function of X it follows by property (Pl) of theorem 4.3.1 that $I=\left(I_{1}, \ldots, T_{n}\right)$ has MNBU [I] distribution.

The following example shows that MNBU [1] and MNBU [2] classes are distinct.

4.7.2 Example :

Let $\vec{F}(x, y)=e^{-\sqrt{x^{2}+y^{2}}} x, y \geq 0$.
Since $P\left[a_{1} X>t, a_{2} Y>t\right]=e^{-t} \sqrt{1 / a_{1}^{2}+1 / a_{2}^{2}}$, it follows that $\min \left\{a_{1} X, a_{2}, Y\right\}$ has exponential distribution for every choice of nonnegative a_{i}, hence by theorem 3.8 .7 of chapter III, it follows that (X, Y) has multivariate IHRA distribution of Block and Savits [i.e. $(X, Y) \in \pi]$. From remark 4.2.4 it now follows that (X, Y) has MNBU [1] distribution. But according to theorem 4.6.2 (i) and (ii) it follows that (X, Y) can not be MNBU [2].

Next we introduce some more multivariate NBU classes and compare them.

Consider nonnegative random variables $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{n}}$ whose joint distribution satisfies one of the following conditions.
[A] $\mathrm{T}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}$ are independent and each I_{i} is NBU
random variable.
[B] ($\left.\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{n}}\right)$ is MNBU [2].
[C] for all $a_{i}>0 i=1, \ldots, n \min _{i \leq i \leq n} a_{i} T_{i}$ is NEU.
[D] For each $\varnothing \neq \mathrm{A}\{1, \ldots, n\}, \min _{\mathrm{i}} \in \mathrm{A} \mathrm{T}_{i}$ is NBU.
[E] Each T_{i} is NBU.

Each of these classes of multivariate distributions may be designated as a class of multivariate new better than used distributions. We now compare these classes.

4.7.3 Lerma :

The following relations hold among the classes $[A]$ to $[E]:[A[\square \Longrightarrow[B] \Rightarrow[C] \Longrightarrow[D] \Longrightarrow[E]$. Proof:

The proofs $[A] \Longrightarrow[B]$ and $[B] \Longrightarrow[C]$ are discussed in the earlier sections. $[C] \Rightarrow[D]$ ard $[D] \Rightarrow[E]$ are trivi al.

The following examples show that no other relations hold among these classes. 4.7.4 Example:

Let $T_{1}=\min (U, W), T_{2}=\min (V, W)$ where U, V, W are independent exponential random variables with parameters

$$
\lambda_{1}=\lambda_{2}=\lambda_{12}=1 \text {. Then it is olear from property }
$$ (P2) and (P4) of theorem 4.6.1 that (T_{1}, T_{2}) is NNBU [2], but T_{1}, T_{2} are not independent. Thus $[B] \nRightarrow[A]$. 4.7.5 Example:

Let $T_{1}=2 T_{1}, T_{2}=T_{2}$ where T_{1}, T_{2} are defined in Example 4.7.4-Now min $\left(a_{1} T, a_{2} T_{2}^{\prime}\right]=\min \left(2 a_{1} T_{1}, a_{2} T_{2}\right)$
has NBU distribution [since $\left(T_{1}, T_{2}\right) \in$ MNBU [2]] for all $a_{1}, a_{2}>0$, hence $\left(T_{1}^{\prime}, T_{2}^{\prime}\right) \in[C]$; However ($T_{1}^{\prime}, T_{2}^{\prime}$) is not MVE and hence by Theorem $4.6 .2,\left(T_{1}^{\prime}, T_{2}^{1}\right)$ is not $\operatorname{MNSU}^{2}[2]$. Thus [C] [B].
4.7.6 Example:

