CHAPTER-IV

PHOTOMETRIC DETERMINATION OF MANGANESE (II)
WITH 2CHLOROQUINOLINE 3 - CARBALDEHYDE
thiosemicarbazone

INTRODUCTION

Manganese appears to have been used by the ancient Egyptians and Romans for bleaching glass, for their glass of ten contains the equivalent of up to 2 per cent manaanese oxide. J.H. pott (1740) proved that pyrolusite proper does not contain iron, and furnishes a number of salts quite different from those obtained with iron oxides. C.W. Scheele (1774) made an important investigation on manganese, and T. Bergman (1774) suspected that some metal lay concealed in the mineral earth which he reduced with charcoal, so obtaining a metal regulus. A purer sample was isolated by J.F.John in 1807.

The metal Manganese does not occur free in nature. Manganese is largely used in the form of spiegeleisen and ferromanganese, and this is made by reducing a mixture of exides of manganese and iron with carbon in a blast furnace. The pure metal is made by distilling a sample obtained by the aluminothermic or electrolytic methods.

The literature survey since the introduction of organic colourimetric reagents indicates a very striking lack of reports on estimation of Manqanese. It may not be surprising if one states that a realy reliable method using organic complexing agent is yet to be developed. Oxidation of Manganese to Mn (VII) state and subsequent measurement of the charge transfer band at 575 nm is the only available method for the determination of manganese. However, recently some methods are reported to determine manganese in Mn (II) or Mn (III) states, of which 2-Chloroquinoline-3-carbaldehyde Thiosemicarbazone is one suitable photometric reagent for the determination of Manganese in $M n(I I)$ state.

Manganese is essentially used in steel manufacture for deoxidation and the control of sulphur content. Manganese is vital to plant and animal life and is essential for reproduction in animals. Manganese is used in Ferroalloys like Ferromanganese containing 74-82 \%, Spieqeleisen 16 to 20% Silicomanganese $65-70 \%$ and austenitic stainless steels 8 to 10% manganese. Practically all commercial alloys of aluminium and maonesium contain manganese to improve corrosion resistance and mechanical properties. The presence of manganese in
titanium improves the strength and workability of this light metal. An extremely high ability to damp variation is possessed by binary copper manganese alloys. Organic compounds of manganese are used in paints and varnishes as driers to promote the absorption of oxygen which causes paint to set. Manganese sulphate is used alone and admixed with fertilizers to supply trace quantity of manaanese in agriculture.

Morgan and Stuman ${ }^{1}$ have reviewed the spectrophotometric methods for the determination of Manganese in 1965. Some more spectrophotometric methods for manganese have been reported afterwards. Of the reported methods so far, some are summarised here. Due to numerous interferences reagents : benzohydroxamic acid ${ }^{2}$, 2 -theonyltrifluoroacetone ${ }^{3}$, 4-(2-pyridylazo) resorcinol ${ }^{4}$, gluconic acid ${ }^{5}$, thiothenyltri Fluroacetone ${ }^{6}$, cacotheline ${ }^{7}$, and 4-phenyl-3-thiosemicarbazone of biacetylmonoxime ${ }^{8}$ are not selective. Due to less kinetic stability complex formation is slow in case of leucomalachite areen 9, acetaldoxime ${ }^{10}$, tetraphenyl arsonium chloride ${ }^{11}$ and Salicylic acid or acetylsalicylic acid ${ }^{12}$. Due to low thermodynamic stability in case of bismuthate ${ }^{13}$, telluric acid 14, calcichrome ${ }^{15}$, brucine ${ }^{16}$ and cacotheline ${ }^{17}$ complex is formed at elevated temperature.
4.1 . Review of the Methods for the determination of $M n$ (II)

Reagent	$\begin{array}{ll} : & \mathrm{pH} \\ \vdots & \\ \hline \end{array}$		λ max	: Molar extinction coeffi: cient, Sandell sensiti-: : vity, Beer's law.	Interference	:Refe:rence :
1	2	:	3	4 :	5	6
Formaldoxime	-		-	$E=11,200$ Beer's law is obeyed upto 0.1 to $30 \mathrm{\mu g} \mathrm{Mn} / \mathrm{ml}$.	Cu,Ni,Co interfere.	20
Acetaldoxime	-		520	-	Mg interferes but no interference by Cu, $\mathrm{Ni}, \mathrm{Co}, \mathrm{V}$ and Fe.	21
Xylenol orange	$\begin{aligned} & 6.6 \text { to } \\ & 6.8 \end{aligned}$		580	Beer's law is obeyed over the range $3-70$ $\mu \mathrm{g} / 25 \mathrm{ml}$.	-	22
1(-2 pyridylazo)-2- Naphthol	9.2		562	-	Zn, Pb, Co do not cause appreciable error.	23
Calcichrome	8 to 12		$\begin{aligned} & 308 \\ & \text { and } \\ & 525 \end{aligned}$	-	Many metals interfere.	24
$\begin{aligned} & 5-\text { hydroxy-6-(3-\{1- } \\ & \text { methyl-2-piperidyl }\} 2- \\ & \text { pyridylazo) naphthale- } \\ & \text { ne-1-sulphonic acid } \\ & \text { (MAAN-5-1,5). } \end{aligned}$	7 to 10		600	Sandell sensitivity is $0.0016 \mu \mathrm{~g} \mathrm{Cm}^{-2}$. Beer's law is obeyed for 5 to 50 ing .	-	25

