
CHAPTER - II
PC HARDUARE, SVSTEM SOFTWARE OVERVIEW & DIGITAL INTERFACING CONCEPTS

CHAPTER TWO

PC HARDWARE, SYSTEM SOFTWARE OVERVIEW
AND

DIGITAL INTERFACING CONCEPTS

2.0 INTRODUCTION

A digital computer is a mu.! tipie>:er , programmable
machine that- reads binary instructions from its memory, accepts
binary data as input and process data according to the instruc­
tions and provides the results as output. The physical components
of the computer are called HARDWARE. A set of instructions
written for the computer to perform a task is called a PROGRAM
and a group of programs is called SOFTWARE.

We are acquiring the digital information of the analog
data with the help of ADC and making the analysis of the data
with the help of PC. Once the PC acquires the data then there is
no problem for manipulating the data as we wanted. Here the only
tracking part is that to give the data to the PC. Therefore data
interfacing techniques and the role of PC is very important in
this DAS system. In discussing about the PC hardware overview and
its principles of operation, we can say that it is common to all
applications. Only difference is that the software differs from
one application to another application. In most of the applica­
tions, the system software is same. The software supplied by the
manufacturer of the computer is referred to as the system soft­
ware. The basic system software supplied together with the com-

puter consists of OPERATING SYSTEM, PROGRAM DEVELOPMENT SOFTWARE
and DIAGNOSTIC SOFTWARE. For example, DOS < MS-DOS or PC-DOS) is
a good system software. There is a Basic-Input-Output-System
(BIOS), which is interface between the hardware and software. The
BIOS is also a software but it is called the FIRMWARE due to its
integration with hardware. We can say that, without BIOS, the PC
is like a dead machine. The BIOS controls the hardware according
to the requirements from the DOS.

2.1 IBM PC MOTHERBOARD

The fig.{2.1) shows the block diagram for the mother­
board of the IBM PC. We see from the left side of the diagram,
the 8080 CPU and the 8259A priority-interrupt controller. The
next vertical line of devices to the right assist of the address
bus buffers, the data bus buffers and the 8288 bus-controller
chip. The bus controller chip is required because the 8088 is
operated in maximum mode. The busses from these devices go across
the drawing and connect to the 62 pin peripheral board connec­
tors. The CPU then use these busses to communicate directly with
the boards in the peripheral expansion slots. How the ROM in the
lower right, the keyboard logic etc. in the middle right, and the
dynamic RAM in the upper right. Take a look at the column of
devices which contains the 8237A-5 DMA controller. Starting at
the bottom of this column we can see an 8253-5 programmable
timer. Just above this a family of 8255A-5 programmable port
device. How we are left with just the three devices with DMA in
their labels to ponder. The 8237A-5 is the DMA controller. The

J J

FI
G

U
R

E Block di
ag

ra
m

 of
 ci

rc
ui

try
 on

 IB
M

 PC
 m

ot
he

rb
oa

rd
.

74LS373 under the DMA controller is used to grab the upper 8-
bits of the DMA address sent out on the data bus by the 8237A-5
during a transfer. This device has the same function performed by
octal latch. The 74LS670 is used to output bits the
DMA transfer address, the same function performed by 8282 octal
latch.

The clock generator continuously supplies free running
clock to the microprocessor. When the power supplied is switched
on, the clock generator resets 8088. The microprocessor initiates
power-on sequence and it starts instruction fetch from the ROM
location HEX FFFF0. The firmware begins from this location. The
address latches use the trailing edge of ALE to latch the address
sent on the local bus by the 8088 in Tl. The bus controller
decodes the bus status sent by the microprocessor and generates
appropriate bus controller signals. The RAM decode logic, ROM
decode logic and I/O port decode logic decodes the address on
the address bus in order to enable the access of RAM, ROM or
motherboard I/O ports by the microprocessor. The wait state
logic decides the number of wait states to be introduced in
different bus cycles of the CPU or DMA controller. The parity
logic generates odd parity bit while writing data into RAM.
During the read operation from RAM, if there is no odd parity,
the parity logic generates parity error signal.

