CHAPTER - IV

PROBABILISTIC MODELS.

4.1 DESCRIPTION AND DEVELOMENT OF PROBABILISTIC INVENTORY MODELS.
4.2 SOFTWARE PACKAGE FOR PROBABILISTIC INVENTORY MODELS.

DESCRIPTION AND DEVELOPMENT OF PROBABILISTIC INVENTORY MODELS

4.1 INTRODUCTION :

Many times it is not possible to keep both EOQ and number of periods per cycle fixed and uniform because either demand or lead time or both are random variables.

The EOQ models considered so far assumes that demand for the item under consideration is certain, continuous and constant. In reality, however, the demand is more likely to be uncertain, discontineous and variable. Another assumption in the $E O Q$ models is that all demand is supplied immediately and there is no question of a shortage. However, even when the demand and lead time are known and constant, stock out may be deliberately permitted. When demand and lead time are not certain the EOQ models needs modification and safety stock are required to be kept. The EOQ model is based on the assumption that the unit price is the same. Further uniformity of the unit holding cost and of the cost of placing an order is the other underlying assumption. If either or both of these assumptions are not satisfied. Finally the implicit assumption in the $E O Q$ model that the entire quantity ordered for would be received in singly lot may not hold true sometimes. Therefore probabilities are used to represent them.

The probabilistic models considered here will be concerned with answering the following question. What should be the optimum level at the beginning of a planning period during which uncertain demand is likely to occur.

ASSUMPTION MADE UNDER PROBABILISTIC INVENTORY MODELS :

1. The lead time is zero.
2. Decision regarding replenishment are made at regular equal interval of time.
3. Costs of carrying surpluses and shortages of inventory items are linear quantity.
4. Demand is instanteneous and units replenishment is descrete (Model-1).
5. Demand is instanteneous and units replenishment is contineous (Model-2).
6. Demand is contineous and units replenishment is descrete (Model-3).
7. Demand is instantaneous and units replenishment is also contineous and with set-up cost to be fixed (Model-4). NOTATIONS USED UNDER PROBABILISTIC INVENTORY MODELS :
```
    t = reorder period, it is fixed and known.
    L = Lead time.
    D = the quantity required or sold, it is a random
        variable which can be discrete or contineous.
f(D) = probability density function of D, it could be
```

```
    either discrete or contineous as per the'nature of
    random variable D.
    C
    for one interval of time due to over stocking.
    Ca}=\mathrm{ cost of shortage (or penalty) occur during the period
        due to under stocking.
    I = number of items on hand before an order is placed.
    Q = Economic Order Quantity.
EC{S} = the total expected costs associated with an inventory
    level of }\mp@subsup{S}{i}{}=I=I+Q} units
    C = cost per unit of an item.
```

MODEL-1

PROBABILISTIC INVENTORY MODEL
SINGLE PERIOD PROBABILISTIC MODELS WITHOUT SET-UP COSTS, INSTANTANCEOUS DEMAND AND DESCRETE UNITS REPLENISHMENT.

The single period model considers a situation where an item can be ordered only once to satisfy the demand of a specific period of time and no further orders can be made to replenish inventory. After the period is over, there is a cost associated with the stock of left over at the end of the period and the corresponding cost for shortage.

Since demand D is intantaneous, therefore total demand is filled at the beginning of the planning period. Let I be the amount of inventory at the beginning of the said period.

Since demand D is instanteneous, therefore total demand is filled at the beginning of the planning period. Let I be the amount of inventory at the beginning of the said period. Now the question is that, what should be the best level Q^{*} of inventory with which to start the period so as to satisfy the uncertain demand during the comming period and to minimize the total expected cost associated with surpluses and shortages. There may be two cases depending upon the relation of D and Q. CASE-1 : DEMAND IS LESS THAN STOCK.

In this case the carrying cost will be $C_{1} t(Q-D)$ as shown in the following figure.

Thus the expected carrying cost if we have Q items on hand at the beginning of the period will be

$$
C_{1} \sum_{D=0}^{Q}(Q-D) t f(D) \quad D \leq 0
$$

CASE-2 : DEMAND IS MORE THAN THE STOCK.
In this case the shortage cost will be $C_{2} t(D-Q)$ as shown in the following figure.

Thus the pected shortage cost if we have Q items on hand at the beginning of the period will be

$$
\begin{equation*}
C_{2} \sum_{D=Q}^{\infty}(D-Q) t £(D) \quad D>Q \tag{2}
\end{equation*}
$$

If the initial inventory I is zero, then the total expected single period cost EC\{S\} associated with an inventory level of $S=Q$ will be

$$
\begin{equation*}
E C(Q)=C_{1} t \sum_{D=0}^{Q}(Q-D) f(D)+C_{x} t \sum_{D=Q}^{\infty}(D-Q) f(D) \tag{3}
\end{equation*}
$$