1	2	3	4	5	: 6
Salicylaldehyde benzoylhydrazone	-	390-400	$\begin{aligned} & E=15,000 \text { to } 25,000 \\ & \text { Beer's law is obeyed } \\ & \text { for } 0.5 \text { to } 3 \mathrm{ppm} \end{aligned}$	-	33
Xylenol	6.35	580	Beer's law is obeyed over the range $0-0.16$ ppm for complex ($1: 2$) (M:L) and $0.16-0.43 \mathrm{pmm}$ for complex (1:1).	-	34
disodium 1,2-diamino propane tetra-acetate	-	490	Beer's law is obeyed for 7 mg .	-	35
$\begin{aligned} & 4-(2 \text {-pyridylazo) } \\ & \text { resorcinol } \end{aligned}$	10.0	510	$\epsilon=45,000$ Beer's law is obeyed for upto $0.3 \mathrm{ug} \mathrm{mi}^{-1}$ Sandell sensitivity is $0.0012 \mu \mathrm{~g} \mathrm{Cm}^{-2}$	Fe, Cu and V interfere.	36
3,6-bis-(4-carboxy phenylazo) Chromotropic acid.	-	720	$\epsilon=150,000$	Pyridine and Hydrazine interfere.	37
$\begin{aligned} & 4-(2-\text { pyridylazo }) \\ & \text { resorcinol } \end{aligned}$	10.0	500	Beer's law is obeyed for 0.1 to $1.3 \mathrm{mg} \mathrm{ml}^{-1}$	-	38

1	2	3	4	5 :	6
$\begin{aligned} & \text { 1-(2-thiazolyazo)- } \\ & \text { 2-Naphthol } \end{aligned}$	$\begin{aligned} & 9.2 \text { to } \\ & 9.3 \end{aligned}$	565 to 585 nm	$\epsilon=38,000$	Fe, Co, Ni interfere.	39
8-hydroxy-7-phenyl-azoquinoline-5sulphonic acid.	$\begin{aligned} & 6.6 \text { to } \\ & 7.7 \end{aligned}$	430	$\epsilon=16,100$	-	40
$\begin{aligned} & \text { 8-hydroxy-7-(2-thia- } \\ & \text { zolylazo) quinoline } \end{aligned}$	$\begin{aligned} & 5.3 \text { to } \\ & 6.7 \end{aligned}$	510	$\epsilon=39,000$	-	41
$\begin{aligned} & \text { 3,6-bis-(4-carboxy- } \\ & \text { phenylazo) chromotro- } \\ & \text { pic acid } \end{aligned}$	-	720	$\epsilon=170,000$	-	42
Dicyclopentadienyldithienylnibonium (in acetone)	-	546	-	-	43
Binazine (tatrazoline hydrochloride)	10	420	Beer's law is obeyed for 0.2 to $15 \mu \mathrm{~g} \mathrm{ml}^{-1}$	$\mathrm{Cu}(I I), \mathrm{Fe}(I I I), \mathrm{Co}(I I)$ and $\mathrm{Ni}(I I)$ interfere.	44
Periodate	-	525	Beer's law is obeyed for 0.2 to $20 \mathrm{mg} \mathrm{mi}^{-1}$	$\mathrm{Fe}(I I I), \mathrm{Co}(\mathrm{II}), \mathrm{Cr}(\mathrm{VI})$ can be tolerated.	45