On receiving parity error signal, the MMI logic gener­
ates HMI which goes to the microprocessor. The HMI logic is
generated under two more abnormal situations also:
i) Parity error while reading from daughterboard memory
ii) Malfunction defected by co-processor <co-processor interrupt}

The Memory control logic has to be refreshed periodi­
cally. This is done by refreshing the rows one by one at an
interval of 15 microseconds. For this purpose, the timer one is
programmed by firmware to generate a request for every 15 micro­
seconds which is issued to the DMA controller as BRQo, The DMA
controller performs a bus cycle and sends the row address to be
refreshed. All the DRAM chips are simultaneously enabled to
refresh a particular row. This is achieved by bypassing the RAM
decode logic.

During the normal reading from or writing into RAM, the
row address and column address is sent to the RAM chip on the
same input pins, through the row/column address multipliers. Row
address is sent first and after a 60 ns delay column address is
sent.

Since the address bus is common to 60k*1 the microproc­
essor and the DMA needs to obtain bus sanction before starting a
bus cycle. For this purpose the DMA controller issues activity by
the microprocessor. On sensing the condition that the microproc­
essor does not need a bus request, HOLD, to “Bus Arbitration
Logic” <BAL). The BAL constantly monitors the bus activity by the
microprocessor. On sensing the condition that the microprocessor
does not need a bus cycle immediately, the BAL issues a wait
state request to the CPU logic and simultaneously BAL issues the
bus sanction, HOLD ACK to the DMA controller.

When the bus is with the DMA, the CPU signals (address,
data and other control signals) are prevented from entering into
the system bus by tri-stating the appropriate outputs. Similarly,

when the microprocessor has the bus control, the DMA outputs are
disabled from interfacing with the system bus.

The interrupt logic receives different interrupt re­
quests and generates a common interrupt request {IHTR) which goes
to the microprocessor. The microprocessor in turn, interrogates
the interrupt controller by performing two chained interrupt
acknowledgement cycles. In response, the interrupt controller
sends a vector code on the data bus. The vector code contains
information about the interrupt level for which the interrupt
controller has sanctioned priority. The CPU accordingly branches
to the corresponding interrupt service routine.

The keyboard interface receives serial data and clock
from the keyboard and converts the data into parallel byte which
contains the scancode for the keypressed. The keypressed inter­
face rises an interrupt request {IKQ1) after assembling one
scancode. The keyboard interrupt service routine (BIOS) converts
this scancode into ASCII code. The configuration logic (mode
switch input logic) senses the OH/OFF condition of the mode
switches (DIP switch). This information is stored in the memory
by the firmware for the future reference.

2.2 I/O POST ADDRESSES

The port addresses in PCs are 16 bits considering
the 8080’s I/O mapped I/O scheme. Theoretically the PC can ad­
dress 64 kilo input ports and 64 kilo output ports. The CPU
addresses the I/O ports through IN (input) and OUT (output)
instructions. The I/O addresses Hex 000 to 0FF are reserved for
the motherboard. The address Hex 100 to 3FF are available for use

in daughter boards. Here the address Hex 300 to 31F are available
for I/O mapping in the expansion slot <i.e. for the use of Proto­
type Card).

Following Table 2.1 shows an I/O address map for PC.
Table 2.1 : I/O address nap :

HEX RANGE OSES

000 - 00F DMA chip 8237A - 5
020 - 021 Interrupt 8259 - A
040 - 043 Timer 8253 -5
060 - 063 PPI 8255A - 5
060 - 083 DMA page registers
0AX NMI Mask Register
0CX Reserved
0EX Reserved
200 - 20F Game control
210 - 217 Expansion Unit
220 - 24F Reserved
278 - 27F Reserved
2F0 - 2F? Reserved
2F8 - 2FF Asynchronous communications
300 - 3 IF Prototype card
320 - 32F Fixed disk
378 - 37F Parallel printer
380 - 38F SDLC communications
3A0 - 3AF Reserved

3B0 - 3BF IBM monochrome display
3C0 - 3CF Reserved
3D0 - 3DF color/graphics
3E0 - 3E? Reserved
3F0 - 3F? Diskette
3F8 - 3FF Asynchronous communications

2.3 I/O CHANNEL

The I/O channel is an extension of the microprocessor
bus. It is however, de-multiplexed, repoured and enhanced by the
addition of the interrupts and direct memory access (DMA) func­
tions.