In order to find the optimum value Q^{*} so as to minimise EC(Q) the following condition

$$
\Delta C\left(Q^{*}-1\right)<0<\Delta C\left(Q^{*}\right)
$$

must hold.
Now replacing Q by $(Q+1)$ in equation (3) we get

$$
\begin{align*}
\operatorname{EC}(Q+1)= & \left\{C_{1} \sum_{D=0}^{Q+1}(Q+1-D) f(D)\right. \\
& \left.+C_{2} \sum_{D=Q+2}^{\infty}(D-Q-1) f(D)\right\} t \\
= & \left\{C_{1} \sum_{D=0}^{Q}(Q-D) f(D)+C_{1} \sum_{D=0}^{Q} f(D)\right. \\
& \left.+C_{2} \sum_{D=Q+1}^{\infty}(D-Q) f(D)-C_{x} \sum_{D=Q+1}^{C} f(D)\right\} t \\
= & E C(Q)+\left\{\left(C_{1}+C_{2}\right) F(Q)-C_{2}\right\} t \tag{4}
\end{align*}
$$

Since the term $D=Q+1$ is zero in both the summations where $F(Q)=\sum_{D=0}^{Q} f(D)$ and $\sum_{D=Q+1}^{\infty} f(D)=1-\sum_{D=0}^{Q} f(D)$
because $\quad \sum_{D=0}^{c a} f(D)=1$
Similarly

$$
\begin{equation*}
\operatorname{EC}(Q-1)=\operatorname{EC}(Q)-\left\{\left(C_{1}+C_{2}\right) F(Q-1)-C_{2}\right\} t \tag{5}
\end{equation*}
$$

By differential calculus, we know that

$$
\left.\begin{array}{rl}
\Delta C\left(Q^{*}\right) & =C\left\{Q^{*}+1\right\}-C\left(Q^{*}\right) \\
& =\left\{C_{1}+C_{2}\right) F\left(Q^{*}\right\}-C_{2} \geq 0 \\
\Delta C\left(Q^{*}-1\right) & =E C\left(Q^{*}-1\right)-E C\left(Q^{*}\right\} \tag{6}\\
& =-\left(C_{1}+C_{2}\right) F\left(Q^{*}\right)+C_{2} \geq 0
\end{array}\right\}
$$

For any integer value $\langle Q+1\rangle$ more than Q and for any integer $(Q-1)<Q$ inequalities (6) would hold because $F(Q)$ is nondecreasing for increasing Q. Hence if (6) hold, then for local minimum and $E C(Q)$ we must have
and $\operatorname{EC}\left(Q^{*}+1\right) \geq \operatorname{EC}\left(Q^{*}\right) \quad\left\{Q^{*}+1\right)>Q^{*}$
Thus Q^{*} is the value of Q which minimizes the EC(Q) satisfying (6).

Rearranging inequalities (6) we have

$$
\begin{equation*}
F\left(Q^{*}-1\right) \leq \frac{C_{2}}{C_{1}+C_{2}} \leq F\left(Q^{*}\right) \tag{7}
\end{equation*}
$$

Where $F(Q)$ is the cumulative probability distribution for $F(D)$ and is ecיal to the probability that $D \leq Q$.

$$
\begin{equation*}
P(D \leq Q)=F(Q)=\sum_{D=0}^{D} f(D)=\frac{C_{2}}{C_{1}+C_{2}} \tag{8}
\end{equation*}
$$

ALGORITHMIC PROCEDURE FOR THE ABOVE MODEL IS AS FOLLOWS :

STEP-1 : Calculate $\frac{C_{2}-C}{C_{1}+C_{2}}$ where C is cost/unit of an item, provided it is to be considered.

STEP-2 : Determine cumulative probability distribution $F(Q)$.
STEP-3 : Determine value Q^{*} and $Q^{*}-1$ where the ratio $\frac{C_{2}-C}{C_{1}+C_{2}}$ lies in the cumulative distribution $F(Q)$.

STEP-4 : Take the higher value as optimum level (Q^{*}) to start the period.

STEP-5 : The optimal ordering policy in the presence of $I\left(<Q^{*}\right)$ must have
i) order $Q^{*}-I$ if $Q^{*}>I$ ii) do not order if $Q^{*} \leq I$.

MODEL-2

PROBABILITY INVENTORY MODEL

SINGLE PERIOD PROBABILISTIC MODELS WITHOUT SET-UP COST, INSTANTANEOUS DEMAND AND CONTINEOUS UNITS REPLACEMENT

This model is similar to Model-1 except that the problem is formulated as a contineous problem. If $f(D)$ is defined as the contineous probability distribution of having a demand of exactly D units, then equation (3) under Model-1 becomes

$$
\begin{equation*}
E C(Q)=C_{1} \int_{0}^{Q}(Q-D) t f(D) d D+C_{2} \int_{Q}^{(C a}(D-Q) t f(D) d D \tag{9}
\end{equation*}
$$

For getting the optimum value of Q so as to mimize EC(Q), first differentiate (9) w.r. to Q and equate it to zero. That is
$\frac{d E C(Q)}{d Q}=C_{1} t \int_{0}^{Q} f(D) d D-C_{2} t \int_{Q}^{\omega} f(D) d D$

$$
\begin{aligned}
& =C_{s} t \int_{0}^{Q} f(D) d D-C_{2} t\left\{\int_{Q}^{C B} f(D) d D-\int^{Q} f(D) d D\right\} \\
& =C_{1} t \int_{0}^{Q} f(D) d D-C_{2} t\left\{1-\int_{0}^{Q} f(D) d D\right\}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int^{C Q} f(D) d D=1 \\
= & C_{1} t F(Q)-C_{2} t+C_{2} t F(Q) \\
= & {\left[\left(C_{1}+C_{2}\right) F(Q)-C_{2}\right] t \quad \because f(Q)=\int_{0}^{Q} f(D) d D }
\end{aligned}
$$

