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CHAPTER-II 

ACTIVE FILTERS

2.1 INTRODUCTION

Filter process signals on a frequency dependent basis. It is a 

frequency selective circuit that passes a specified band of frequencies and 

attenuates signals of frequencies outside this band. Depending on the 

components used in the filter there are two types of filters, active filter and 

passive filter. Filter with active device like operational amplifier, transistor 

is called active filter. Active filter offers the following advantages over 

passive filters.

i) Since active device provides a gain, the input signal is not 

attenuated as it is attenuated in a passive filter. Active filters are 

easier to tune or adjust.

ii) Due to high input resistance and low output resistance of 

operational amplifier the active filter does not cause loading of the 

source or load.

iii) Active filters are more economical than passive filters. The 

departure of practical operational amplifier from ideality at high 

frequencies restricts active filter applications below the MHz

range.



The behaviour of filter is uniquely characterised by its transfer

function H(S). Practical transfer functions are rational functions of S

N(S)

H (S) = ---------- --------------------- 2.11

D (S)

Where N(S) and D(S) are suitable polynomials of S with real 

coefficient and order of N(S) never exceeds that of D(S). The order of D 

(S) is called the order of the filter.

2.2 ORDER OF FILTERS : -

To improve performance of filter, large no. of sections should be 

connected in series. This increases the order of filter. The RC 

combinations used in circuit determine the order of filter.

Roll off of gain in the stop band is determined by the order of the 

filter. Each unit increase in the order increase in roll off by 20 dB/decade. 

Fig. 2.1 represents the change in the rolloff of the gain for different orders 

in lowpass filter.



In ideal filters the signal is not attenuated in the pass band and 

attenuated completely in the stop band. Also the phase shift change is 

linear with frequency in pass band of the filter. The ideal brickwall 

response is not possible practically because the synthesis of the sharp edges 

with continuous function would require complex circuitry. Practical filter 

can only approximates the ideal model with rational function of jf of the 

type

N (jf)
H (jf) = ------- -------2.12

D(jf)

Degree of D (jf) determines the order of filter.

Higher the order of filter, the closer the approximation to ideal. The 

circuit complexity increases with order of filter.

2.3 FIRST ORDER ACTIVE FILTERS

The active filters are obtained from the inverting Op.Amp. 

configuration by replacing one or both resistors with reactive elements. 

Since the inverting amplifier provides amplification replacing its elements 

with frequency dependent device will yield frequency dependent 

amplification.



i) Low pass filter:-

c

In inverting integrator circuit if resistor is placed in parallel with 

feedback capacitor turns integrator into lowpass filter with gain.

2.3.1 First order Low pass filter:-
Rf Ri

Fig. 2.3 (First order low pass active filter with non inverting
configuration)
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First order lowpass filter uses RC network for filtering OP.Amp is 

used in the non-inverting configuration. The gain of the non-inverting 

amplifier is-

Ho = (l +R2/RF)

The voltage across the capacitor is-

1
-----  Vi

Vp = J 2%fC Vi

1 1 +j27tfCR
-------  + R
J27tfC

The output voltage VO = (1 + R2/Rf) Vp

Vo Ho
H = ----- = ------------- -----2.22

Vi l+j(f/f0)

Where HO = (1+ R2/RF)

1
F0= ------ ------2.23

2tiRC

Ho
The magnitude of gain |H| = |V</Vin| =-------------

V (1+ f/f0)2
2.24
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If f<fo
Vo

V,
= H0

in

f=fo

f> fo

Vo

Vi„

Vo

Vin

Ho

V 2

= Ho

2.3.2 First order High pass filter

Rl Rp

Fig. 2.4 (First order High pass filter)



Interchanging resistor and capacitors in low pass filters forms the

high pass filters.