The I/O channel contains an 8 bit bidirectional data
bus, 20 address lines, 8 levels of interrupts, control lines for
memory and I/O read or write clock and timing lines, 3 channels
of DMA control lines, memory control lines, a channel check line
and power and ground for the adapters. Four voltage levels are
provided for I/O cards +5 Vdc, -5 Vdc, +12 Vdc and -12 Vdc. These
functions are provided in a 62 pin connector with 100 mil card
tab spacing.

A ready line is available in the I/O channel to allow
operation with slow I/O or memory devices. If the channels ready
line is not activated by an addressed devices all processors
generated memory read and write cycles take four 210 ns clock or
840 ns byte. All processors generated I/O read and write cycles
require 5 clocks for a cycle time of 1.05 MP byte. All DMA trans­
fers require five clocks for a cycle time of 1.05 ais byte. Be-

66

fresh cycles occur once every 72 clocks (approximately 15 ./us)
and require four clocks or approximately equal to the bus band­
width.

I/O devices are addressed using I/O mapped address
space. The channel is designed so that 768 I/O device address are
available to the I/O channel cards.

A channel check line exist for reporting error condi­
tions to the processor. Activating this line result in a Non-
Maskable Interrupt <NMI) to the 8080 processor. Memory expan­
sion options use this line to report parity errors.

The I/O channel is repoured to provide sufficient drive
to power all eight (J1 through J8) expansion slots, assuming two
low power sohhottky <LS) loads per slot. The IBM I/O adapters
typically use only one load.

Timing acquirement on slot J8 are much stricter than
those on slots J1 through J7. Slot J8 also requires the card to
provide a signal designating when the card is selected.

The fig.{2.2) shows the " system expansion slots ” in
the components layout diagram for the IBM PC motherboard,

2.4 I/O CHANNEL DESCRIPTION
The following is a description of the IBM Personal

Computer XT I/O channel. All lines are IBM compatible. The
fig.(2.3) shows the Pin names and numbers for peripheral slots on
IBM PC motherboard.

CASSETTE I/O KEYBOARD I/O

FIGURE

IBM MATH
COPROCESSOR

SYSTEM BOARD
POWER CONNECTIONS

CLOCK CHIP
TRIMMER

INTEL 8088
PROCESSOR

DIP SWITCH
BLOCK 2

DiP SWITCH
BLOCK 1

SIGNAL
NAME

REAR PANEL SIGNAL
NAME

COMPONENT

FIGURE 039 Pin names and numbers for peripheral slols
on IBM PC motherboard.

Signal I/O Description

osc o

CLK O

RESET-DRV 0

19 0

Oscillator: High speed clock with
a 70-ns period <14.31818 MHs),
It has 50& duty cycle.
System clock:It is divide by
three of the oscillator and has
a period of 210 ns <4.7? MHs).
The clock has a 3Z% duty cycle.
This line is used to reset or
initialise system logic upon
power-up or during a low-line
voltage outage.This signal is sy­
nchronised to the falling edge of
clock and is active high.
Address bits 0 to 19: These lines

are used to address memory and
I/O devices within the system.
The 20 address lines allow access
of up to 1 megabyte of memory.
A$ is the least significant bit
<LSB) and A19 is the most signi­
ficant bit<MSB). These lines are
are generated by either the pro­
cessor or DMA controller. They
are active high.

