CHAMAPT ER - JV

RESULTS IN MULTIVARIATE DISTRIBUTIONS THROUGH MAJORIZATION

This chapter is based on a paper published by A.W.Marshall
and Indgram Olkin [12]. The concepts could be viewed as an
advancement on Anderson’s theorem. It is shown that if the
joint density f of X = (X,,...,X;) 1is Schur-concave, then
P(X = A + 8) 1is a Schur-concave function of &, wvhenever the

indicator function of A 1is Schur-concave.

4.A CONCEPTUAL BACKGROUND

Consider the joint distribution f of a set of random
variables. Consider a set A. If one is interested to find
conditions on f and A such that

#©) = | f£(x) dx = P{x =4+ 9}
A+S

is Schur-concave function of 8; Marshall and Olkins theorem
provides an snswer to this problem. It is shown that to
vield the aspaired result f sﬁoﬁld be Schur-concave and if
y = A with x <y =3 x & A,

4.B MARGHALL AND OLKIN’S THEOREM AND RELATED RESULTS

4.B.1 Theorem : Suppose that the random variables Xl,...,ln

have a joint density f +that is Schur-concave. If A C RU
is a Lebesgne-measurable set which satisfies

y=EA eand x<y == x=A
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then

f{x) dx = P{X = A 4+ 8} is a Schur-concave
AYo : :
function of 6.

Qutline of the Proof :

It is required to show that if 8 < % then

N

f(x) dx 2 | f£(x) dx.
At A¥E

To achieve this we would show that the function f and the
set A do satisfy the conditions of Anderson’s theorem in
some sense.' The result follows immedia@ely.

Proof © We must show that if & <

o+

then I o ax 2 | £ ax.
Aba Ay

The condition that f is Schur-concave implies £ is

rermutation-symmetric or in otherwords the random variables

X,,...,X, are exchangiable ” (1)
It is given that if y = A
and X<y == x=A (2)

Hence we claim that A is permutation symmetric convex set.
If not let x = A, T(x) % A.
But  I(x) < x.

Hence by (2) m(x) = A.

Hence & contradiction. Hence A is permutation syumetric.
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Also l £(x) dx = F(x+8) dx
A+S A"

(This could be obtained by makindg & transformation as

was explained in the proof of Anderson’s theorem).

f £(M x + W 8) dx
A

(Because f and A are permutation symmetric).

-

(T x) dx
A3TIO

"

l' £(x) dx.
AYTIO
Hence ‘ f(x) dx = l f(x) dx.
A9 AsTIO
Thus the result would be true for any permutation of 98,

Hence we assume

and

According to Hardy, Littlewood and Polya [8] € can be
derived from % by a finite number of pairwise averagdes of
components.

Thus between 9 and £ we would find a finité number

of vectors each differs from the preceeding one only by two

components,
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Thus if we can establish the result for any adjecent
pairg, the same argument can be aprlied to successive pairs
and the result can pe arrived at.

Hence for all practical purpose it is logical to assune

that & and 4 differs only in two components. Call them

and k.
As g < 7

l——.v.__J

. B Y‘ x

w
Fig. 1

if %a = & 4+ x and Gj = & + &
then %k = § - « and Gk = & - &
with « >® >0 )
Let U = Xy ot Xp VoI Xy - Xy

To obtain the result integrate first on v conditionally with
other variables held fixed.

Define the set

« - fo . . ' : ‘
3«‘1”" {Xx>"")‘j—l’ 5 ;X?+,,..-,Xk—x:

u - v — -
2 )Xk+x,...,xn)’3ﬁ+$}

B, is the set of wv-values corresponding to points in A + &,




A typical example of the set A which is centered at the

origin,.
fig.?2
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Now %j is at a distance « from the point =+ on

X3 axis. For different values of «~ we det different B e

o

When « = 0, A+ 2 would locate itself on u-axis. And the
corresponding 8, would be dencted as 8, (This is shown 1in
fig.2).

We claim that the set %, 1is symmetric (1)
Let V' = 8,

Then

T T T T i VL P NY T Y

<

(u-28) - v’

5 y Xk~ Skt Xy T ) A
As A 1is permutation symmetric
(Ry=%4s 00X joy — %j—z’(u_zaé - v, Xjee~ Fieer 0 XgooT Bk
(=28 2 V0 Xpeai Sk or o Xy T ) T A
===} - v = R,
Hence ¥, is symmetric.
The set €, is convex : (2)
Let V7 and V" = 8,
Let x’= (x,- 4%,,. ) (“”28% L2 AN (U“ZE% - V’,...xn— i)
X'z (%= £y, us2El e AN lamBel v 5

be two points from A corresponding to VYV’ and V" such
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that x’ < x" or x" < ¥’ such a pair should always exist

as per the definition of %,. Without loss of generality we
assume that x’ < x".
To prove the convexity of 8, we have to show that

(2 V2 4+ (1 - 2y V") = &

i.e., to show that there exists at least one x call it x"°

such theat

o - » ) - vy
X," = {X - :g 3 v 4 0 a3 (U"zc) + (.,‘ V ks (1—)\)‘; 2 2 L
Lt t 2
(u-28} - (0 V' » (1-2)¥") | =
2 ]
It is easy to varify that X' oCx"
Hence by the property of A
X" = A,
Hence %, 1is convex.
As a function of v .
— u + v
f(x) = f(X‘,...,Xj_,, 5 s Xj+,‘,...,xk__’,
L 5 Y, Xpggre. o Xy)  is symmetric (3)
- u+v -
f(v) = f(x‘,...,xj-,, e Kij4es 01 Xg_ys EEX, X oo+ Xp)
= . u-v . ’; +
el f(xi;.-',x‘)_&, "'_2'—-) XJ,‘,‘,...,XR;"' ’g—z'_'v‘" Xk+£',.-.,xn)

