CHAPTER - IV

RESULTS AND DISCUSSION:
VANADIUM (V) OXIDATION OF HYDRAZINE

The stoichlometry of vanadium (V) oxidation of hydrazine was reported to be between 3.4 to 4.0118 This uncertainity about the stoichiometry makes the prediction of mechanism difficult. It has been also found that sulphate ion accelerates oxidations by vanadium (V),119 which may be due to the different sulphate complexes of vanadium (V) - forming in solution. Therefore, we investigated only the effect of sulphate ion on vanadium (V) oxidation of hydrazine instead of studying the detailed mechanism. The results and their prediction is given bellow.

The effect of reactants were studied by keeping the sulphuric acid constant at $2.0 \times 10^{-3} \mathrm{M}$ and at an ionic strength of 0.01 M at $25^{\circ} \mathrm{C}$. The order in vanadium (V) was found to be 0.6 (Figure 4.1) between 3.0×10^{-3} to 5.0 X $10^{-3} \mathrm{M}$ at a constant hydrazine concentration of 4.0×10^{-3} M. The data giving change in the absorbance as a function of time is shown in Table 4.1 and the initial rates are given in Table 4.2. The effect of hydrazine between 2.0×10^{-3} to $6.0 \times 10^{-3} \mathrm{M}$ at constant vanadium (V) concentration of 4.0 X $10^{-3} \mathrm{M}$ was studied to determine the order in hydrazine. The data of kinetic runs and values of initial rates are given in Table 4.3 and 4.4 respectively. The order in hydrazine' was found to be 0.7 (Figure 4.2).

Table 4.1 Data showing absorbance at 430 nm as a function of time : Effect of vanadium (V)

$$
\begin{aligned}
& \text { [Hydrazine] }=4.0 \times 10^{-3} \mathrm{M}, \quad\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=2.0 \times 10^{-3} \mathrm{M} \text {, } \\
& I=0.01 \mathrm{M} \text {, } \\
& \text { Temp. }=25^{\circ} \mathrm{C}
\end{aligned}
$$

Time in Min.	V(V) $\times 10^{-3}$						3.0	3.6	4.0	4.4	5.0
0	0.750	0.850	0.900	0.950	1.050						
1	0.622	0.740	0.807	0.875	0.952						
2	0.570	0.685	0.755	0.825	0.918						
3	0.518	0.635	0.708	0.780	0.885						
4	0.470	0.590	0.667	0.747	0.853						
5	0.430	0.550	0.625	0.710	0.825						
6	0.390	0.513	0.592	0.680	0.797						
7	0.352	0.478	0.555	0.650	0.775						
8	0.322	0.447	0.525	0.620	0.748						
9	0.292	0.430	0.498	0.598	0.725						
10	0.265	0.388	0.470	0.575	0.708						
15	0.165	0.283	0.365	0.495	0.615						

Table 4.2 Order in vanadium (V)

$$
\begin{aligned}
& {[\text { Hydrazine }]=4.0 \times 10^{-3} \mathrm{M}} \\
& \mathrm{I}=0.01 \mathrm{M}
\end{aligned}
$$

$$
\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=2.0 \times 10^{-3} \mathrm{M}
$$

$$
\operatorname{Temp}=25^{\circ} \mathrm{C}
$$

$[\mathrm{V}(\mathrm{V})] \times 10^{-3}$	Inl.Rate M	$-\log [\mathrm{V}(\mathrm{V})]$	$-\log$ (InI. Rate)
3.0	9.08	2.52	3.04
3.6	9.53	2.44	3.02
4.0	10.20	2.39	2.99
4.4	10.62	2.35	2.97
5.0	11.22	2.30	2.95

Figure 4.1. Order in vanadium (V) (conditions as in
Table 4.2).