\pm	- 6	u	- ${ }^{*}$	- u	u
2^{\prime}-inydroxy-3'-5'dinethyl acetophenone oxime	$9.0 \text { to }$ 10.0	405	$\begin{aligned} & \epsilon=1300 \\ & \text { Becr's law oneyed for } \\ & 1-1{ }^{\prime} \text { ppa } \end{aligned}$	-	53
Salicyl al doxime	9.5	430	-	Fe interreres.	54
$\begin{aligned} & \text { 2-(5-brouo-2- } \\ & \text { pyridyl azo)-5- } \\ & \text { diethyl a inophenol } \end{aligned}$	-	575	$\epsilon=127,000$	-	55
N^{1}-hydroxy- $\mathrm{N}^{1}-\mathrm{n}-\mathrm{COlyl}-$ $N^{2}-(2,3-x y l y l)$ Denzamidemide hydrochloride.	9.4 to 10. 1	610	```\epsilon=1400 Gandell sensibivity is }12\textrm{ng}\mp@subsup{\textrm{on}}{}{-2```	$\mathrm{Co}(\mathrm{II}), \mathrm{Fe}(I I I), \mathrm{VO}_{3}{ }^{-}$ interiere seriously.	56
Salicyldoxine	9.2	410	Ber's law is obeyed for 1 to $7 \mu \mathrm{~g} \mathrm{~m}^{-1}$	-	57
$\begin{aligned} & (d-5,10,15,20 \text { te brakism } \\ & (\leq- \text { arpoxyphenyl }) \\ & \text { porphine). } \end{aligned}$	alcaline	460	$\begin{aligned} & E=97,900 \\ & \text { Beer's iav is obeyed } \\ & \text { for } 25-560 \mu \mathrm{ml}^{-1} \end{aligned}$	-	58
$\begin{aligned} & 1-(1,2,4 \text {-triazol-3- } \\ & \text { yl azo } 2_{2}^{\text {-Haphthol }} \end{aligned}$	8	515	Becr's law is obeyed for 0 to 2.5 ppm	-	59
```(1,1,1-trifluoro-4- mercapto-4-(2-thienyl) but-3-en-2-one) and 1,10 Phenanthroline```	-	375	$\epsilon=35,800$	$\begin{aligned} & \text { Cd, } 7 n, \operatorname{mu}(I I), \operatorname{co(II)} \\ & \text { intcrieres. } \end{aligned}$	60


1	2	:	3	4	5	6
$\begin{aligned} & \text { 4-(2-thiazoylazo) } \\ & \text { resorcinol } \end{aligned}$	8.8		540	-	$\mathrm{Co}(\mathrm{II}), \mathrm{Zn}, \mathrm{Cd}$ and Pb (II) interfere seriously.	61
2-3 diphenylsuccinimide monoxime	-		490	Beer's law obeyed for upto 14 ppm	-	62
K-butyl Xanthalate	-		457	$\epsilon=5500$	$\mathrm{V}(\mathrm{V})$ and $\mathrm{Fe}(I I I)$ interfere.	63
$\begin{aligned} & 2^{\prime}, 3^{\prime}, 6^{\prime}, 7^{\prime}-\text { tetrahydro- } \\ & \text { xyspiro-\{isobenzo- } \\ & \text { furan-1(3H),9(9H) } \\ & \text { Xanthen }\}-3 \text {-one. } \end{aligned}$	9		535	Sandell sensitivity $0.38 \mathrm{ng} \mathrm{Cm}^{-2}$	-	64
Alizarin complexan	5.5		555	Beer's law obeyed upto 59.3 ppm	-	65
2-0ximinodimedone dithiosemicarbazone   -do-   -do-	9   0 to 2   $\mathrm{HClO}_{4}$   (. 4 to		$\begin{aligned} & 435 \\ & 380 \\ & 490 \end{aligned}$	$\begin{aligned} & \epsilon=5.9 \times 10^{3} \\ & \epsilon=1.0 \times 10^{4} \\ & \epsilon=5.6 \times 10^{3} \end{aligned}$	-	66
$\infty, \beta, \gamma, \delta$-tetrakis (4-trimethylammonium phenyl) porphytin (TAPP)	-		464	$\epsilon=1.13 \times 10^{5}$	Cr (III) , Cu (II) , Co (II) interfere at high con centration.	67


1	2	:	3	:	4	5	$: 6$
$\begin{aligned} & \text { 4-(5)-imidazoleadoxime } \\ & \text { (IMALOX) } \end{aligned}$	Alkaline		350		$\epsilon=7.85 \times 10^{3}$   Beer's law obeyed for $0.8-8.0 \mathrm{mg} / \mathrm{ml}$	Few-ions interfere \& can be masked with $\mathrm{CN}^{-}$, NTA, tartarate.	$68$
Isophthaldihydroxamic acid.	-		490		$\begin{aligned} & \epsilon=3760 \\ & \text { Optimum range for } \\ & \text { determination } 3-9 \mathrm{ppm} . \end{aligned}$	$\mathrm{Fe}, \mathrm{Sn}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{Ru}$ and Rb greater than 5 ppm interfere.	69
0 -pnenanthroline(1) chrome Azurol 5(II) and cetyltrimethylammonium bromide(III).	$\begin{aligned} & 10.2 \text { to } \\ & 11.3 \end{aligned}$		635		$E=8.0 \times 10^{4}$	Rare earths interfere.	70
```\alpha, \beta, 8; \delta - tetrakis (4-sulphophenyl) porphine.```	$\begin{aligned} & 7.8 \text { to } \\ & 11.0 \end{aligned}$		442		$\begin{aligned} & C=3.2 \times 10^{5} \\ & \text { Beer's law obeyed for } \\ & 0-0.125 \mathrm{\mu g} \mathrm{Htn} / \mathrm{L} \end{aligned}$	Various ions interfere.	71
dipicolinedihydroxamic acid.	- .		500		$E=4.1 \times 10^{3}$ Beer's law obeyed for 0.5 to 5 ppm .	-	72