The $E C(Q)$ will have a relative minimum at Q^{*} if

$$
\begin{align*}
& \left.\frac{d E C(Q)}{d Q}\right|_{Q=Q^{*}}=\left(C_{1}+C_{2}\right) F\left(Q^{*}\right)-C_{2}=0 \\
& \because \quad F\left(Q^{*}\right)=\frac{C_{2}}{C_{1}+C_{2}} . \tag{10}\\
& \text { Since }\left.\quad \frac{d^{2} E C(Q)}{d Q^{2}}\right|_{Q=Q^{*}}=\left(C_{1}+C_{2}\right) f\left(Q^{*}\right) t \geq 0 \\
& \because \quad C_{1} \geq 0, C_{2} \geq 0, f(Q)>0 .
\end{align*}
$$

It follows that $\mathrm{EC}(\mathrm{Q})$ attain minimum value at $Q=Q^{*}$ and therefore it also satisfy (10). Thus the condition for optimality which gives the optimum value, Q^{*} to have quantity on hand at the beginning of period is

$$
\begin{equation*}
P(D \leq Q)=F\left(Q^{*}\right)=\frac{C_{2}}{C_{1}+C_{2}} \tag{11}
\end{equation*}
$$

Hence we must order $Q^{*}-I$ units, $I<Q^{*}$
ALGORITHMIC PROCEDURE IS AS FOLLOWS :
$D=$ Demand is assumed to be rectangular between [A, B]
ie., $D \sim U[A, B]$
STEP-1 : Read $C_{1}, C_{2}, I_{1}, A, B$ (lower and upper limits in rectangular distribution).

STEP-2 : Compute $R=C_{2} /\left(C_{1}+C_{2}\right)$
STEP-3 : Assuming distribution of demand is uniform over
[A, B], equate

$$
\begin{aligned}
& \frac{C_{2}}{C_{1}+C_{2}}=\frac{1}{B-A}[Q-A] \\
\Longrightarrow \quad Q & Q^{*}=A+\frac{C_{2}}{C_{1}+C_{2}} \times(B-A)=A+R(B-A)
\end{aligned}
$$

STEP-2: Find $Q \subseteq Q^{*}$
STEP-5 : order $\quad Q^{*}-$ I1 if $I 1<Q^{*}$
do not order if $I 1>Q^{*}$

MODEL-3

PROBABILISTIC INVENTORY MODEL
SINGLE PERIOD PROBABILISTIC MODEL WITHOUT SET-UP CDST, CONTINEOUS DEMAND AND DISCRETE UNIT REPLACEMENT

This model is similar to Model-1, except that demand is contineous. Like Model-1 here also two cases arises.
I. Demand is less than stock.
II. Demand is more than stock.

CASE-1 : DEMAND IS LESS THAN STOCK
In this case only carrying cost will incur. This cost is determined with the help of the situation described in following figure.

$$
\begin{aligned}
\text { Average carrying inventory } & =\left[Q-\frac{D}{2}\right] \\
\text { Average shortage inventory } & =0 \\
\text { Carrying cost } & =C_{1} \times \text { Inventory area of DABC } \\
& =C_{1} \times \frac{1}{2}\{A B+D C\} D B \\
& =C_{1} \times \frac{1}{2}\{Q-D+Q\} t \\
& =\frac{1}{2} C_{1}(2 Q-D)
\end{aligned}
$$

Thus expected carrying cost is given by

$$
\frac{1}{2} C_{1} t \sum_{D=0}^{Q}(2 Q-D) f(D) \quad D \leq Q
$$

CASE-2 : DEMAND IS MORE THAN STOCK
In this case only the shortage cost will incur. This cost is determined with the help of the solution described in following figure.

$$
\begin{aligned}
\text { Average carrying inventory } & =\frac{Q^{2}}{2 D^{2}} \\
\text { Average shortage inventory } & =\frac{(D-Q)^{2}}{2 D} \\
\text { Inventory area } \triangle O A D & =\frac{1}{2}\{D \times O A) \\
& =\frac{1}{2}\left\{Q \times \frac{Q t}{D}\right\} \\
& =\frac{1}{2} \frac{Q^{2} t}{D}
\end{aligned}
$$

Also by the property of similarity of $\triangle D E C$ and $\triangle O A D$ we have

$$
\begin{array}{rlrl}
& & \frac{D O}{D E} & =\frac{O A}{E C} \quad \text { or } \quad \frac{Q}{D}=\frac{O A}{t} \\
\therefore \quad D A & =\frac{Q t}{D} .
\end{array}
$$

In the above figure shortage is shown by $\triangle A B C$

$$
\therefore \quad \begin{aligned}
\therefore \text { Area of } \triangle A B C & =\frac{1}{2} A D \times B C \\
& =\frac{1}{2}(E C-O A) \times B C \\
& =\frac{1}{2}\left(t-\frac{Q t}{D}\right)(D-Q) \\
& =\frac{1}{2}(D-Q)^{2} t .
\end{aligned}
$$