Let $\mathrm{T}_{1}, \mathrm{~T}_{2}$ be as in Example 4.7.4 and let $\left(T_{1}^{*}, T_{2}^{*}\right)=(\min (U, W), 1 / 2 W)$. Then $\vec{F}_{T}{ }_{1}, T_{2}^{*}\left(t_{1}, t_{2}\right)=$ $P\left[\min (U, W)>t_{1}, \frac{1}{2} W>t_{2}\right]=P\left[U>t_{1}, W>\max \left(t_{1}, 2 t_{2}\right)\right]$ $=\exp \left[-\left(t_{1}+\max \left(t_{1}, 2 t_{2}\right)\right)\right]$. Let
$\bar{F}\left(t_{1}, t_{2}\right)=p \bar{F}_{T_{1}, T_{2}}\left(t_{1}, t_{2}\right)+(1-p) \bar{F}_{T_{1}^{*}, T_{2}^{*}}\left(t_{1}, t_{2}\right)$ where $0<p<1$.

$$
=p \exp -\left[t_{1}+t_{2}+\max \left(t_{1}, t_{2}\right)\right]+(1-p) \exp \left[t_{1}+\max \left(t_{1}, 2 t_{2}\right)\right]
$$

Let ($\mathrm{T}_{1}^{\prime}, \mathrm{I}_{2}^{\prime}$) be the bivariate random vector whose joint survival function is $\bar{F}\left(t_{1}, t_{2}\right)$. Now

$$
\begin{aligned}
& \overline{\mathrm{F}}_{\mathrm{T}_{1}^{\prime}}\left(\mathrm{t}_{1}\right)=\overline{\mathrm{F}}_{\mathrm{T}_{1}, \mathrm{~T}_{2}^{\prime}}\left(\mathrm{t}_{1}, 0\right)=p \cdot \exp \left(-2 t_{1}\right)+(1-p) \exp \left(-2 t_{1}\right) ; \\
&=\exp \left(-2 t_{1}\right) \\
& \overline{\mathrm{F}}_{\mathrm{T}_{2}^{\prime}}\left(t_{2}\right)=\overline{\mathrm{F}}_{\mathrm{T}_{1}, T_{2}^{\prime}}\left(0, t_{2}\right)=p \exp \left[-2 t_{2}\right]+(1-p) \exp \left[-2 t_{2}\right]= \\
& \exp \left(-2 t_{2}\right) \text { and } \overline{\mathrm{F}}_{\mathrm{T}_{1}, T_{2}^{\prime}}(t, t)=p \exp [-3 t]+(1-p) \exp (-3 t)=
\end{aligned}
$$

$$
\exp (-3 t) \text {. Thus } T_{1}, T_{2}^{\prime} \text { and min }(T 1, T 1) \text { are exponentially }
$$

distributed. Hence ($\mathrm{T}_{1}^{\prime}, \mathrm{I}_{2}^{\prime}$) satisfies D. But
$F(t)=P\left[\frac{1}{2} T l_{1}>t, T_{2}^{\prime}>t\right]=P\left[T_{1}>2 t, T_{2}^{\prime}>t\right]=p \cdot \exp (-5 t)+$
$(1-p) \exp (-4 t)$ and
$\bar{F}(2 t)-[\bar{F}(t)]^{2}=e^{-3, t} P(1-p)\left[e^{-t}-1\right]^{2}>0$ for $t>0$. Hence $\min \left[\frac{1}{2} \mathrm{~T}_{1}, \mathrm{~T}_{2}^{\prime}\right]$ is not NBU. Hence ($\mathrm{T}_{1}^{\prime}, \mathrm{T}_{2}{ }_{2}$) does not satisfy [C]. Hance [D] $\neq ; \mathrm{C}]$.
4.7.7 Example :

Let U, V and W be as in Example 4.7.4.
Let $\bar{F}\left(t_{1}, t_{2}\right)=P \bar{F}_{U, V}\left(t_{1}, t_{2}\right)+(1-p) \bar{F}_{W, W}\left(t_{1}, t_{2}\right)$ where $0<p<1$.

$$
=P\left[\exp -\left(t_{1}+t_{2}\right)\right]+(1-p)\left[\exp -\left(\max \left(t_{1}, t_{2}\right)\right)\right] .
$$