For some specific applications some of the reported reagents like MAAN-S-1, 5^{18}, 4-(2-pyridylazo) resorcinol ${ }^{19 a}$ and 1-2 (thiozolylazo)-2-naphthol ${ }^{19 \mathrm{~b}}$ posses merit with respect to sensitivity, selectivity and thermodynamic stability.

The detailed study of reported photometric method for manganese determination is given in table 4.1.

The reagent QAT is proposed in this section for trace determination of manganese.

The present work accounts for spectrophotometric determination of Manganese (II) by -2-Chloroquinoline -3carbaldehyde thiosemicarbazone (QAT). Manganese (II) forms yellow coloured complex with 2 - Chloroquinoline -3carbaldehyde thiosemicarbazone (QAT). For Manganese optimum pH is 7.5 and max is 375 nm . Beer's law is obeyed upto 6 ppm of Manganese (II). The effect of pH , reagent concentration, and diverse ions have been studied. The molar absorptivity and Sandell sensitivity are $2.471 \times 10^{4} \mathrm{~L}$ mole $e^{-1} \mathrm{~cm}^{-1}$ and $0.024 \mathrm{ng} \mathrm{cm}{ }^{-2}$ respectively at 375 nm . The dissociation constant of complex Mn (II) - QAT is 1.479×10^{-5}. For Mn (II), Cu (II), Ni (II), Co (II), pyridine, hydrazine, Rare earths interefere.

EXPERIMENTAL

Standard Manganese Solution :

Standard Manganese solution $1 \mathrm{mg} / \mathrm{ml}$ was prepared from Manganese sulphate monohydrate and the solution was standardized volumetrically ${ }^{73}$. Further dilution for experimental purposes were made by diluting the stock solution with distilled water.

Reagent Solution :
0.052 gm QAT was dissolved in DMF and diluted to 100 ml . The molarity of the solution is $1.96 \times 10^{-4} \mathrm{M}$. The solution is found to be stable for more than a week.

Recommended Procedure :

To an aliquot of solution containing upto 5 ppm of Manganese, add 1.2 ml of the $1.96 \times 10^{-4} \mathrm{M}$ reagent solution and a buffer of solution 7.5 . This is diluted to 10 ml with DMF and water (3:2) in a volumetric flask. Measure the absorbance against reagent blank.

RESULTS AND DISCUSSION

Spectral Characteristics :

Figure 4.1 shows the absorption spectrum of the Manganese(II) - QAT complex containing $3.196 \times 10^{-4} \mathrm{M}$ of

Nanganese (II) and $1.96 \times 10^{-4} \mathrm{M}$ reagent at pH 7.5 using reagent blank. Absorption measurements were made in the spectral region 345 nm to 410 nm and recorded in table 4.2. From the graph, it was found that 375 nm will be suitable wavelength for the Mn determination. The molar absorptivity of the complex is $2.417 \times 10^{4}: \mathrm{L}_{\mathrm{mole}}{ }^{-1} \mathrm{~cm}^{-1}$ at 375 nm .

> Table $4.2:$ Molar Extinction Coefficients of Mn(II)-QAT Complex
> QAT $=1.96 \times 10^{-4} \mathrm{M}, \mathrm{Mn}(I I)=3.196 \times 10^{-4} \mathrm{M}$ $\mathrm{pF}=7.5$

$\lambda \mathrm{nm}$	Molar Ext. Coefficient of the complex $\times 10^{4} \mathrm{~L} \mathrm{Mole}$ cm^{-1}
345	-
350	0.9063
355	1.648
360	2.060
365	2.253
370	2.417
375	2.417
380	2.087
385	1.758
390	1.4 .29
395	1.098
400	0.7591
405	0.3846
410	0.1098

FIG.4.1 - ABSORPTION SPECTRUM OF Mn(II)-QAT COMPLEX.