The expected shortage cost is then given by

$$
\sum_{D=Q+1}^{\omega \omega}\left[C_{1} \frac{Q^{2} t}{2 D}+\frac{C_{2}}{2 D}\langle D-Q)^{2} t\right] f(D), D>Q
$$

Thus the total expected cost is given by

$$
E C(Q)=C_{1} t \sum_{D=0}^{Q}\left(Q-\frac{D}{2}\right\} f(D)
$$

$$
\begin{equation*}
+\sum_{D=Q+1}^{\infty}\left[-\frac{1}{2} C_{i} \frac{Q^{2} t}{2 D}+\frac{C_{x}}{2 D}(D-Q)^{2} t\right] f(D) \tag{12}
\end{equation*}
$$

In order to calculate the optimum value Q^{*} of Q which minimizes EC(Q) the following condition

$$
\Delta E C\left(Q^{*}-1\right)<0<\Delta E C\left(\dot{Q}^{*}\right)
$$

must hold.
By differential calculus, we know that

$$
\Delta E C(Q)=\operatorname{EC}\{Q+1\}-\operatorname{EC}\{Q\}
$$

Thus replacing Q by $Q+1$ in equation (12) we get

$$
\begin{align*}
\operatorname{EC}(Q+1)=C_{1} \sum_{D=0}^{Q+1}(Q+1 & \left.-\frac{D}{2}\right) f(D)+C_{1} \sum_{D=Q}^{M} \frac{(Q+1)^{2}}{2 D} f(D) \\
& \left.+C_{2} \sum_{D=Q+2}^{\infty} \frac{(D-Q-1)^{2}}{2 D} f(D)\right] t \tag{13}
\end{align*}
$$

Now

$$
\begin{aligned}
C_{1} \sum_{D=0}^{Q+1}\left(Q+1-\frac{D}{2}\right) f(D)= & C_{1} \sum_{D=0}^{Q}\left(Q+1-\frac{D}{2}\right) f(D) \\
& +C_{1}\left(Q+1-\frac{Q+1}{2}\right) f(Q+1) \\
= & C_{1} \sum_{D=0}^{Q}\left(Q-\frac{D}{2}\right) f(D)+C_{1} \sum_{D=0}^{Q} f(D) \\
& +C_{1}\left(\frac{Q+1}{2}\right) f(Q+1)
\end{aligned}
$$

$$
\begin{aligned}
C_{1} \sum_{D=Q+2}^{c a} \frac{(Q+1)^{2}}{2 D} f(D)=C_{1} & \sum_{D=Q+1}^{C C} \frac{Q^{2}}{2 D} f(D) \\
& +C_{1} Q \sum_{D=Q+1}^{\infty} \frac{f(D)}{D}+\frac{C_{1}}{2} \sum_{D=Q+1}^{\infty} \frac{f(D)}{D} \\
& -C_{1} \frac{Q+1}{2} f(Q+1)
\end{aligned}
$$

and $\quad C_{2} \sum_{D=Q+2}^{C C} \frac{(D-Q-1)^{2}}{2 D}=C_{2} \sum_{D=Q+1}^{C C} \frac{(D-Q)^{2}}{2 D} F(D)$

$$
-C_{2} \sum_{D=Q+1}^{\omega} F(D)+C_{2} Q \sum_{D=Q+1}^{\infty} \frac{F(D)}{D}+\frac{1}{2} C_{2} \sum_{D=Q+1}^{\infty} \frac{F(D)}{D}
$$

Thus from equation (12) and (13) we have.
$\Delta E C(Q)=\left[\left(C_{1}+C_{2}\right)\left\{F(Q)+\left(Q+\frac{1}{2}\right) \sum_{D=Q+1}^{Q} \frac{f(D)}{D}\right\}-C_{2}\right] t$
where $\quad F(Q)=\sum_{D=0}^{Q} f(D)$

Let

$$
L(Q)=F(Q)+\left\{Q+\frac{1}{2}\right\} \sum_{D=Q+1}^{Q} \frac{f(D)}{D}
$$

then equation (14) becomes

$$
\begin{equation*}
\Delta E C(Q)=E C(Q+1)-E C(Q)=\left[\left\{C_{1}+C_{2}\right\} L(Q)-C_{2}\right] t \tag{15}
\end{equation*}
$$

Similarly, substituting ($Q-1$) for Q in equation (15) we have $\Delta E C(Q-1)=E C(Q)-E C(Q-1)=\left[\left(C_{1}+C_{2}\right) L(Q-1)-C_{2}\right] t$

But $\Delta E C(Q)>0$ and $\triangle E C(Q-!)<0$ for minimum of $E C(Q)$ therefore cons Ser now such a value of Q say Q^{*} such that
and

$$
\left.\begin{array}{l}
\left\langle C_{1}+C_{2}\right\rangle L\left(Q^{*}\right)-C_{2} \geq 0 \tag{17}\\
\left(C_{1}+C_{2}\right\rangle L\left(Q^{*}-1\right) C_{2} \leq 0
\end{array}\right\}
$$