Let (T_{1}, T_{2}) be the bivariate random vector whose joint survival function is $\overline{\mathrm{F}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$. Now $\overline{\mathrm{F}}_{\mathrm{T}_{1}}\left(\mathrm{t}_{1}\right)=\overline{\mathrm{F}}\left(\mathrm{t}_{1}, 0\right)=$ p. $\exp \left(-t_{1}\right)+(1-p) \exp \left[-t_{1}\right]=\exp \left(-t_{1}\right) ; \bar{F}_{T_{2}}\left(t_{2}\right)=$ $\bar{F}\left(0, t_{2}\right)=P \cdot \exp \left(-t_{2}\right)+(1-p) \exp \left(-t_{2}\right) \cdot=\exp \left(-t_{2}\right)$
Thus T_{1}, T_{2} have marginal exponential and hence NBU distribution. Hence ($\mathrm{T}_{1}, \mathrm{H}_{2}$) satisfies [E]. Let $T^{*}=\min \left(T_{1}, T_{2}\right)$. Then
$\bar{F}_{T *}(t)=P\left[T_{1}>t, T_{2}>t\right]=p \cdot \exp (-2 t)+(1-p) \exp (-t)$ and $\bar{F}_{T^{*}}(2 t)-\left[\bar{F}_{\mathrm{T}^{*}}(t)\right]^{2}=e^{-2 t} p[1-p]\left[e^{-t}-1\right]^{2}>0$ for $t>0$. Hence $\min \left(T_{1}, T_{2}\right)$ is not NBU. Hence (T_{1}, T_{2}) does not satisfy D. Hence $[E] \neq \Rightarrow[D]$.

Finally we present an additional class of multivariate new better than used distributions due to Block and Savits (1981) and compare this with the MNBU [2] class.

4.7.1 Definition:

A randon vector I is said to be multivariate new better than used. (according to Block and Savits) or MNBU [F] if I has a representation.
$T_{i}=\sum_{j G S_{i}} X_{j}$ where X_{1}, \ldots, X_{M} are independent NBU and $\varnothing \neq S_{i}\{1, \ldots, M\}, i=1, \ldots n$.

The following two examples show that none of the classes MNBU [F] and MNBU [2] is a subclass of the other. 4.7.8 Example:

Let U, V and W be independent exponential random variables with parameters $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{12}>0$. respectively. Let $T_{1}=\min (U, W)$ and $T_{2}=\min (V, W)$. Clearly (T_{1}, T_{2}) have mVE and hence MNBU [2] distribution. If $\left(T_{1}, T_{2}\right)$ also satisfy definition 7.1, then it has the form $T_{1}=X+Z, T_{2}=Y+Z$ where X, Y and Z are independent NBU random variables. Since T_{1} is exponential, it follows that either $X \equiv$ exponential and Z is degenerate at

O or vice versa. Same is triue about Y and Z since T_{2} has exponential distribution. Thus either $X \equiv Y \equiv 0$ and Z has exponential distribution or $Z \equiv 0$. Consequently either T_{1} and T_{2} are independently distributed or identically distributed which is not possible. Hence (T_{1}, T_{2}) does not belong to the class MNBU [F]. Thus innu [2] \neq MNBU [F]. 4.7.9 Exanple:

Let X, Y and Z be independent with absolutely contineous distributions. Let $T_{1}=X+Z$ and $T_{2}=Y+Z$. It follows that $\left(T_{1}, T_{2}\right)$ is MNBU [F]. But if I_{1}, T_{2} has the form $\mathrm{T}_{1}=\min \left\{\mathrm{T}_{\mathrm{h}_{1}}, \mathrm{~T}_{\mathrm{A}_{12}}\right.$ and $\left.\mathrm{T}_{2}=\min \mathrm{T}_{\mathrm{A}_{2}}, \mathrm{~T}_{\mathrm{A}_{12}}\right\}$ where $\mathrm{T}_{\mathrm{A}_{1}}, \mathrm{~T}_{\mathrm{A}_{2}}$, $T_{A_{12}}$ are independent NBU $r . v$. , since (T_{1}, T_{2}) have joint absolutely contineous distribution, an agrument similar to that of 3.5 .3 (a) of chapter III, it follows that T_{1}, and T_{2} are inderendent, which is a contradiction. Hence $\left(T_{1}, T_{2}\right)$ do not have MNBU [2] distribution.
4.7.1 Remark:

In Example 4.7.9 we Ooserve that $\left(T_{1}, T_{2}\right)=(X, Y)+(Z, Z)$. This shows that MNBU [2] class is not closed under convolution.