Effect of Time on absorbance :

In order to study effect of time on the absorbance of Mn (II)-QAT complex containing $3.196 \times 10^{-4} \mathrm{M} \mathrm{Mn}$ (II)-QAT at pH 7.5 , the absorbance measurements were recorded at different time-intervals at 375 nm . It was observed that there is instantaneous development of colour and the ebsorbance remains constant for 24 hours.

Effect of Reagent Concentration :

Solutions containing the same amount of Mn (II) ($3.196 \times 10^{-4} \mathrm{M}$) but different amounts of reagent varying from 0.1 to 1.4 ml of $1.96 \times 10^{-4} \mathrm{M}$ reagent solutions were prepared. The pH 7.0 was added and the solution was made upto 10 ml with the DMF : water (3:2). Absorbance measurements were recorded at 375 nm against simultaneously prepared reagent blank. The data given in table 4.3, fig. 4.2 shows that $3.196 \times 10^{-4} \mathrm{M}$ Manganese solution required minimum 1.2 ml of $1.96 \times 10^{-4} \mathrm{M}$ reagent solution for maximum complexation. At higher concentration of the reagent there was insianificant increase in absorbance. However, 1.2 ml of $1.96 \times 10^{-4} \mathrm{M}$ reagent solution was employed for further studies to ensure maximum colour intensity of the Manganese complex.

> Table 4.3 : Effect of Reagent Concentration on the absorbance of $\mathrm{Mn}(I I)$-QAT Complex $$
\begin{aligned} \mathrm{Mn}(I I) & =3.196 \times 10^{-4} \mathrm{M} \\ \mathrm{QAT} & =1.96 \times 10^{-4} \mathrm{M} \\ \mathrm{pH} & =7.5\end{aligned}
$$

Reagent ml	Absorbance at 375 nm
.2	.04
.4	.08
.6	.16
.8	.25
1.0	.34
1.2	.420
1.4	.422

Effect of $\mathrm{pH}:$

A series of solutions containing ($3.196 \times 10^{-4} \mathrm{M}$) Mn (II) and $1.96 \times 10^{-4} \mathrm{M}$ reagent solution but varying in pH from 2 to 10 were prepared and the absorption measurements were recorded at 375 nm . The results are summerised in the table 4.4. It was observed that maximum absorbance was obtained i at the pH 7.5. The absorbance of the solutions decrease at higher or lower pH values than this as shown in the figure 4.3. Hence pH 7.5 is maintained in further studies.

Table 4.4 : Effect of pH on the absorbance of Mn (II)QAT Complex

$$
\mathrm{Mn}(\mathrm{II})=3.196 \times 10^{-4} \mathrm{M}, \text { QAT }=1.96 \times 10^{-4} \mathrm{M}
$$

pH	Absorbance at 375 nm	
4	.04	
5	.06	
6	.20	
7	.35	
7.5	.42	
8	.39	
9	.33	
10	.26	

Yalidity of Beer's Law and Sensitivity :

The solutions (final volume 10 ml) containing different amounts of Mn and the same amount of the reagent (Concentration $1.96 \times 10^{-4} \mathrm{M}$) l ml ; with the pH maintained at 7.5 were used for the study. The absorption measurements were recorded against reagent blank at 375 nm (Table 4.5, Fig.4.4). Beer's law is obeyed upto 6 ppm of Mn (II). The Sandell sensitivity ${ }^{74}$ of the reaction is $0.024 \mathrm{ng} / \mathrm{cm}^{2}$ of Mn (II). The Ringbom's plot (Fig. 4.5) indicates that the optimum range is 3 to 7 ppm of Manganese (II).


```
Table 4.5 : Verification of Validity of Beer's
    Law for Mn(II)-QAT Complex
QAT \(=1.96 \times 10^{-4} \mathrm{M} ; \mathrm{pH}=7.5\)
```

Mn taken ppm	Absorbance at 375 nm
2	.27
3	.35
4	.39
5	.44
6	.50
7	.52
8	.540
10	.548

Composition of the Complex :

The combining ratio of metal to reagent was ascertained by Job's method of continuous variations ${ }^{75}$ and Mole ratio method ${ }^{76}$. For Job's method of the continuous variation, a series of solution were prepared by mixing equimolar solutions of Mn (II) and reagent (1.06×10^{-4}). The pH of the solution was adjusted to 7.5. The absorbance of the solutions after diluting to 10 ml in volumetric flask
were recorded at 375 nm ageinst simultaneously prepared reagent blank (Fig. 4.6, Table 4.6). The plot indicates the existance of $1: 2$ complex with respect to metal and reagent represented as ML_{2}.