For any $\left(Q^{*}+1\right)>Q^{*}$ and $\left\{Q^{*}-1\right\}<Q^{*}$ inequalities (17) holds since $L(Q)$ is non-decreasing for increasing Q. Thus rearranging the terms in (17) we get

$$
L\left(Q^{*}-1\right) \leq \frac{C_{2}}{C_{1}+C_{2}} \leq L\left(Q^{*}\right)
$$

where

$$
L(Q)=F(Q)+\left(Q+\frac{1}{2}\right) \sum_{D=Q+1}^{\infty} \frac{f(D)}{D}
$$

ALGORITHMIC PROCEDURE FOR THIS MODEL IS AS FOLLOWS
STEP -1 : Read $C_{1}, Q, f(D), D=0,1,2, \ldots, 6$
STEP-2 : Find lower bound

$$
\begin{aligned}
& L B=\sum_{D=0}^{Q-1} f(D)+\left(Q-\frac{1}{2}\right\rangle \sum_{D=Q}^{N} \frac{f(D)}{D} \\
& U P=\sum_{D=0}^{Q} f(D)+\left\langle Q+\frac{1}{2}\right\rangle \sum_{D=Q+1}^{N} \frac{f(D)}{D}
\end{aligned}
$$

STEP-3 : Set

$$
\frac{C_{2}}{C_{1}+C_{2}}=L B \Longrightarrow C_{2}=\left(C_{1}+C_{2}\right) L B
$$

$$
\Rightarrow \text { find } \quad C_{2}=\frac{C_{1} L B}{1-L B} \quad(1-L B) C_{2}=C_{1} L B
$$

$$
\Longrightarrow C_{2}=C_{1} L B /(1-L B)
$$

STEP -4 : Set $\frac{C_{2}}{C_{1}+C_{2}}=U P \Longrightarrow C_{2}=C_{1}$ UP/(1-UP)
STEP-5 : Print C_{2} lies in LB and UB

$$
\text { i.e., } \quad L B \leq C_{2} \leq U B
$$

MODEL-4

PROBABILISTIC INVENTORY MODEL

SINGLE PERIOD PROBABILISTIC MODEL WITHOUT SET-UP CPST, CONTINEOUS DEMAND AND DISCRETE UNIT REPLENISHMENT

This model is identical to Model-2 except that the fixed set-up cost say K is associated with buying or making items in a given time period. Let I be the initial inventory before starting of the period. This implies that an order of size $Q-1$ items will be placed to bring the on hand inventory of the item up to Q. Thus expected cost will become

$$
\begin{align*}
E C^{\prime}(Q)=K+C(Q-I) & +C_{1} \int_{D=0}^{Q}\{Q-D\rangle f(D) d D \\
& +C_{2} \int_{D=Q}^{\omega}(D-Q) f(D) d D \\
=K & +E C(Q) \tag{18}
\end{align*}
$$

where optimal value of Q say Q^{*} that minimizes $E C(Q)$ is given by

$$
F\left(Q^{*}-1\right) \leq \frac{C_{2}-C}{C_{1}+C_{2}} \leq F\left(Q^{*}\right)
$$

where

$$
F(Q)=\int_{0}^{D} f(D) d D=\frac{C_{2}-C}{C_{1}+C_{2}}
$$

Since K is constant, therefore minimum value of $E C^{\prime}(Q)$ must also be given by the same condition as given in (7) and (8) and hence Q^{*} will also minimize $E C^{\prime}(Q)$.

Let $S=$ Maximum stock level, and $s=$ reondered level i.e., when stock level fall on s, an order is placed to bring the stock of inventory items up to S. Thus the value of $S=Q^{*}$ the value of s is detemined by the relationship $\mathrm{EC}(\mathrm{s})=\mathrm{EC}(\mathrm{S})=\mathrm{K}+\mathrm{EC}(\mathrm{S}), \quad \mathrm{s}<\mathrm{S}$
As I is the initial inventory before starting the period, then to determine the order size to bring the on hand inventory of items upto Q^{*} the following 3 cases may be analysed
i) $I<s \quad$ i.e., Initial inventory $<$ Reorder level.
ii) $3 \leq I \leq S$ i.e., Initial inventory lies between reorder level and maximum stock level.
iii) $I>S$, i.e., Initial inventory exceeds maximum level. . CASE-1 : (I < s)

If we start the period with I units of inventory and do not buy or more, then $\operatorname{EC}(I)$ is expected cost. But if we intend to buy additional (Q-I) units so as to bring inventory level upto Q^{*} then EC' $\left(Q^{*}\right)$ will include the set-up cost also. Thus for all I < s, the condition for ordering is
$\min _{Q>I}\{\operatorname{EC}(Q)\}=\operatorname{EC}(S)<\operatorname{EC}(I)$
i.e., when inventory level reaches $S=Q^{*}$ order for $Q-I$ units of inventory may be placed.

In this case if $I<Q$, the order size is determined by the condition

$$
\mathrm{EC}(I) \leq \min _{Q>I} \mathrm{EC}(Q)=\mathrm{EC}^{\prime}(S)
$$

This implies that no ordering is less expensive than ordering.
Hence

$$
Q^{*}=I .
$$

CASE-3 : If ($Q>1$), then expected cost for an order upto Q will be more than total expected cost of no order is placed i.e., $E C(Q) \geq E C(I)$

Hence it is better not to place order and then $Q^{*}=I$.

