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STATE VARIABLE ANALYSIS AND SYNTHESIS

4.13 STATE VARIABLES
The tern "State-Variable" is related to "State 

variable theory" which provides a systematic means of formulating 
the differential equations of large system. A state diagram 
showing interconnection of all the mathematical operations may be 
constructed, as part of such a formulation. Inreality, state

/ Q \diagram is a mathematical form of an analog computer simulation. '
The zero input response in an RLC network is completely 

determined when the initial inductor currents and capacitor 
voltages are known. Hence, we call the initial capacitor voltages 
and inductor currents (initial conditions) as the initial states 
of the system. The knowledge of capacitor voltages and inductor 
currents, at a given time,of a given network is sufficient to 
calulate any of the network variables (current and voltages) at 
the particular time. Hence, the capacitor voltages and the 
inductor currents at a specified time, are called "state 
variables" ^^of the network.

The state of a network is normally defined as a set of real 
or complex quantities that satisfy the following conditions.
(a) The state at any time t^and the input from t^ to t (t>tl) 
uniquely determine the state at a time t.
(b) The state at time t' and the inputs at time 't' of any 
network variable.

GJ



For example, consider the network shown in fig. (4.1)
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fig.(4.1)
If the capacitor voltage 'is known at time 

t' then we can replace it by a known voltage source Vo(t) as 
shown in fig.(4.2)
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fig.(4.2)
How, the voltages across and currents through the 

resistors can be found by solving a set of algebraic equations 
(say, mesh equation). Hence,Vc(t) is the state of the network.

States can also be considered as variables which 
carry sufficient information about the history of systems. 
Obviously,a purely resistive network has no states at all.
Only a reastive network or a network with energy elements

2 2 (1} (capacitor with l/2cv & inductor, with 1/2LI ) has states. '
The motivation in the study of state variable is

that the state variable form is most convinient for computer
solutions, [either digital or analog computer]



T.R. Bashkow in 1957, has suggested the
strategy for state variable analysis of any network (reactive 
network) which is accomplished in the following steps.
(1) Select a tree containing all capacitors but not indictors.
(2) The state variables are the branch capacitor voltages in this 
tree and the inductor currents of the chords.
(3) Write a node equation for eaoh capacitor.
(4) Manipulate each equation,if necessary, until it Involves only 
the variables selected in (2) plus the inputs.
<5) Write a loop equation using each inductor as a chord in the 
tree of (1).
(6) Repeat step (4).
(7) Manipulate the eqns. as may be necessory (devision by 
constants, for example) until they appear in the standard form of
the eqns. (4.1).

dx^/dt= auxl+ ai2 x 2*.......... + alnxn+yl
dxj/dt= a21Xj+ a22 x 2+...........+ aZnVy2

dx /dt^a-x.+a -x,+................+ a„x +y„n nl 1 n2 2 nn n n
If solution is to be accomplished by computer, then the 
state space formulation (like eqn.4.6 ) offers advantagesand
writting the eqns. correctly is the only requirement. If the 
network to be analyzed contains one element or several elements 
that are non-linear or time-variable, then the state space
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fornul&tion is recommended and the solution by computer nethods is 

the only practical possibility.

If the solution is to be accomplished 

using a pencil and pad of paper, then it is ordinarily simpler to 

use node or loop formulations.

4.2) STATE-VARIABLE REALIZATION finfinitergainl
The method of synthesis'using op.amps, may be set up 

through the use of state variables.

To see this consider the open-circuit voltage transfer
function

V9(s) V al
T<s) = -J7~r- = ------vrs; b„+ b«0 1

+ a< s+a2& + ,+a s n
n

(4.8)
,1s+b?s2+........+b sn
l i. n

Where the co-efficient a^ and b^ are real but may be 

positive or negative (or zero).We shall assume that the usual 

requirements of stability are met.
On multiplying eqnn. 4.8 , throught by

x/sn, we get
m0x/s" +a1x/sn-l + a2x/sn-2 a^x/s +»RX

T(a) = (4.8)
box/s" + + b2x/an‘2 + -+bn-2x/s +bnx

The numerator and denominator 

written as input and output by proper

are seperately 

scaling, therefore

V2(s)
a0x

n

a^x a2x an-lx
n-1 n-2

+ anx (4.10)

Vx(s)
b0x blx b2X b„ ,x n-i

sn .n-1 n-2
+ bnx (4.11)
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In eqns. (4.10) & (4.11) the tern x/si,

where i = 1,2,....  is a " state-variable"
Equation (4.11) can be modified and rewritten as

b0x blx b2x bn-lx
bnx = Vl<8>~ ~ n-1 8 n-2 (4.12)

Where V^s) is usually the input voltage availlable from 
external source.

So, the equation (4.10) & (4.12) may be realized by 
means of the interconnections of the n integrator (each 
realized by an op. amp.,a resistor, and a capacitor) and two 
summers (each also requiring an op.amp.)

The overall configuration is as shown in fig.(4.3).
Here, first summer (£ (1)) is used to represent the

equation for bRx, and second summer (E(2))torepresent the output 
equation for v2.

In this fig. it has been assumed that the integration 
are non-inverting (Modification of the circuit for the case where 
the conventional inverting integretors ere used is easily made).
It should be noted that such a realization requires only n 
capacitors and a miximum of n+2 operationalamplifiers^1*^

4.3> REALIZATION QE A SECOND-ORDER FUHCTIQN(9):-
The second order voltage transfer ratio given by

T(s)
2 .as + bs + c 

ds^+ es + f (4.13)
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on transformation to
ae af

s' ♦
dGB dGB

T(s') = (4.14)
s 2 + a f

---  s' + —
dGB dGB4

Using
1 GB 
8' 8

is represented by the following state spaoe eqns.

af ae

vb - h ♦
*1 = x2

dGBT xi * dGB

and

,2 X1 x2 ♦ VidGB * dGB 
The realization^4^is shown in fig. (4.4)-

(4.15)

(4.16)

(4.17)
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Fig.4-4- Realization of a general second-order transfer 
function using the operational amplifier pole .
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