<u>CHAPTER - V</u>

Let \mathcal{C} denote the category of all R-complexes and \mathcal{G} denote the category of all anticommutative graded algebras. Consider the forgetful functor

Ģ

$$v': \mathcal{E} \longrightarrow \mathcal{G}$$

defined by U(X,d) = X for all $(X,d) \in \mathscr{C}$ We claim :

<u>Theorem (5,1)</u>: The functor $U : \mathcal{C} \to \mathcal{C}$ is cleavage preserving.

Proof : Consider a commutative diagram of functors

Where the functors P and \widetilde{P} have cleavages { f^* , Θ_f , d_{fg} } and { \widetilde{f}^* , $\widetilde{\Theta}_f$, \widetilde{d}_{fg} } respectively. Let U | $\mathcal{C}(A) = U_A$ for all $A \in \mathcal{A}$. Let $(X,d) \in \mathcal{C}(B)$ be any object. Then $U_A f^*(X,d) = U_A(\overline{X},\overline{d}) =$ $\overline{X} = A \bigoplus_{\substack{i \in X \\ n \neq i}} X_n$ by Prop (3.5). $\widetilde{f}^* U_B(X,d) = \widetilde{f}^* X = \overline{X} = A \bigoplus_{\substack{i \in X \\ n \neq i}} X_n$ by Prop (4.5). Hence the following diagram commutes. $\mathcal{C}(3) \xrightarrow{\qquad U_B} \mathcal{C}(B)$ $f^* = \mathcal{C}(A) \xrightarrow{\qquad U_A} \mathcal{C}(A)$

62

It follows obviously that $U_A f^* = f^* U_{B^*}$.

For every $(X;d) \in \mathcal{C}(B)$, $f:A \longrightarrow B$ induces

$$U((\Theta_f)_X) : U_A f^*(X,d) \longrightarrow U_B(X,d)$$
 in ξ

By Axiem (1) of cleagave, there exists a unique morphism

$$(\eta_f)_X : U_A f^*(X,d) \longrightarrow f^* U_B(X,d)$$

making the following diagram commutative :

It is obvious that $(\eta_f)_X$ is the identity on $U_A f^*(X,d) = \tilde{f}^* U_B (X d)$.

Therefore, we have $U(\Theta_f) = \widetilde{\Theta}_{f}$.

It also follows obviously that $U(d_{fg}) = d_{fg}$. Hence the functor U is cleavage - preserving.

<u>Theorem (5.2)</u> : The functor $U : \mathcal{C} \rightarrow \mathcal{C}$ is opcleavage-preserving. <u>Proof</u> : Consider a commutative diagram of functors -

Where the functors P'and P have opcleavages $\{f_{\star}, \psi_{f}, c_{fg}\}$ and $\{\tilde{f}_{\star}, \tilde{\psi}_{f}, \tilde{c}_{fg}\}$ respectively. Let $U \mid \mathcal{C}(A) = U_{A}$ for all $A \in \mathcal{A}$. Let $(X, d)' \in \mathcal{C}(A)$ be any object. Then \mathcal{C}_{\star} $\tilde{f}_{\star} U_{A}(X, d) = \tilde{f}_{\star} X = X'$ by Prop (4.2). $U_{B} f_{\star} (X, d) = U_{B} \mid (X', d') = X'$ by Prop (3.2). Hence, we have the following diagram commutative $\mathcal{C}(A) \xrightarrow{U_{A}} \mathcal{C}(A)$ $f_{\star} \downarrow$ $\mathcal{C}(B) \xrightarrow{U_{B}} \mathcal{C}(B)$ It follows obviously that $\tilde{f}_{\star} U_{A} = U_{B} f_{\star}$. For every $(X, d) \in \mathcal{C}(A), f : A \longrightarrow B$ induces

$$U((\Psi_{f})_{X}) \stackrel{!}{:} U_{A}(X,d) \longrightarrow U_{B} f_{*}(X,d) \text{ in } \mathcal{G}.$$
 By