550 REM FROEABILISTIC INVENTORY MODEL SOFTWARE
560 CLS
570 FRINT STRINGE (70, "-")
5 So FRINT "FROBAETLISTIC INVENTOFY MODELS "
590 FRINT STFINGE(70, ".-")
600 FFINT :FRINT
G10 PRINT "1. SINELE PEFIOD FRDB. MODELS WITHOUT SET UF COST, INSTANTANEOUS DEMA ND , DESCRETE UNITS FEFLENISHMENT "
620 PRINT
6SO PRINT "2. SFFM WITHOUT SET UP COST, INSTANTANEOUS DEMAND, CONT. UNITS REFLENI
SHMENT "
640 FRINT
G50 FRINT "3. SFPM WITHDUT SET UF COST, CONT. DEMAND AND DESCRETE UNITS REFLENI
SHMENT "
660 PRINT
679 FRINT "4. SFFM WITH SET UP COST, INSTANTANEOUS DEMAND AND CONTINEDUS UNITS
REPLENISHMENT "
6EO FRINT "5. STOF EXECUTION"
690 FRINT : PRINT : FRINT
700 INFUT "ENTER YOUR CHOICE $(1,5): "$, I
710 ON I GOTO $740,1270,1760,2310,2750$
720 FRINT "..... INVALID CHOECE..... TRY AGAIN " :PRINT
730 goto 560
740 FEM FROGRAM TO FIND OFTIMUM DRDER QTY WHICH MINIMIZES THE TOTAL COST
750° REM C1 = INVENTOFY CARRYING COST(HOLDING) COST FER UNIT
760 REM C2 $=$ SHOFTAGE COST FEE UNIT
$776 \mathrm{REM} \mathrm{F}(\mathrm{I})=$ FROE. DISTN. OF NO. OF UNITS FEQUIRED OR SOLD
7EO REM $11=$ GTY ON HAND EEFORE AN ORDER IS FLACED
790 FEM CF $(I)=$ CUMLLATIVE FROE. DISTRIEUTION
$800 \mathrm{REM} Q=$ OFTIMUM ORDEF GTY
810 CL.S
g29 INFUT "ENTER INUT. CAFFFYNG COST FEF UNIT : ", C1
839 FRINT : INFUT "ENTER SHORTAGE COST FER UNIT : ", C2
843 PRINT : INFUT "ENTEF GTY ON HAND BEFGRE AN ORDEF IS FLACED(II) : ", in
$859 \mathrm{~F}=\mathrm{C} 2 /(\mathrm{C} 1+\mathrm{C} 2)$
869 INFUT "ENTER LAST VALUE IN THE DISTRTBUTION OF GTY FEQUIFED IS $N:$:, N
870 FRINT :FRINT "ENTER FROE. DISTRIBUTION "
geg PRINT:FOR I=O TO N
899 READ F'(I) : NEXT I
900 DATA .01,.14,.20,.30,.25,.10
950 CLS
920 FRINT STRINGま (79, "-")
930 FFINT "THE DATA SUPPLIED FOR EMC MODEL EK 50 bREAK IS AS FOLLOWS"
940 PRINT :PRTNT
950 FRINT STRING $(79, \cdots-\cdots)$
960 FRINT : PRINT "INUT. CARFIYING COST FER UNIT CI $=$ ";CI:FRINT
976 FRINT "SHORTAGE COST FEE UNIT C2 $=$ ";C2:FRINT
989 FFINT "QTY ON HAND BEFGRE AN ORDEF IS FLACED II $=$ "; II
990 FRINT
$1000 \mathrm{CP}(0)=\mathrm{F}(6)$
1010 FDR $I=1$ TO $\mathrm{N}: \operatorname{CF}(\mathrm{I})=\mathrm{CF}(\mathrm{I}-1)+\mathrm{P}(\mathrm{I}): \mathrm{NEXT}$ I
1620 FRINT STRINGs (75,"-")
1030 FRINT "DEMAND ", "FROBABILITY","CLMMM. PROB."
1049 PRINT STRING $(75, "-1)$
1050 FDK $I=0$ TO N : FFINT I, F(I), CF(I):NEXT I:PRINT STRING (75, "-")
1060 FOR $I=0$ TO N
1070 IF CF(I) ©R THEN 1100
$1080 \mathrm{Q}=1$

```
1090 GOTO 1120
1100 NEXT I
1110 FFINNT
1120 IF Q\I1 THEN 1190
1130 FFINT "FRESS FS TO SEE THE QUTFUUT " :FRINT :FRINT
1140 STOF
1150 CLS:FRINT STFING年(75,"--")
11.60 FRTNT "THE OUTFUT OF MODEL I FOR SUPFLIED DATA IS AS FOLLOWS ":FRINT STRING
$(75,"一")
11.% PRINT :FRINT "..... DO NOT ORDER .....":FRINT :FRINT GTRINE& (75,"..")
1180 GOTO 1250
1190 FRINT "FFESS FS TO SEE THE OUTFUT ":FFINT :FRTNT :STOF
1200 CLS:FRINT STRING%(SS,".."):PRINT "THE O/F OF MODEL I IS AS FOLLOWS "