D0~D? I/O Data bits 0 to 7 : These lines

70
provide data bus bits 0 to ? for
the processor, memory, and I/O

devices. I>0 is the least signif­
icant bit{LSB) and D7 is the most
significant bit{MSB), These lines

are active high.

ALE 0 Address latch enable: This line

is provided by the 8288 bus

controller and is used on the

system board to latch valid

addresses from the processor.

It is available to the I/O

channel as an indicator of a

valid processor address {when

used with AES). Processor

addresses are latched with the

falling edge of ALE.

I/O CH CK I -I/O channel check: This lines

provides the processor with parity

(error) information on memory

or devices in the I/O channel.

When the signal is active low

a parity error is indicated.

I/O channel ready: This line,

normally high{ready) is pulled

I/O CB RDY I

low (not- ready) by any memory
or I/O device to lengthen I/O
or memory cycles. It allows slower
devices to attach to the I/O
channel with minimum of
difficulty. Any slow device using
this line should drive it low
immediately upon detecting a valid
address and a read or write command
. This line should never be held
low longer than 10 clock cycles.
Machine cycles<1/0 or memory) are
extended by an integral number of
CLK cycles <210 ns).
Interrupt request 2 to 7: These
lines are used to signal the
processor that an I/O device req­
uires attention.They are prio­
ritised with IRQ2 as the highest
priority and IRQ? as the lowest
priority. An Interrupt Request
is generated by raising an IRQ
line <low to high) & holding
it high until it is acknowledged
by the processor < interrupt
service routine).

-I/O Read command : This command

line instructs an I/O device to
drive its data onto the data bus.
It may be driven by the processor
or the DMA controller. This signal
is active low.

10W 0 -I/O Write command : This command
line instructs an I/O device to
read the data on the data bus.It
may be driven by the processor
or the DMA controller. This signal
is active low.

MEMR 0 -Memory read command : This command
line instructs the memory to drive
its data bus. It may be driven by
the processor or the DMA
controller. This signal is
active low.

MEMW 0 -Memory write command : This command
line instructs the memory to store
the data present onto data bus. It
may be driven by the processor or
the DMA controller. This signal is
active low.

AEN 0 Address finable: This line is used to

73

T/C

CARD

de-gate the processor and other
devices from the I/O channel to
allow transfer to take place. When
this line is active <high), the DMA
controller has control of the
address bus, data bus, read command
lines < memory and I/O), and the
write command lines{ memory & I/O).

0 Terminal count : This line provides
a pulse when the terminal count for
any DMA channel is reached. This
signal is active high.

SLCTD I -Card selected : This line is
activated by cards in expansion slot
J8. It signals the system board that
the card has been selected and that
appropriate drivers on the system
board should be directed to either
read from , or write to expansion
slot J8.Connectors J1 through J8
are tied together at this pin, but
the system board does use their
signal. This line should be driven
by an open collector device.

The following voltages are available on the system
-board I/O channels :

+5 Vdc +/- h% ; located on 2 connector pins.
-5 Vdc +/-10& ; located on 1 connector pin.
+12 Vdc+/- 5& ; located on 1 connector pin.
-12 Vdc +/-10% ; located on 1 connector pin.
GND ; located on 3 connector pins.

2.5 SYSTEM SOFTWARE

The software supplied by the manufacturer of a computer
is referred to as the system software and the program developed
by the user are grouped under the application software.The basic
system software supplied together with the computer consist of :
1) Operating system,
2) Program development software and
3) Diagnostic software.
2.5.1 OPESATIMG SYSTEM : An operating system is a collection of
programs that link a central processing unit with the external
world through a well defined set of commands for the development
and execution of application programs.An operating system per­
forms the following functions :
i) Manages the use of system resources,
ii) Allocates CPU resources to tasks (programs),
iii) Activates, suspends and destroys tasks,
iv) Perform memory management,
v) Perform movements of files among storage media and
vi) Handles I/O and interrupts.