Axiom (1) of op'cleavage, there exists a unique morphism

$$(\eta_f)_X \models \widetilde{f}_* \cup_A (X,d) \longrightarrow \cup_B f_* (X,d)$$

making the following diagram commutative

$$\begin{array}{c} U_{A}(X,d) \xrightarrow{f} (\Psi_{f})_{UX} \longrightarrow \widehat{f}_{*} & U_{A}(X,d) \\ & & & \\$$

It is obvious that $(\eta_f)_X$ is the identity on

$$\hat{f}_{*}^{I} U_{A}^{I} (X,d) = U_{B}f_{*}^{I} (X,d).$$

Therefore, we have $U(\psi_f) = \widetilde{\psi}_f$. It also follows obviously that $U(C_{fg}) = \widetilde{C}_{fg}$. Hence, the functor U is opcleavage-preserving.

Let **A** denote the category of all R-derivation modules. Consider the projection functor

defined by T (X,d) = (X_0, X_1, d_0) for all (X,d) $\in \mathcal{C}$ We claim :

 $T: \mathcal{G} \xrightarrow{} \mathcal{D}'$

<u>Theorem (5.3)</u> : The functor T : $\mathcal{C} \rightarrow \mathcal{D}$ is cleavage-preserving.

<u>Proof</u>: Consider a commutative diagram of functors

Where the functors P and P have cleavages $\{f^*, \Theta_f, d_{fg}\}$ and $\{\tilde{f}^*, \tilde{\Theta}_f, \tilde{d}_{fg}\}$ respectively. Let $T \mid f(A) = T_A$ for all $A \notin \mathcal{A}$ Let $(X,d) \notin f(B)$ be any object. Then $T_A f^*(X,d) = T_A(\overline{X},\overline{d}) = (\overline{X}_0, \overline{X}_1, \overline{d}_0) = (A, \overline{X}, \overline{d}_0)$ by Prop (3.5) $\tilde{f}^* T_B(X,d) = \tilde{f}^*(X_0, X_1, d_0) = (A, \overline{X}_1, \overline{d}_0)$ by Prop (2.5). Hence the following diagram commutes.

It follows obviously that $T_A f^* = f^* T_B$. For every (X,d) $\in \mathcal{C}(B)$, f: A $\longrightarrow B$ induces 'T $((\Theta_f)_X) : T_A f^*(X,d) \xrightarrow{} T_B(X,d)$

in $\hat{\sigma}$. By Axiem (1) of cleavage, there exists a unique morphism

$$(\eta_f)_X : T_A f^* (X,d) \longrightarrow f^* T_B (X,d)$$

making the following diagram commutative :

It is obvious that $(\eta_f)_X$ is the identity on $T_A f^*(X,d) = f^* T_B(X,d)$. Therefore, we have $T(\Theta_f) = \Theta_{f^*}$

It also follows obviously that $T(d_{fg}) = d_{fg}$. Thus the functor T is cleavage-preserving.

<u>Theorem (5,4)</u>: The functor $T: \mathcal{C} \rightarrow \mathcal{D}$ is opcleavagepreserving. <u>Proof</u>: Consider a commutative diagram of functors $\mathcal{C} \rightarrow \mathcal{D}$ Where the functors P and P have opcleavages $\{f_{\star}, \Psi_{f}, C_{fg}\}$ and $\{\tilde{f}_{\star}, \tilde{\Psi}_{f}, \tilde{C}_{fg}\}$ respectively. Let $(X,d) \in \mathcal{C}(A)$ be any object. Then $\tilde{f}_{\star} T_{A}(X,d) = \tilde{f}_{\star}(A,X_{1},d_{0}) =$

= (B, Xⁱ₁, dⁱ₀) by Prop (2.2). $T_B f_*(X,d) = T_B(X', d') =$ = (B, Xⁱ₁, dⁱ₀) by Prop (3.2).

Hence, we have the following diagram commutative.