1210 FFINT STFING$(55,"*")
1220 FRINT
12J0 FRINT "OFT. DRDEFING FOLTCY IS TO OFDER ";G-II:"UNITE"
1240 FRTNT STRING%(55,"*")
1250 FRINT. "FFESS F5 TO STOF EXECUTION ":STOF:GOTO 2750
12GO FEM FFOGFAM TO FIX OFTIMUM OFDEF QTY WHICH MINIMIZES TOTAL COST
1276 CLS
1280 FFOEABILISTIC INVENTOFY MODEL. IX.
1290 IT ASSUMES DISTRIEUTION OF DEMAND TO BE FECTANSULAF OVEF [A,B]
1%00 INFUT "ENTER LOSS DUE TD SALE OF" LEFT OVERS Ci.",C1
1310 INFUT "ENTEF FFOFIT MADE FER EVEFY FOUND SOLD C2",C2
1320 INPUT "QTY ON HAND BEFDRE AN ORDER IS FI_ACED II", II
13S0 FRINT "QTY ON HAND BEFOFE AN OFDEF IS FLACED IS = ";IL
1540 R=C2/(C1+C2)
1350 INFUT "ENTEF LOWER LIMTT FOR DEMAND AS FEF FECTANGULAF DTETFIEUTION",A
1369 INFUT "ENTEF IFFEF LIMIT FOF DEMAND AS FEF REETANGULAR DTSTFIEUTION ", E
1370 PRINT
1380 FD=1/(E-A)
1390 Q=A+F/FD
1400 FRINT STKING&(55,"-")
1410 FFINT "THE INFUT DATA FOF MODEL. IJ IS AS FOLLOWS "
1420 FRINT STRING里(5S,"-")
14.30 FRINT
1440 FFINT "LOSS DUE TO SALE OF LEFT OUEFS IS Ci= ":Ci
1450 FRCNT
146% FRINT "FROFIT EAFNED FEF EVEFY FOUND SOLLD IS =",C2
1476 FRINT
14E0 FRINT "QTY ON HAND BEFOFE AN ORDEF IG FLACED I.",I.
1490 FFINT
1596 FRINT "LOWEF LIMIT FOR FECTANGLHAR DIETFTBUTION IS A=",A
1510 FRTNT
1520 FRINT "UFFER LIMJT FDF RECTANEULAR DJSTRTBUTION TS E="#E
1530 FKLNT
1540 FRINT ETFINE&(55,"-"")
15SO FRINT "FRESS FS TO SEE THE OUTFUT "
1560 STOF
1570 IF It <Q THEM 1670
1580 CLS
1570 FFJNT STFING*(55,"-.")
16O0 FRINT "THE OUTFUT FOR MODEL II IS AS FOLLOWS "
1610 FFTNT ETFJNG*(5S,"--")
1520 FRINT
```

```
1630 FRINT STFING$(55,"-")
1640 FFINT "DO NOT ORDEF "
1650 FFINT STRING年(55,"一")
1660 60TO 1750
1670 CLE
1680 FRTNT STFING生(55,"-")
1670 FRINT "THE OUTFUT FOR MODEL II IS AS FOLLDWS "
1700 FFINT STRING串(55,"-")
1710 FRINT
1720 FRINT STRING生(5S,"--")
1730 FRINT "OFTIMUM ORDER GTY IS :"g; "UNITS"
1740 FRINT STRING婁(55,"--")
1750 FRINT "FRESS FS TO STOF EXELUTION ":PFINT :FRINT :STOF :GOTO 2750
1760 REM FROGFAM FDF FROBABILISTIC MODEL III
1770 REM FROGFAM TO FIND SHDFTAGE COST WHEN OFT, DRDEF QTY (Q) IS KNOWN
1780 CLS
1790 FEM FD(I)= FROE. DISTFIBUTION FOR MONTHLY SALES
18OD FEM D= LOWEF EOUND, UB =UFPER BOUND, LBCZ=LOWEF EOUND FOF SHOFTAGE COST C2
1810 FEM UFB2 = UFPER BOUND FOR SHORTAGE COST C2
1820 INFUT "ENTEF INVT. CAFFYING COST C1 :";E1
18S0 FRINT :INFUT "ENTER OFT. GTY AT THE BEGINNING OF MONTH (Q): ",Q
1840 INFUT "ENTER MAX. LIMIT OF MONTHLY SALES (N) :",N
1B50 FRINT "ENTER FROE. DISTN. DF MDNTHLY SALES ":FRINT
1860 PRINT
1870 FEM ...
1880 FOF I= O TO N
1890 READ FD(I)
1900 NEXT I
1910 DATA .02,.05,.30,.27,.20,.10,.06
1920 REM TO FIND LOWEF BOUND FOF COST FATIO
1930 FOF I=0 TO G-1.
194051=51+FD(I)
1950 NEXT I
1960 FOF I=Q TO N
1970 S2=52+FD(I)/I
1980 NEXT I
1990 LB=51+(Q-.5)*5%
2000 LEC2=(C1*LE) /(1-LE)
2010 FEM COMPUTATION OF UFFEFI EOUND
2020 FOF I=0 TO Q
2030 5S=S3+FD(I)
2040 NEXT I
2050 FOR I=Q+1 TO N
2060 S4=54+FD(I)/I
2070 NEXT I