Table 4.3 Data showing absorbance at 430 nm as a function of time : Effect of hydrazine.
$[V(V)]=4.0 \times 10^{-3} \mathrm{M}$,
$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=2.0 \times 10^{-3} \mathrm{M}$, $I=0.01 \mathrm{M}$,
Temp. $=25^{\circ} \mathrm{C}$

Time in Min.	[Hydrazine] X 10^{-3}				
	2.0	3.0	4.0	5.0	6.0
0	0.910	0.900	0.890	0.895	0.890
1	0.865	0.848	0.820	0.815	0.755
2	0.835	0.795	0.765	0.750	0.690
3	0.800	0.752	0.720	0.700	0.630
4	0.778	0.725	0.680	0.650	0.570
5	0.750	0.695	0.640	0.600	0.520
6	0.735	0.652	0.600	0.555	0.470
7	0.722	0.637	0.570	0.518	0.428
8	0.708	0.610	0.540	0.475	0.385
9	0.700	0.592	0.510	0.445	0.345
10	0.682	0.570	0.485	0.415	0.312
15	0.630	0.490	0.370	0.290	0.185

- Table 4.4 Order in Hydrazine

$$
\begin{array}{ll}
{[\mathrm{V}(\mathrm{~V})]=4.0 \times 10^{-3} \mathrm{M}} & {\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=2.0 \times 10^{-3} \mathrm{M},} \\
\mathrm{I}=0.01 \mathrm{M}, & \mathrm{Temp} .=25^{\circ} \mathrm{C}
\end{array}
$$

$\begin{aligned} & \text { [Hydrazine] } \\ & \times 10^{-3} \end{aligned}$	$\begin{aligned} & \text { InI.Rate } \\ & \times \quad 10^{-4} \mathrm{~S}^{-1} \end{aligned}$	- log [Hydrazine]	$-\log$ (Inl. Rate)
2.0	7.98	2.69	3.09
3.0	9.25	2.52	3.03
4.0	10.20	2.39	2.99
5.0	13.80	2.30	2.86
6.0	15.80	2.22	2.80

Figure 4.2. Order in Hydrazine lconditions as in Table 4.4).

concentration range of 2.0×10^{-4} to $2.2 \times 10^{-3} \mathrm{M}$ at constant vanadium (V) and hydrazine concentration of 4.0×10^{-3} M each (Table 4.5). The rate increases with increase in sulphuric acid concentration.

The fractional order in vanadium (V) indicate its involvement of a prior equilibria with sulphate ion ${ }^{120}$ The vanadium (V) forms two sulphate complexes as given in the equilibria (1) and (2) :

$$
\begin{array}{llll}
\mathrm{VO}_{2}^{+}+\mathrm{SO}_{4}^{2-} & \mathrm{VO}_{2} \mathrm{SO}_{4}^{-} & \ldots .(1) \\
\mathrm{KO}_{2} \mathrm{SO}_{4}^{-}+\mathrm{SO}_{4}^{2-} & \longmapsto \mathrm{VO}_{2}\left(\mathrm{SO}_{4}\right)_{2}^{3-} & \mathrm{K}_{2} & \ldots
\end{array}
$$

The rate law for the reaction can be given as,

$$
\begin{equation*}
\text { rate }=k[V(V)] \text { [Hydrazine }] \tag{3}
\end{equation*}
$$

but in acidic medium vanadium (V) exists as VO_{2}^{+}ion therefore we have,

$$
\begin{equation*}
\text { rate }=k\left[\mathrm{VO}_{2}^{+}\right] \text {[Hydrazine] } \tag{4}
\end{equation*}
$$

Since VO_{2}^{+}ion is involved in the equilibria 1 and 2 its concentration can be calculated as follows :
$\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{T}}=\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{f}}+\left[\mathrm{VO}_{2} \mathrm{SO}_{4}^{-}\right]+\left[\mathrm{VO}_{2}\left(\mathrm{SO}_{4}\right)_{2}^{3-}\right]$
Where $\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{T}}$ and $\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{f}}$ are total and free VO_{2}^{+}ion concentration. Substituting for the concentration of $\mathrm{VO}_{2} \mathrm{SO}_{4}^{-}$ and $\mathrm{VO}_{2}\left(\mathrm{SO}_{4}\right)_{2}^{3-}$ interm of VO_{2}^{+}ion we get,
Table 4.5. Data showing absorbance at 430 nm as a function of time : Effect of sulphuric acid