Table 4.6 : Determination of the formula of the Mn(II)-QAT Complex by Job's Method of Continuous Variation

$$
\operatorname{Mn}(I I)=Q A T=1.96 \times 10^{-4} \mathrm{M}, \mathrm{pH}=7.5
$$

Metal ion ml	Reagent ml	Mole fraction of metal	Absorbance at 375 nm
0.1	.9	.1	.21
0.2	.8	.2	.35
0.3	.7	.3	.60
0.4	.6	.4	.54
0.5	.5	.5	.43
0.6	.4	.6	.35
0.7	.3	.7	.29
0.8	.1	.9	.9

The dissociation constant of the complex K, is calculated from the mole ratio plot by using the following equation :

$$
K=\frac{\alpha c(n \alpha c)}{c(1-\alpha)}
$$

Where $n=2$,
$c=$ molarity of the solution of the complex
$\alpha=$ degree of dissociation defined by

$$
\alpha=\frac{A m-A s}{A m}
$$

A_{m} is the maximum absorption obtained from horizontal portion of the curve and A_{s} is the absorbance at stoichiometric molar ratio of reagent to Manganese in the complex. The value of k comes out to be 1.479×10^{-5}.

Mole Ratio Method :

For Mole ratio method, solutions containing the same final metal concentration ($1.96 \times 10^{-4} \mathrm{M}$) and different amount of reagent were prepared keeping pH at 7.5 . Absorbance of the solutions were measured at 375 nm against reagent blank. The curve showed break at the metal to ligand ratio l:2, confirming the results obtained by apolication of Job's method of continuous variations. (Fig. 4.7,

Table 4.7).

FIG. $4 \cdot 7$ MOLE RATIO PLOT FOR Mn(II)-QAT COMPLEX \cdot

$$
\lambda_{\max }=375 \mathrm{~nm}
$$

Table 4.7 : Determination of the formula of Mn(II)-QAT Complex by Mole Ratio Method

$$
\mathrm{Mn}(I I)=Q A T=1.96 \times 10^{-4} \mathrm{M}, \mathrm{pH}=7.5
$$

Metal ion ml	Reagent ml	Reagent to metal ratio	Absorbance at 375 nm
.3	.2	0.56	.22
.3	.4	1.33	.36
.3	.5	2.0	.53
.3	.8	2.56	.52
.3	1.0	3.33	.70
.3	1.2	4.00	.76
.3	1.4	4.56	.82

Effect of diverse ions :
The effect of diverse ions was studied using 2 ppm of Mn and $1.96 \times 10^{-4} \mathrm{M}$ reagent in a final volume of 10 ml at pH 7.5. The results indicated that Zn (II), $\mathrm{Pd}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and anions like cynide interfere strongly. The tolerance limit for various foreign ions tested has been shown in the table. Effect of diverse ions :

$$
\mathrm{Mn}(I I)=2 \mathrm{ppm}, \quad \text { QAT }=1.96 \times 10^{-4} \mathrm{M}, \mathrm{pH}=7.5
$$

Metal ion Iolerance limit $\mu \mathrm{g}$
$V(V) \quad 100$
$\mathrm{Ni}(\mathrm{II}) \quad$ None
Zn (II) None

Mo(VI) 200
W(VI) 200
Pd(II) None
$\mathrm{Co}(\mathrm{II}) \quad 200$
Oxalate 1000
pt(IV) 20
$\mathrm{CN}^{-} \quad$ None
$\mathrm{F}^{-} 1000$
EDTA None

REFERENCES

1. Morgan, J.J. and Stumm, W.; J. Am. Wat. Wks. Ass.; 57,107 (1965).
2. Miller, D.O. and Yoek, J.H.; Talanta, T, 107 (1960).
3. Akaiwa, H. and Kawamoto, H.; Japan Analyst; 16, 359 (1967).
4. Krishnamurthy, N. and Pullarao, Y.Z.; Anal. Chem., 282, 141, (1976).
5. Mortinez, F.B. and Branas, M.G.; Mikrochim Acta, 3, 489 (1971).
6. Solanke, K.R. and Khopkar, S.M.; Z. Analyt. Chem.; 275, 286 (1975).
7. Krishnamurthy, N. and Pullarao, Y.; Z. Anal. Chem. 282, 141 (1976).
8. Gano Pavon, J.M.; Jimenez, S.J. . and Pino, P.F.; Anal, Chim Acta; 75, 335 (1975).
9. Yuen, S.H.; Analyst, 83, 350 (1958).
10. Kajiwara, M. and Goto, K.; Japan Analyst, 13, 533(1964).
11. Richardson, M.L.;Analyst, 87, 345 (1962).

