
CHAPTER- IV

RESULTS IN MULTIVARIATE DISTRIBUTIONS THROUGH MAJORIZATION

This chapter is based on a paper published by A. W. Marshall, 

and Ingram Olkin [12]. The concepts could be viewed as an 

advancement on Anderson's theorem. It is shown that if the 

joint density f of X = (X1,...,Xn) is Schur-concave, then

P(X s A + €*) is a Schur-concave function of 9, whenever the 

indicator function of A is Schur-concave.

4.A CONCEPTUAL BACKGROUND

Consider the joint distribution f of a set of random 

variables. Consider a set A. If one is interested to find 

conditions on f and A such that

<ne> = f f(x> dx = P{X « A + o\
A+e

is Schur-concave function of 0; Marshall and Olkins theorem 

provides an answer to this problem. It is shown that to 

yield the aspaired result f should be Schur-concave and if 

y s A with x < y *=*■ x s A.

4J1 MARSHALL AND OLKIN'S THEOREM AND RELATED RESULTS 

-4.B.1 Theorem : Suppose that the random variables X^, . . . ,

have a joint density f that is Schur-concave. If A C Rn 
is a Lebesgne-measurable set which satisfies 

y s a and x < y =*4 x c A
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then

f{x> dx = P{X s A + is a Schur-concave
A+0

function of 9.

Outline of the Proof :

It is required to show that if 9 < i then

f(x> dx > f{x) dx.
A+e a+>:

To achieve this we would show that the function 
set A do satisfy the conditions of Anderson’s 
some sense. The result follows immediately. 
Proof : We' must show that if 9 < t

f and the 
theorem in

then f< x) dx l f{x) dx.
A+<9 A+?

The condition that f is Schur-concave implies f is 
permutation-symmetric or in otherwords the random variables 
X4, . . . , Xjj are exchangiable ’ {1)

It is given that if y « A
and x < y =*=x^ x ® A (2)
Hence we claim that A is permutation symmetric convex set 
If not let x « A, TT{x) * A.
But H{x) < x.
Hence by (2) TT{x) « A.
Hence a contradiction. Hence A is permutation symmetric.
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Also [ f(x) dx = 
A+3 A-

f(x+9) dx

(This could be obtained by making a transformation as 

was explained in the proof of Anderson's theorem).

f(TT x + n 6) dx

(Because f and A are permutation symmetric).

= | f(TT x) dx

A+ne
f(x) dx.

A+TO

Hence J f(x) dx 

A+9
f(x) dx.

A+ne
Thus the result would be true for any permutation of e. 

Hence we assume

e > en

and
■i > t > > >
!i “ -t" " ’n-

According to Hardy, Littlewood and Polya [8] 3 can be

derived from i by a finite number of pairwise averages of 

components.

Thus between e and i we would find a finite number 

of vectors each differs from the preceeding one only by two

components.
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Thus if we can establish the result for any adjecent 

pairs, the same argument can be applied to successive pairs 

and the result can be arrived at.

Hence for all practical purpose it is logical to assume 

that and i differs only in two components. Call them j

and k.

As © < :?

+ ek = + ^k = 2

If

then

with

Let

V-- g--__________JU

Fig. 1.

%5

:?k

£ 4 oc

£ — oc

and dj =■ S + * 

and ^k = £ - ®

« > « > 0

U = Xj + Xk V = Xj - Xk

To obtain the result integrate first on v conditionally wi;h 

other variables held fixed.

Define the set

= L (x,,...,x U + V M+i xk-

~"2 y ’ xk+i > • • • »2Cn) « A + >;} 

is set of v-values corresponding to points in A + ?.

A
9 fit) 4

vAi



A typical example of the set A which is centered at the 
origin.

fig. 2
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Now :?j is at a distance * from the point * on 

xj- axis. For different values of ^ we get different 

When « = 0, A + % would locate itself on u-axis. And the
corresponding ^ would be denoted as “Bq. (This is shown in

fig.2).
We claim that the set ®0 is symmetric

Let V-’ s *0

Then
<u-2.S) 4 v'

(1)

(xA- Xj_i - % j-t , a ” ^—1——. Xj + i ■'j + i > • > xk-i 'k-i

(u-2S) - v* _ e. -v - >* \ s a---- 2-----’ xk+i ’k+i’--')Xn n; n
As A is permutation symmetric

(u-2.vl> x(xt ...... Xj_A * j-i > 2

(u-2S) 4 v'

:j + i j + i ’ 1 ■ ' ’ xk-i "’k-i

xk+i "'k+i 1 • 1 ’ xn ’n ) « A

- v' e «,

Hence ‘B0 is symmetric.

The set B0 is convex (2)

Let V' and V” * *c

Let x’= <Xj- '■i > • • (u-2£> + v*
2

(u-2£) - v*
2 • •xn“ V

x“= {x1- (u-2S) + v"’ ’ ’ 2 » • > • > <u-2£> - v"
2 • • xn"

be two points from A corresponding to V' and V" such
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that x’ < x" or x" < x' such a pair should always exist 
as per the definition of ®c. Without loss of generality we

assume- that x’ < x".
To prove the convexity of ®0 we have to show that 

<* V’ + {1 - a) V") s e0

i.e., to show that there exists at least one x call it x" ‘ 
such that

x'" = Xl- (u-2g) + (>- + (!->') V") >2
<u-2S) - {a V> 4 (l-i)V") ‘ e A 

2

It is easy to verify that x' " < x"
Hence by the property of A 

x'M « A.
Hence ‘Bc, is convex.