Since the configuration of computer installations can vary

from application to application, the facilities provided by the
operating systems vary accordingly. However, the following parts
of the operating system software are common to all computer
installations :
a) Monitor or executive or supervisor,
b) Task scheduler,
c) Command interpreter and
d) Drivers.

It may be noted that operating systems on microcomput­
ers are now generally used but in most applications microcomput­
ers are dedicated to performing a single task or three to four
task and a background/foreground mode of operation is performed.

The monitor is considered to be the heart of an operat­
ing system. Its main purpose is to control the processing of user
programs and provides additional facilities designed to suit
particular areas of applications.

The task scheduler which is used in multiprogramming
environment determines the next program to be run when the pro­
vides one has been completed or suspended due to an I/O or er­
rors. There is a great variety of scheduling algorithms based on
queuing theory which are used in scheduler programs.

The command interpreter is a link between executive
monitor and user. The user communicates with the computer system
through a suitably defined set of commands e.g. shell is command
interpreter in Unix.

Drivers are programs which operate peripheral devices
through their hardware control units. The executive acts as the

interface between the user program and the driver. A user can use
the peripheral devices via the monitor which passes the request
to the appropriate driver.

2.5.2 PROGRAM DEVELOPMENT SOFTWARE
The program development software is needed by the user

to help him in coding, updating and debugging the programs. The
set of programs contribute to a program development software
consists of the following :
i) Text editor, ii) Language translator (assembler and compiler),
and iii) Debugging routines.
i) Text editor ~ The text editor program allows the text to be
entered, stored and corrected. The editor provides facilities to
delete or replace some of the pieces of a text, insert new sec­
tions and so on. A file manager program allows the text to be
filled and retrieved by name. There are two kinds of editor
programs; linear and contextual. The first one works on a line by
line basis. To change a character in a line, the whole line must
be deleted and the correct one retyped. The contextual editor
permits the handling of a string of character at any place in the
program.
ii) Language translator - A programing language (for e.g. Basic,
Pascal, C etc.) is an interface between a users problem and a
competing system. It has the following three attributes:
SYNTAX - A set of rules that define the writing of correct state­
ment and expression of a language.
SEMANTICS - The interpretation of statements and assigning mean­
ing to them.

DATA STRUCTURE - The data can be handled by the basic operations
of a language.

Programming language differ in all three types. Assem­

bly language programming allows a user to write his programs in
symbolic code which corresponds to CPU hardware instructions.
Assembly language-level programming is more convenient way of
programming than machine level programming since it uses “mnemon­
ics” to denote the operation code which is in octal or hexadeci­
mal and "symbolic addresses" to denote the operands.

An assembler program translates the symbolic instruc­
tions into the binary machine code; the "object-code". A compiler
program is used for high level translation. After being stored,
the object code is executed by the computer, one statement at a
time. It may be noted that different assemblers or compilers
accepting the same source program can produce object codes with
differing memory utilisation, speed, number and type of listing.
Assemblers are very important since in some process control
application only an assembler can offer an acceptable solution.
Almost, most of the system software, {e.g. monitor, scheduler
etc.) is written in assembly level programming as well as driver
routines of various peripheral devices.

A compiler is a program that translates another program
written in high level language to the assembly language or ma­
chine language of specific microcomputer. The compiler program is
written in the assembly language of the particular microproces­
sor. Examples of a compiler languages are Pascal, Cobol etc.

An interpreter on the other hand, is a program that
translates and execute each source element individually. Ho

78
object code is stored and loaded into the microcomputer memory
for execution, as is done in the case of compilers. A disadvan­
tage of interpretive language is that they result in slower
program execution. However, with their interactive ability, the
program development time is required considerably. Basic is the
most commonly used interpretive language.
iii) Debugging routines - The debugging allows suspending the
execution of the object code at several break-point specified
prior and displaying the contents of the chosen processor resis­
tor and memory locations. In some advanced debugging program it
may be possible to change some locations and then test the influ­
ence of the change.

Figure 2.4 shows the elements of system software.