Time	$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right] \times 10^{-4} \mathrm{M}$										
Min.	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0
0	0.820	0.850	0.840	0.840	0.850	0.850	0.890	0.880	0.900	0.900	0.880
1	0.780	0.820	0.785	0.775	0.800	0.810	0.820	0.830	0.845	0.840	0.835
2	0.755	0.790	0.750	0.740	0.765	0.775	0.780	0.780	0.790	0.785	0.775
3	0.730	0.752	0.720	0.712	0.725	0.730	0.740	0.735	0.740	0.735	0.720
4	0.705	0.725	0.690	0.682	0.695	0.695	0.710	0.695	0.700	0.695	0.673
\bigcirc	0.685	0.700	0.665	0.667	0.665	0.660	0.680	0.660	0.662	0.658	0.630
6	0.665	0.678	0.638	0.630	0.635	0.630	0.650	0.625	0.625	0.623	0.590
7	0.655	0.655	0.610	0.600	0.602	0.600	0.620	0.595	0.595	0.590	0.550
8	0.635	0.622	0.585	0.578	0.580	0.570	0.595	0.560	0.560	0.558	0.522
9	0.615	0.600	0.560	0.555	0.550	0.540	0.570	0.537	0.535	0.530	0.492
10	0.595	0.580	0.540	0.532	0.525	0.520	0.545	0.512	0.508	0.505	0.462
15	0.510	0.485	0.440	0.435	0.425	0.420	0.450	0.408	0.392	0.397	0.350

$$
\begin{align*}
{\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{T}}=} & {\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{f}}+\mathrm{K}_{1}\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{f}}\left[\mathrm{SO}_{4}^{2-}\right] } \\
& +\mathrm{K}_{1} \mathrm{~K}_{2}\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{f}}\left[\mathrm{SO}_{4}^{2-}\right]^{2} \tag{6}\\
{\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{T}}=} & {\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{f}}\left(1+\mathrm{K}_{1}\left[\mathrm{SO}_{4}^{2-}\right]\right.} \\
& \left.+\mathrm{K}_{1} \mathrm{~K}_{2}\left[\mathrm{SO}_{4}^{2-}\right]^{2}\right) \tag{7}
\end{align*}
$$

The increase in rate is linear with increasing concentration of sulphuric acid (Table 4.6). Therefore probably monosulphate complex is the reactive one. The rate law interms of monosulphate complex will be,

$$
\begin{equation*}
\text { Rate }=k\left[\mathrm{VO}_{2} \mathrm{SO}_{4}^{-}\right][\text {Hydrazine }] \tag{8}
\end{equation*}
$$

The concentration of $\mathrm{VO}_{2} \mathrm{SO}_{4}{ }^{-}$is given by,

$$
\begin{equation*}
\left[\mathrm{VO}_{2} \mathrm{SO}_{4}^{-}\right]=\mathrm{K}_{1}\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{E}}\left[\mathrm{SO}_{4}{ }^{2-}\right] \tag{9}
\end{equation*}
$$

Therefore from (9) and (7) we get,

$$
\begin{align*}
& {\left[\mathrm{VO}_{2} \mathrm{SO}_{4}^{-}\right]=\frac{\mathrm{K}_{1}\left[\mathrm{VO}_{2}^{+}\right]_{\mathrm{T}}\left[\mathrm{SO}_{4}^{2-}\right][\text { Hydrazine }]}{\left(1+\mathrm{K}_{1}\left[\mathrm{SO}_{4}^{2-}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}\left[\mathrm{SO}_{4}^{2-}\right]^{2}\right)} \cdots(10)} \\
& \text { Rate } \tag{11}
\end{align*} \quad=\frac{\mathrm{kK}_{1}\left[\mathrm{VO}_{2}^{+}\right] \mathrm{T}^{\left[\mathrm{SO}_{4}^{2-}\right][\text { Hydrazine }]}}{\left(1+\mathrm{K}_{1}\left[\mathrm{SO}_{4}^{2-}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}\left[\mathrm{SO}_{4}^{2-}\right]^{2}\right)} \cdots(11) .
$$

The catalysis of the reaction between vanadium (V)
and hydrazine is therefore due to the sulphate complexes of vanadium (V) which are more active than VO_{2}^{+}ion in acidic medium.

Table 4.6. Effect of sulphuric acid on the reaction

$$
\begin{aligned}
& {[V(V)]=[\text { Hydrazine }]=4.0 \times 10^{-3} \mathrm{M}} \\
& I=0.01 \mathrm{M}, \quad \text { Temp. }=25^{\circ} \mathrm{C}
\end{aligned}
$$

$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$	
$\mathrm{X} 10^{-4}$	In $1 . \mathrm{Rate}$
$\mathrm{X} 10^{-4} \mathrm{~S}^{-1}$	
2.0	5.96
4.0	6.44
6.0	7.58
8.0	7.70
10.0	7.91
12.0	8.58
14.0	8.90
16.0	9.53
18.0	10.40
20.0	10.71
22.0	10.90