R

Vp= --------------
1

R + ------

j27tfc

The output voltage Vo

Vo = (l +

H =

j27tfRC
------------- Yin -------------  2.31

1 +j27tfRC

Rf

= (i + ----) VP

Ri

Rf j2?tfRC

— ) ---------- Vin

Ri l+j27tfRC

Vo Hoi(f/fo)
------- =-------------- ----------------- 2.32

Vin l+j(f/f0)
c

RF

Ho=(l+---- )
Ri

1

fo= --------

2tiRC



The magnitude of voltage gain is-

Ho (f/fO)
2.33

Vi ^l+(f/fo>

When f<fo |H| <Ho

Ho

f=fo |H| =-------
V2

f>f0 |H| = Ho

2.3.3 First order Band pass filter

Ra.

Vo

1

Fig. 2.5 (First order band pass filter)
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The first order bandpass filter has two feedback paths hence it is 

called multiple feedback filter. The Op. Amp is used in the inverting mode. 

The input impedance Z\ = Ri + 1/ jwCi forms a high pass section with 

cut off frequency fi

1

fi = ---------------

27IRA

The feedback impedance Z2 = R211 1 forms a lowpass section with cutoff

frequency

JWC2

1

27uR2C2

If fi< f2 then the frequencies within the band fi to f2 will succeed in 

passing through the circuit while those falling outside will be rejected

The transfer function

-Z2
H = ---------------

Z,

j(f/fl) 

H = Ho----------------- 2.41
[l+j(f/fl)][l+j(f/f2)]



QO
-hat

-r2

Ho = -------------- ---------------- 2.42
Ri

1
fi = -------------- ------------------ 2.43

2tiRiCi

1
f2 = -------------- ------------------ 2.44

271R2C2

The magnitude of gain

Ho(f/fl)
H = -------------------- ------------------------------------ 2.42

^[l+(f/fl)2][l+(f/f2)2]

2.3.4. First order Band reject filter:-
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The wide band reject filter is formed using a lowpass filter, a 

highpass filter and a summing amplifier.

The lower cufoff frequency fl is determined by high pass filter and 

the higher cutoff frequency f2 is determined by lowpass filter. To obtain 

band reject response fi > f2

2.4 SECOND ORDER RESPONSES

In all first order responses the denominator term is same 1 + j(f/fo) 

and the numerator determines the nature of response. The numerator 1 

yields the low pass response, numerator of j(f/fo) yields the high pass and 

the numerator of (1 - j (f/fo) yields all pass. Multiplying the response by 

gain constant Ho does not change the response type.

In second order filter the degree of the denominator is 2. The second 

order function has a standard form

N (jf/fo)

H (jf/fo) - -----------------------------

1 - (f/fo)2 + (v/Q) (f/fo)

When Q is another filter parameter and N(jf/f0) is a suitable

polynomial of degree not greater than 2.
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2.4.1) Second order low pass response:-

The second order low pass function have a standard form

H(jf/fo) = HoLpHLP(j^fo)

Holp —> dc gain

1

Hup-------------------------------------------- 2.45
1 - (f/f0)2 + (V/Q) (f7f„)

a) For (f/fo) «1 HLp -->1

|Hlp! dB = 0

b) For (f/f0)» 1 HLP --> -1 /(f/f0)2

|Huj dB = 20 log,0 [l/(f/fo)2]

|Hu>| dB = -401ogio (fi'fo)

This equation is the equation of straight line with slope of 

-40 dB/decade

c) For (f/f0) -1 Hup = 1/J/Q = -JQ

|Hlp| dB = Q dB

This indicate that when f = fo then the value of curve depends on Q.
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2.4.2) Second order high pass response

The second order high pass function have standard form

H Gf/fo) - Hohp Hhp Qf/fo)

Hohp —> High frequency gain

- (f/fo)2
Hhp=---------------------------- 2.46

1 -(f/f0)2 + G/Q) (£'fo)

a) When f/f0 « 1 Hhp —> -(f/fo)2 

Php| dB = 401ogio (f/fo)

b) For f/fo =1

|Hhp| dB = Q dB

c) For f/fo »1 

Php| dB = OdB

-1

Hhp—> -----------

G/Q)