2.6 THREE-TIES COMMUNICATION IN A PC

Generally, the PC can be used for most of the applica­
tions in the following ways -
1> For running higher level languages like BASIC, COBOL, PASCAL
etc.
2) For running programs written in application packages like
DBASE, LOTUS 1-2-3 etc.
3) For simple operations through packages like WORDSTAR, LETTER
EDITOR, GRAPHER, FLOW, PRINT-MASTER etc.

For above each uses appropriate SYSTEM SOFTWARE should
foe loaded into the PC. Some examples are -
i) For running of COBOL program the COBOL compiler should be
loaded into the memory.

79

SYSTEM - SOFWARE
■SFBSTffiG------ -pmm- - - - - - - -

SYSTEM DEVELOPMENT
SOFTWARE

I EXECUTIVE, [EDITOR,
SCHEWHAR, LOADER,

INTERPRETER, ASSEMBLER,
COMPILER,

DRIVER 3 DEBUGGER 3

(mm
mm

ITIOM

m

j__V

FIG. (2.4) SVSTEI1 SOFTWARE
ELEMENTS

ii) For running DBASE program, the DBASE package should be loaded

into the memory,

iii) For preparing graphs in various forms, the GRAPHER, LOTUS

1-2-3 packages should loaded previously,

iv) For preparing letters LETTER EDITOR ,HORD STAR should be

used.

From all the above examples ; it is seen that the

common requirement is the loading of the ’'OPERATING SYSTEM". The

IBM-PC v»ses PC-DOS or MS-DOS. These both operating systems are

identical in many aspects and developed by a company called

MICROSOFT. With DOS, there is a no use of PC to the common user.

DOS communicates with the hardware units and application pro­

grams. But the communication of the DOS with the hardware is

through the BIOS program which are stored in ROM. With out BIOS

ROM, there is a no use of operating system for the PC. This

communication process between "USER PROGRAM-BOS-BIOS-HARDWARE" is

called " THREE- TIRE-COMMUHI CAT 1011 " in a PC.

Fig.{2.5) shows the THREE-TIRE-CGMMUHICATIOH in a PC.

This communication in a PC is not visually visible to the applica­

tion programs.

Procedure for a THREE-TIRE-COMMUNICATION :

1) An application program calls DOS for performing specific

functions like reading from the keyboard, printing some lines,

displaying some message on the CRT monitor etc.

2) The DOS finds out the details and requirements of the appli­

cation program, e.g. which file has to be printed or displayed.

Then the DOS calls the respective I/O drivers in BIOS. At the

81

GONMAm

1,2,3 -►CALL; 4 , 5 , i —+ RETURN

FIG. <2 -5> THREE—T I BE—COMMUNI CAT ION-I N A PC-

82

same time the DOS supplies parameters like memory address, number
of bytes etc, to the BIOS.
3) The BIOS in turn issues appropriate commands to the hardware.

Thus there is a three-~tire-communication in a PC.

2.7 DIGITAL INTERFACING

The primary function of computer is to accept data from
input devices such as keyboards and A/D converters, read in­
structions from memory, process data according to the instruc­
tions and send the result to the output devices such as print­
er, video monitor etc. These input and output devices are called
either peripherals or I/Os. Here the memory can be considered as
a special type of I/O. Designing logic circuits arid writing in­
structions to enable the computer to communicate with these
peripheral is called interfacing and the logic circuit are called
I/O ports or interfacing devices. The computer communicates with
the peripherals in either two formats : asynchronous or synchro­
nous. Similarly, it transfers data in either two modes: Parallel
I/O and Serial I/O. Computer identifies peripherals either as
memory-mapped I/O or peripheral I/O based on their interfacing
logic circuits. Data transfer between the computer and its pe­
ripherals cantake place under various conditions. The modes,
the techniques, the instructions and the conditions of data
transfer are summarised in the fig.<2.8).
2.7.1 BASIC CONCEPTS : The approach an designing an interfacing
circuit for an I/O device is determined primarily by the in­
structions to be used for data transfer. An I/O device can be
interfaced with the computer either as a peripheral I/O or as a

* TRANSMISSION o ASYNCHRONOUS
FORMAT. o SYNCHRONOUS

* MOMS OF
TRANSFER. o PARALLELDATA

c SERIAL DATA

f A
* TYPES OF I/O. o PERIPHERAL I/O

o MEMORY MAPPED
I/O

* CONDITIONS FOR DATA
TRANSFER.