As a function of v

f{x> = f(Xj,...,Xj_j, ^ 4.y
J 2 Xj+1 , . . . , Xj^_j ,

u - V
2 xk+1 ,...,xn) is symmetric (3)

f<v) f{xt , . Y . u+v „■•-Xj,!, 2 , XJ+1,. X ** 1 u-v
2 , Xk+1,. • • .x^

f<xA, . Y . U-V Y •.•.Xj.i, 2 * xj+i,• • 'Xk . u+v
2 ’ xk+i>•• .,xn)

{because f is permutation invariant) 
= f(- v)

Hence f<x) is symmetric as a function of v.
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u+vf <x) — f(Xi,...,Xj_1, 2

is unimodel

x j + i» • ■ • » xk-i» ^9^’ xk+'-’ ■ ' ' ’ xn^

(4)
Because f{x) is Schur-concave as we move on v = Xj + 

axis away from u = x^ - xk the value o£ the function

decreases. Hence as a function of v, f is unimodel.
(1), (2), (3) and (4) satisfies the conditions of

Anderson's theorem. 
Thus we can write

f(x) dv l f<x) dv.

This inequality would be preserved while integrating out the 
remaining variables to yield.

f {x) dx l f{x) dx.
A+8 A+=?

4.B.2 Remark : Even though the theorem assumes the function

to be a density function, the proof does not make use of it. 
Thus the result would be true for any function which 
satisfies the other conditions of the theorem.
4.B.3 Example :

Let '^.{a) = {a^)1/2, which is a Schur-concave function.
i=l

Let A = {{a,, a*) : 0 < at i 2, 0 < a* < 2}

observe that T is defined only on the first quadrint.
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Also the conditions of the theorem are satisfied on A

Let .«-[!]• « = HI
Obviously 0 < €
A, A + 0 and A + i are shown in fig. 3.

A+<9

-.5 i5<f<a> da = I’ | (a^'* + .a*/4) da, da£
3- 3'j

= 15.96
,-,6 A

'f(a) da
A+-; 4'- 2'-

(a,/4 + a^/4) dat da,.

- 15.7
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Hence 'f(a) da > 'f<a) da.
A+t* A+=?

Corollary : If ft and ft are non-negative integrable 

Schur-concave functions defined on Rn then their convelution

f<a) = I fj<x) fz(& - x) dx 
R"

is Schur-concave.

Proof :

Since fz is Schur-concave 

f£(x) s f {- x) is Schur-concave.

Hence by Marshall and Olkin’s theorem

J fz{~ x) dx 
A+9

IA(x) ft(« 
R«

x) dx

is a Schur—concave function of 9. ft could be approximated

by an increasing sequence of simple functions = E 1^,

where the sets Ai satisfy the conditions of Marshall and 

Olkin's theorem and then use Lebesque's monotone convergence 

theorem.

4.B.5 Remark : The above corollary shows that the class of

all non-negative integrable Schur-concave functions on Rn 

is closed under convolutions.
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4.B.6 Corollary : If-exchangable random variables Xj, , . . . , Xw„

have a joint density which is Schur-concave and if t is 

also permutation-symmetric non-negative and Schur-concave then

E<f(X - 9) and P-( 'f<X - e> * c }

are Schur-concave functions of 9.

Proof :

Define A = {z : t(z) i e}

As t is Schur-concave _ <p is Schur-convex

i. e. , X < y implies t(x) * t(y)

If y s A then 'f(y) 4 c

Hence X 6 A.

i. e. , 'f(x) i c

This implies the set A satisfies the condition of Marshall 

and Olkin theorem.

Let f(x) be the joint density of X.....V Thus by
C

the theorem

| f(x> dx = P{(X4, . . . ,Xh) * A + 9} 
h+9

- p{x - e « a}

= p{- t(X - 9) i cj- (by definition of A)

= P{'f(X - 9) l kj- is Schur-concave.

P{'f(X - 0) i c|- is Schur-concave.Hence
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This implies
p{<f(X - 0) 4 c} i p{'f<X - <) l c}.

for all C; whenever 0 > ?
This implies E<f(X - t») i E<f(X - <)

Hence E<f(X -9) is Schur-concave.

4. C APPLICATIONS :

4. C. 1 : Let Xt X^^ be n standard normal random

variables.
Consider the problem o,f locating the n-dimensional 

square A = {x : 1x^1 i a[ of fixed size with optimal

probability content.

It is easy to varify that E x| is a Schur-convex 

function.

Hence - E x| is a Schur-concave function.

<2H)n
Also the set A 

Olkin theorem as it i 
Hence by the theorem

P{X s A + e} is

1 is a Schur-concave function.

satisfies the condition of Marshall and 
s permutation symmetric.

a Schur-concave*function of 9.

Let E Bi = b

Hence -A~ <b,...,b) <n 4 u
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Thus the region of optimal probability content could be 

located at —<b,...,b) for any choice of 9 such thatn
E 0i = b.

4. C, 2 Remark : One main difficulty in applying the theorem

is verification of the Schur-eoncavity of the function under 
consideration. Under such circumstances one can use the 
result due to Schur and Ostrovski, which states that a 
necessary and sufficient condition that a permutation - 
symmetric differentiable function be Schur-concave is that

5 V(x)
- &Ci

3 <P(X) (Xi *j> I 0.

for all i 5* j.


