APPENDIX NO. 7

FORMULAE USED FOR STATISTICAL ANALYSIS

1. Mean $=\frac{\sum \mathrm{X}}{\mathrm{N}}$

$$
\begin{aligned}
\mathrm{N} & =\text { Sample Size } \\
\Sigma \mathrm{X} & =\text { Summation of Score }
\end{aligned}
$$

2. Standard Deviation

$$
\sigma \text { or } S . D .=\sqrt{\frac{\sum X^{2}}{N}}
$$

$$
\mathbf{x}^{2}=\text { Square of score }
$$

3. $t=\frac{D}{6 D}$
$\mathrm{D}=$ Difference of mean in two test

$$
\sigma \mathrm{D}=\text { Standard error }
$$

4. $\mathrm{df}=\mathrm{N}-1$

$$
\mathrm{df}=\text { degrees of freedom } .
$$

5. Correlation Coefficient

$$
r=\frac{\frac{\sum X^{\prime} Y^{\prime}}{N}-c_{x} c_{y}}{\frac{1}{6 \times 6^{\prime}}}
$$

Where C X $=\frac{\sum \mathrm{fx}^{\prime}}{\mathrm{N}}$
$C y=\frac{\sum f y^{\prime}}{N}$

$$
\sigma_{x}^{\prime}=\sqrt{\frac{\sum f x^{\prime}{ }^{2}-C^{2} x}{N}} \sigma^{\prime} y=\sqrt{\frac{\sum f y^{\prime 2}-C^{2} y}{N}}
$$

Where

$$
\Sigma X^{\prime} Y^{\prime}=\text { Sum of cross products of variables } X \text { and } Y
$$