{because f 1is permutation invariant)

H

f(- v}

Hence f(x) 1is symmetric as a function of wv.
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11+ . )
f(x) :f(}{l,...,Xj_x, “é"élr; Xj_’,&;---x}tk-ix . | Xk+"""’xf1)

is unimodel , (43}

Because f(x) 1is Schur-concave as we move on Vv = X4

AR

axis away from wu = X3

- X} the value oé the function
decreaaés. Hence as a function of v, f is unimodel.
(1), (2), (3} and (4) satisfies the conditions of

Anderson’s theorem.

Thus we can write

£(x) dv 2 { £(x) dv.

w, 8

This inequality would be preserved while intedrating out the
remaining variables to yield.
£(x) dx 2 J £(x) dx.
Ate A+d

4.B.2 Remark : Even though the theorem assumes the function

to be a density function, the proof does not make use of it.
Thus the result would be true for any function which
satisfies the other conditions of the theorem.

4.B.3 Example

et %(a)

t

i: (&i)”jz which is & Schur-concave function.
i=1

Let A

4

fta,, a,) : 0 ¢a, %2 0¢a, ¢2}

b4

observe that ¢ 1is defined only on the first quadrint.
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Also the conditions of the theorem are satisfied on A.
- ~ - |2
et o= (3. +-=1[4
Obviously g < %

A, A+ 9 and A+ 2 are shown in fig.3.

‘f'
A+e
k3
2 4
1]
Lt =+ 3 4 5 & 2 8 +
v . 5
ut
Y ) '.5 5\‘; ‘e ’
¥{a) da = l' ! (at/® + a}/®) da, da,
A+8 ¥ 3
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Hence | #(a) da > #(a) da.
A+8 A+4
Corollary : If f, eand f, are non-nedative integrable

Schur-concave functions defined on RP then their convelution

£(a) = | £,(x) £,(8 - x) dx

o

Rn
is Schur-concave.

Proof

Since £, is Schur-concave

£.(x) = f,(~ x) is Schur-concave.
Hence by Marshall and Olkin’s theorem

[ -0 ax = [ 1500 £.08 - %) ax

A+8 Rﬁ :
is a Schur-concave function of 8. f, could be approximated
by an increasing sequence of simple functions ¥y = £ ey Ia;,

where the sets Al satisfy the conditions of Marshall and

Olkin’s theorem and then use Lebesque’'s monotone convergence

theoren.

4.B.5 Remark : The above corollary shows that the class of

all non-negative integrable Schur-concave functions on RD

is closed under convolutions.

“
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4.B.6 Corollary : If.exchangable random variables X,,...,X,

have a joint density which is Schur-concave and if %9 1is
also permutation-symmetric non—-negative and Schur-cencave then

Ee(X - @) and P{ ®(X -8) 2 c |

are Schur-—concave functions of 6,

Proof :
Define A = {z : %(z) § e}
As ¥ 1is OSchur-concave - % is Schur-convex.
i.e., X <y implies (x) & ¥y}
If v OE A then P(y) § ¢
i.e., ¥x) fc

Hence X = A,
This implies the set A satisfies the condition of Marshall
and Olkin theoremn.

Let f(x) be the joint density of X,,...X%,. Thus by

<

the theorem

Iof0x) ax = P{(K,, ... X)) = A+ 9}
A8
= pi{x -6 ElA}
= P{~ #(X - ) £ o} (by'definition of &)
= P{W(X - 9) 2 k} is chur-concave.
Hence | : P{@(X - 9) 2 o} is Schur-concave.
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This implies
P{#(X - 8) 2 o} § P{®(X - %) 2 c}.
for all C; whenever 9 > 3
This implies Eq(X - 8) § Eg(X - %)
Hence Eg(X - 8) 1is Bchur-concave.

4.C APPLICATIONS

4.C.1 : Let X,,....,¥, be n standard normal random

variables.

Consider the problem of locating the n-dimensionsal
square A = {x Dodxgt f a} of fixed size with optimal
probability content.

It is easy to varify that T xi is a Schur-convex

function.
Hence - E x! 1is a Schur-concave function.
- +/z £ x¥ | _
i.e., 1 ) 1 is a Schur-concave function.
(2mn

Alsc the set A satisfies the condition of Marshall and
Olkin theorem as it is permutation symmetric.

‘Hence by the theorem

{ - . . . -
PiX = A+ H} is a Schur-concave function of &,

f

Let

Hence -1 (b,...,b) < (&,,...,8



Thus the region of optimal probability content could be

located at 1 {b,...,b)y for any choice of v such that
n
4.C.2 Remark : One main difficulty in applying the theorem

is varification of the Schur-concavity o; the function under
consideration. Under such circumstances one can use the
result due to Schur and Ostrowski, which states that a
necessary and sufficient oondition‘that a permutation -

symmetric differentiable function be Schur-concave is that

{ FHx) 8 Hx)

dxi U'Xj B

for all i # 3.