It follows obviously that $f_{\star} T_A = T_B f_{\star}$. For every (X,d) $\in \mathcal{C}(A)$, $f : A \longrightarrow B$ induces

$$T ((\psi_f)_{\mathbf{X}}) : T_{\mathbf{A}}(\mathbf{X}, \mathbf{d}) \longrightarrow T_{\mathbf{B}} f_{\mathbf{*}}(\mathbf{X}, \mathbf{d})$$

in \mathcal{J} . By Axiom (1) of opcleavage, there exists a unique morphism

$$(\eta_f)_X : f_* T_A (X,d) \longrightarrow T_B f_* (X,d)$$

making the following diagram commutative

Where the functors P and \widetilde{P} have cleavages { f^* , Θ_f , d_{fg} } and { \widetilde{f}^* , $\widetilde{\Theta}_f$, \widetilde{d}_{fg} } respectively. Let I $\widetilde{\mathcal{P}}(A) = I_A$ for all $A \in \mathcal{A}$ Let (E, M, d) $\in \widetilde{\mathcal{P}}(B)$ be any object. Then $I_A = f^*(B,M,d) = I_A(A,\overline{M},\overline{d}) = (A, \overline{M}, \overline{d})$ by Prop (2.5) $\widetilde{f}^* = I_B (B, M, d) = \widetilde{f}^* (B, M, d) = (A, \overline{M}, \overline{d})$ by Pro. (315)

Hence the following diagram commutes,

It follows obviously that $I_A f^* = f^* I_B$. For every (B, M, d) $\in \mathcal{D}(B)$, f : A \longrightarrow B induces

$$I((\Theta_f)_M) : I_A f^*(B, M, d) \longrightarrow I_B(B, M, d)$$

in \mathcal{C} . By Axien (1) of cleavage, there exists a unique morphism,

$$(\eta_f)_M : I_A f^* (B,M,d) \longrightarrow f^* I_B (B,M,d)$$

making the following diagram commutative

It is obvious that $(\eta_f)_M$ is the identity on $I_A f^*(B,M,d) = f^* I_B(B, M, d)$.

Therefore, we have I $(\Theta_f) = \Theta_{f^*}$ It also follows obviously that I $(d_{fg}) = \widetilde{d}_{fg^*}$. Thus the functor I is cleavage-preserving.

<u>Theorem (5.6)</u> : The functor I : $\partial \rightarrow G$ is opcleavage-preserving. <u>Proof</u> : Consider a commutative diagram of functors

Where the functors \tilde{P} and \tilde{P} have opcleavages $\{f_{\star}, \psi_{f}, c_{fg}\}$ and $\{\tilde{f}_{\star}, \tilde{\psi}_{f}, c_{fg}\}$ respectively. Let $(A, M, d) \in \hat{\mathcal{O}}(A)$ be any object. Then $\tilde{f}_{\star} = I_{A}(A, M, d) = \tilde{f}_{\star}(A, M, d) = (B, M', d')$ by Prop (3.2) $I_{B} = f_{\star}(A, M, d) = I_{B}(B, M', d') = (B, M', d')$ by Prop (2.2). Hence, we have the following diagram commutative.

It follows obviously that \tilde{f}_{\star} $I_A = I_B f_{\star}$ For every (A, M, d) $\in \mathcal{D}(A)$, f : A \longrightarrow B induces

$$I((\psi_f)_M) : I_A(A,M,d) \longrightarrow I_B f_{\star}(A,M,d)$$

in By Axiom (1) of opcleavage, there exists a unique morphism

$$(\eta_f)_M : \widetilde{f}_* I_A (A, M, d) \longrightarrow I_B f_*(A, M, d)$$

making the following diagram commutative

It is obvious that $(\eta_f)_M$ is the identity on $\widetilde{f_{\star}} I_A (A,M,d) = I_B f_{\star} (A, M, d)$

Therefore, we have $\mathbf{I}(\Psi_{\mathbf{f}}) = \widetilde{\Psi}_{\mathbf{f}}$. It also follows obviously that I $(\mathbf{c}_{\mathbf{fg}}) = \widetilde{\mathbf{c}}_{\mathbf{fg}}$. Thus the functor I is opcleavage-preserving.