2080 UB=53+(Q+.5)*54
2090 UEC2=(Ci*UB)/(1-UB)
2100 FRINT STFING生(75,"-")
2110 FRINT "INFUT DATA SUFFLIED FOR IMFLEMENTATION OF MODEL ITI IS AS FOLLOWS"
2120 FRINT STRING生(75,"-")
2130 FRINT :FRINT "JNVT. CAFFYYING COST C1 = ":C1
2149 FRINT
2150 FFINT "OFT. ORDEF GTY AT THE BEGINNING OF EACH MONTH Q =";Q
2160 FRINT
```

```
2170 FRINT STRING&(75,".")
21EO FRINT "SALES","FFOB."
2190 FOR T=0 TO N
2 2 0 0 ~ F F I I N T ~ I , F D ( I )
2210 NEXT I
2220 FRINT STFIING$(75,".")
22S0 CLS
2240 FFINT STFING$(75,"."):FRINT "THE O/F FOR MODEL IJI IS AS FDLLOWS ":FRINT ST
RING&(75,".")
2250 FFINT "LOWEF BOLIND FOF C2 = ",LBC2
2250 FRINT "UFFEF BOUND FOF C2 = ";UBC2
2270 FRINT "HENCE VALUE OF C2 MUST LYE JN THE FOLLOWJNG INTERVAL "
22EG FRINT LEC2;"&= C2<= ";UBC2
2290 G0TO 2750
2SO0 FEM FROEABTLISTTC INVENTORY MODEL IV
2310 FEM SPFM WITH SET UF COST
2320 REM F(D) ASEUMES TO EE FECTANGULAF DISTFIBUTION
23S0 FEM O IS UNIT FRICE
2S40 CLS
2צ50 INFUT "ENTEF INUT. CAFFFYJNG COST FER UNIT C1 :",C1:FRINT
2360 INFUT "ENTEF SHDFTAGE COST FER UNIT C2 =";C2:FFINT
2370 INFUT "ENTEF INUT. AT THE BEGINNING OF THE FERIOD I = ";I:FRINT
ZSEO INFUT "ENTEF SET UF COST IN FS. (K) :",K:FFINT
2390 INFUT "ENTEF LOWER LIMIT IN FEECTANGULAF DISTFIBUTION (L.):",FFINT
2400 INFUT "ENTEF UFFEF LIMIT IN FECTANGULAFF DISTFIEUTION (U) : ",U:FRINT
2410 INFUT "ENTEF MAX . STOCK LEVEL S1 ="; S1:FFINT
2420 INFUT "ENTEF FEORDER LEVEL S2 =";52 :FFINT
2430 F=1/(U-L.)
2440Q Q (C2-C)/(C1+CD)*(U-L)
2450 CLE :FFINT ETFING婁(75,".")
2460 FFINT "THE INFUT DATA SUFFLIED FQR THE IMFLEMENTATION DF MODEL IV IS AS FOL
LOWS "
2470 FRINT STRING&(75,"."):FFINT
2480 FFINT "INUT. CAFF゙YING COST FEFF LNIT C1= ";C1:FFINT
2470 FRINT "ENTEF SHORTAGE COST FER UNIT C2 =";C2:FRINT
2500 FFINT "INVT. AT THE BEGINNING OF FERIOD I = ";I:FRINT
2516 FRINT "SET UF COST IN R=. K゙= ";E&FRJNT
2520 FFINT "LOWEF LIMIT IN THE FECTANGULAF DISTFIBUTION L =";L
2539 FFIINT
2540 FRINT "UFFEF LIMJT IN THE FEETANGULAR DTSTFIBUTJON U= ";U:FFINT
2550 FRINT "MAX. STOCK LEVEL S1 =";Sl:FRINT
2560 FFINT "REOFDEF LEVEL 52 = ":S2:FRINT
2 5 7 0 ~ F F I N T
25E0 FFINT STFING&(75,".")
2596 FRINT "FRESS FS TO SEE THE OUTFUT"
2600 STOF
2610 FFINT STFING$(70,"."}
2626 CLS
26.30 PRINT STFING*(75,"."):FRINT "THE O/F OF MODEL IV IS AS FOLLOWS"
2640 FFINT STFINGक(75,".")
2650 FRINT
2660 IF I<S1 THEN 2700
2670 IF Q> I THEN 2720
2680 FRINT "FLACE AN OFDER OF ";I;" UNITS"
2690 G0TO 2750
2700 FFINT "FLACE AN ORDEFR FOR ":Q-I;" UNITS"
```

```
27:0 GOTO 2750
272G FRINT "EETTEF NOT TO ORDER "
27EO FRINT :FRINT "OFT. ORDEF GTY IE INITIAL QTY ON HAND EEFQRE BEGINNING OF THE
    FERTDD "
2740 FFIINT STRING生(75,".")
2750 CLS
2760 LDCATE 12,10 :FRINT STFING& (55,"*")
2770 LOCATE 14,15 :FFINT "...... EXECUTION OVER .....""
27B0 LOCATE 16,15:FRINT ".... THANK YOU ....."
2790 LOCATE 18,15 :FFINT "...... HAVE A NTCE TIME .....""
2800 LDCATE 20,10 :FFINT STRING& (55,"*")
2810 END
```