12. Henriques, H.P.; Hainberger, L. and Grupe, H.; Microchim Acta 5, 807 (1971).
13. Kiyota, H. and Yamamoto, T.; J. Chem. Soc. Japan, pure Chem. Sec. 77, 1746 (1956).
14. Tourky, A.R.; Issa, I.M. and Hewaidy, I.F.; Anal. Chim. Acta, 16, 151 (1957).
15. Hajime, J. and Hisaniko, E.; Japan Anlyst, 15, 1124 (1966).
16. Hashmi, M.H.; Qureshi, T.; Chughtai, F.R. and Saeed, M.; Mikrochim Acta, 4, 782 (1969).
17. Sharipova, Sh. T.; Dzhiyanbaeva, R.Kh. and Talipov, Sh, T.; Zh. Khim 10, 19GD (1969).
18. Nonova, D. and Evtimova, B.; Talanta, 20, 1347(1973).
19. Grzegrzolka, E.; Chem. Anal.(Narsaw), 22, 303 (1977).
20. A.D. Gololobov; Pochvovedenie 3, 89-93(1965), Referat. Zh. Khim, 19 GDE 22, (1965).
21. Meisetsu Kojiwara and Katsumi Goto; Japan Analyst, 13(6) 533-536 (1964).
22. Makoto Otomo; Japan Analyst, 14(1), 45-52 (1965).
23. E.M. Donaldson (ne'e Penner) and W.R. Innman; Talanta, 13(7), 489-497 (1966).
24. Haiime Ishii and Hisahiko Einaga; Japan Analyst, 15(10), 1124-1129 (1966).
25. Sh. T. Sharipova; R.Kh. Dzhiyanbaeva and Sh. T. Talipov; Trudy Tashkent gos. Univ., 323, 39-45 (1968).
26. N.G. Kagramanova, Sh. T. Talipov and R.Kh. Dzhiyanbaeva, Irudy tashkent gos. Univ 323, 28-32 (1968), Referat. Zh. Khim; 19 GD, 10(1969).
27. Sermejo Martinez, F. and Branas Miguez; Mikrochim Acta, 3, 489-493 (1971).
28. Capitan Garcia, F.; Roman Ceba, M. and Guiaraum, A.; Quim. Ind. Madr, $17(3), 15-18$ (1971).
29. Tataev O.A. and Anisimova, L. G.; Zh. analit. Khim; 26 (1), 184-187 (1971).
30. Henriques, H.P.; Hainberger, L. and Grupe H.; Mikrochim Acta 5, 807-810 (1971).
31. Minczewski, Jerzy, Chawastowska, Jaduiga and Lachowicz, Elwira; Chemia analit; 18(1), 199-206(1973).
32. Vasilikiotis, G.S. and Kouimtzis, T.A.; Microchem. J. 18 (1), 8594 (1973).
33. Vasilikiotis, G. S. and Kouimtzis, T.A.; Microchem. J. 18 (1), 85-94 (1973).
34. Cabra Martin, A.; Peral Fernandez. J.L.; Moreno Villaba, C.R.; and Burriel-Marti, F.; Infcion Quim. analit, pura apl. Ind. 27(3), 110-118 (1973).
35. Vicentez-Perez, S.; Hernandez, L. and Mounoz, E., Quim, Analit; 28(2), 79-84(1974).
36. Nagarkar, S.G. and Eshwar, M.C., Chem. Era; 11(4), 1-3(1975).
37. Savvin, S.B.; Petova, T.V. and Dzherayan, T.G.; Zh. analit, Khim, 30 (11), 2092-2097 (1975).
38. Ahrland, Sten and Herman, R.G.; Analyt. Chem; 47(14), 2422-2426 (1975).
39. Grzegrzolka, Elzbieta, Chem. Anal; 22(2), 303-309(1977).
40. Rudometkina, I.F.; Ivanov, V.M. and Busev A.I.; Zh. Anal. Khim. 32 (3), 446-451 (1977).
41. Rudometkina, T.F.; Ivanov, V.M.; and Busev A.I.; Zh. Anal. Khim. 32(3). 446-451 (1977).
42. Sarvin S.B.; Petrova, T.V. and Dzherayan, T.G.; Zh. Anal. Khim; 33(3), 516-521 (1978).
43. Ol'dekop, Yu.A. and Knizhnikov, V.A.; Dokl. Akad. Nauk, SSSR, 237(3), 601-604 (1977).
44. Sikorska-Tomika, Halina; Chem. Anal; 22(4), 76l-765 (1977).
45. Laza reva, V.I.; Lozarev, A.I. and Kharlamov I.I.; Zavod Lab 45(3) (1979).