COMPUTER CONTROLLED
i> UNCONDITIONAL
iihMtt&pr
iv) READS SIGNAL
v) HANDSHAKE SIGNAL

1PERIPHERAL^ CONTROLLED
< directly neNory access)

FIG. (2.6) PROCESS OF DATA TRANSFER
BETWEEN THE COMPUTER A PERIPHERALS

memory mapped I/O. In the peripheral I/O, the instructions like
IN/OUT are used for data transfer, and the device is identified
by an 8-bit address. In the memory mapped I/O, memory related
instructions are used for data transfer and the device is iden­
tified by a 16-bit-address. THe basic concepts in interfacing I/O
devices are similar in both methods.

In the peripheral I/O the instruction IN inputs data
from an input device into the accumulator and the instruction OUT
send the contents of the accumulator to an output device. The
memory mapped I/O technique uses the memory related data transfer
instructions and memory control signals to transfer data between
the accumulator and an I/O device.The memory mapped I/O technique
is similar in many ways to the peripheral I/O technique. For
example, in memory mapped I/O for data transfer LDA, STA and for
memory control signals memory read & memory write {MEMR & MEMW)
instructions are used. In memory I/O there is a necessity of
decoding all the bits of address.

2.7.2 DEVICE SELECTION : In general, peripherals are connected in
parallel on the data and address buses. To select an appropriate
peripheral, the device address on the address bus and the control
logic can be used as follows:
i) Decodes the address bus to generate a unique pulse correspond­
ing to the device address on the bus; this is called device
address pulse.
ii) Combine (AND) the device address pulse with the control
signal to generate a device select pulse that is generated only
when both signals are asserted.

iii) Use t-he device select pulse to activate the interfacing

device { I/O port).

2.7.3 ABSOLUTE VERSUS LINEAR-SELECT DECODING : In the decoding

concept, all the address lines are decoded to generate one unique

output pulse and the device will selected. This concept is called

absolute decoding. Absolute decoding is a good design practice,

but it is costly to decode the all lines.

To minimise the decoding cost { component cost) one

address line and control signal are combined to generate the

device select pulse. This concept is called the linear-select

decoding. As a result, the device has multiple address.

As interfacing device, a latch is used for an output port

and a tri-state buffer is used for an input port. The address bus

can be decoded by using either the absolute or the linear select

decoding technique. A decoder or discrete gate can be used for

absolute decoding and address line can be used directly for

linear select decoding. The linear select decoding technique

reduces the component cost, but the I/O device ends up with

multiple addresses.

Some examples of interfacing peripherals {I/Os) to the

PCs are : i) Interfacing input keyboard,

ii) Interfacing output displays <e.g. LED display for

binary data) and

iii) Interfacing memory.

REFERENCES :
1) Microprocessor Architecture, Programming And

Applications with the 8085/80S0A,
-R. S. Caonkar
Wiley Eastern Limited, 1986,

2) Microprocessor And Interfacing
Programming and Hardware,

-Douglas V. Hall
Mcgraw-Hill International Editions
Computer science series, 1986.

3) Appel Instrumentation and Control Circuits
and Software,

-J.E.Olesky
A Reston book, Prentice-Hall, INC.Eglewood Ciffs,
New Jersey, 1986.

4) IBM PC and Clones, hardware, Trobleshooting and
Maintenance

-B. Covindarajalu
TataMcGraw-Hill Company Ltd.New Delhi, third edition.

5) Personal Computer XT systems, Technical Reference.
6) Designing Microprocessor Based Instrumentation,

- J.J. Carr