46. Patel, K.S. and Mishra, Rajendra K.; J. Ind. Chem. Soc., 55(8), 773-775 (1978).
47. Deh, Kanak, Kanti and Mishra, Rajendra K.; J. Ind. Chem. Soc.; 55(3), 289-290 (1978).
48. Akaiwa, Hideo, Kawamoto, Hiroshi and Kogure, Shoji; Bunseki Kagaku, 28(8), 498-500 (1979).
49. Kroshkina, A.B.; Shilova, L.K. and Behesho, G.I.; Zh. Anal. Khim; 35(2), 320-327 (1980).
50. Chikuma, M.; Nakaya V.; Yokoyama, A; Maitani, T; and Tanaka, H; Fresenius'Z. Anal. Chem; 300(5), 414 (1980).
51. Mittal, M; Malhotra, S.R. ; Lal, Keemty and Gupta, S.P.; Natl. Acad. Sci. Lett. (India) $2(10)$, 381-382 (1979).
52. Mittal, M.; Malhotra, S.R.; Lal, Keemty and Gupta, S.D.; Natl. Acad. Sci. Lett. (India) 2 (10), 381-382 (1979).
53. Jetley U.K.; Singh, Jai and Rastogi, S.N.; Acta Cienc. Indica (Ser) Chem; 5(4), 169-172 (1979).
54. Chang-Chenq-Hui, Liv, Yu-Feng; and Wu, Hung-Hsi; Fen Hsi-Hua Hsuch, I(3), 165-169 (1979).
55. Wei, Fusheng; Qu, Peihua and Zhu, Yurei; Fen. Hsi Hua Hsuch, 9(3), 345-347 (1981).
56. Sharma, P.K.; Mohabaey, H.I. and Mishra R.K.; Acta Cienc: Indica (Ser) Chem. 8(4), 198-199(1982).
57. Reddy, P.B.; Sankara; and Rao, S. Brahmaji, Acta Cienc. Irdica (Ser) Chem; $7(1-4), 100-103(1982)$.
58. Ishij, Hajime, Koh, Hidemasa, and Satoh, Katsuhiko, Anal, Chim. Acta. 136, 347-352 (1982).
59. Cacho Palomar, Juan; and Nerin de la Puerta, Cristina; Afinidad, 39, 377 (1982).
60. Deguchi, Masakazu; and Hayakawa, Shuichi, Bunseki Kagaku, 31 (10), 612-615 (1982).
61. Gaokar, V.G. and Eshwar, M.C.; Mikrochim Acta, II(3-4) 274-282 (1982).
62. Mangay, C.; Rodriguez, E.; Borrull, F. and Cerda, Y.; An. Quim; Ser. E.; 78(2), 247-251 (1982).
63. Sasaki, Yoshiaki, Anal. Chim. Acta, 138, 419-424(1982).
64. Mori, itsuo; Fujita, Yashikazu; Sakaguchi, Kimiko; and Kitano, Snako; Bunseki Kagaku, 3l, E 239-E 242 (1982).
65. El-Assy, Nasef B.; Dessaiki, Ahmed M.; Amin, Nour E. and Ahmed, Fatma A.; Ann. Chem. 72 (3-4), 173-181 (1982).
66. Salinas, F.; Sanchez I.C.; Jimenez, Gallego, J.M.Lemus, Talanta, 32, 1074 (1985).
67. Xu, Mianyi; Pan, Zuting; Xie, Nengyong, He, Schutang, Wuhan Daxuebao, Ziran Kexueban, 51(3), (1985).
68. Fernandez Pereira, C.; Gasch Gomez, J.; Anal. Lett., 18 (A 18) . 2219 - 27 (1985).
69. Salinas, F.; Jimenez Arrabal, M.; Microchem. J.; 31(1), 113 (17) (1985).
70. Li Zhen, Fenxi Huaxue, 13(2), 96-100 (1985).
71. Li Huaming; Tu, Mingquan, Fenxi Huaxue, $\underline{12(8), ~}$ 695-700 (1984).
72. Salinas, F.; Forteza, R.; Morch J. G.; Quim. Anal.; 2(4), 283-8(1983).
73. A.I. Vogel; 'A Text book of Quantitative Inorganic Analysis', 3rd Edn. p. 345.
74. E.B. Sandell, 'Colorimetric Determination of Traces of Metals', 3rd Edn, Interscience, New York, p. 83 (1959).
75. P. Iob, Compt, Rend, 180, 928 (1925), Ann. Chim, (Paris), 2, 113 (1928).
76. T.H. hoe and A.L. Zones, Ind. Eng. Chem.; Anal. Edn.; 16, 111 (1944).
77. Ringbom, A.; Z. Anal. Chem.; 115, 332 (1939).