(f/fo)2

Hhp----- > ---------

(f/fo)2

Hhp = JQ



26

2.4.3) Second order Band pass Response

The standard form of second order band pass function is- 

H(if/f0) = Hobp Hbp (jfi'fo)

Hobp —Resonant gain

(j/Q) (f/fo)
Hep =--------------------------------- 2.47

l - (f/f0)2 + G/Q) (f/fo)

a) For (f/fO)« 1 HBP--------> (j/Q) (f/fo)

|Hbp| dB = 201ogio(l/Q) (f/fo)

|Hbp| dB = 201og10(f/fo) - Q dB 

This is the equation of the type y = 20x - Q dB 

That is a straight line with slope 20dB/decade

-j/Q
b) For (f/fo)» 1 HBP —> -----------

(f/fo)

|Hbp| dB = -201ogio (f/fo) -Q dB

This the equation of the type y = -20x - Q dB that is a straight line 

with slope of -20dB/decade



c) For (tffo) -1 Hbp = 1
27

|HBP| dB = 0

|HBP| peaks at (f/fo) =1, regardless of the value of Q. fo is called resonant 

frequency, or center frequency or peak frequency.

2.4.4) Second Order Band Reject response

The most common form of notch function is

HGtffo) = H0NHNG£'fo)

Where Hon---- > gain constant

1-
IJ. . — .........................

-(f/fo)2

1 - (f/fo)2 + (j/Q) (f/fo)

WTien a) f/f0«l Hn =1
|Hn| dB = 0

b) f/fo» 1 hn- 1
|Hn| dB =0

e)

r-HII

<ff
$5 T II 8

fo is called as notch frequency.

Hn can also be written as Hn = Hlp + Hhp

Or Hn = 1 - HBp . This relationship indicates alternate ways of achieving a 

notch response when other responses are available.
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2.5) HIGHER ORDER FILTERS

Higher order filter design is a multistep process. To design higher 

order filters at first response type must be chosen and set a specifications 

generated that will meet the needs of the given application. These 

specifications are given in terms of fc, fs, Amax and Amin. These data are 

then used to determine the order of filter n. Once n is known, find 

individual stage values of £5 and Q for cascade approach. Finally desired 

filter circuit can be designed.

In cascade design approach a filter of order n is designed by 

cascading n/2 second order sections if n is even for odd n, (n-l)/2 second 

order sections and one first order sections are connected in series. In first 

order section the comer frequency fo is calculated from RC network. For 

other sections fo or Q is calculated from sections to section.

Mathematically the orders in which various sections are cascaded are 

irrelevant. To avoid the loss of dynamic range and filter accuracy due to 

signal clipping in the high Q sections, the cascading is done by connecting 

lower Q section first and high Q section at the last. This connection does 

not consider the internal noise. To minimise noise, high Q stage should be 

connected first in cascade. Practically ordering depends on the input 

frequency spectrum, the filter type and the noise characteristic of the

components.
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2.6) FILTER APPROXIMATION

Ideal filter shows the brickwall response. In practical filter circuit 

higher the order of the filter, closer the response to brickwall response 

i.e. closer the approximation to brickwall response. The departure of a 

practical filter response from its brickwall response can be visualized in 

terms of band of values as shown in fig. 2.7 for low pass case.

|H t

1

0 ■fc
—» 
Freq.

Fig 2.7 (a)

Brick wall low pas response Magnitude response limit for 
Low pass filter approximation

Range of frequency that are passed with little or no attenuation by 

the filter is called the pass band. Maximum allowable gain change in pass 

band is Amax is also called minimum pass band ripples.

Above the cutoff frequency there is maximum attenuation. This 

band is called stopband. The frequency at which stopband begins is fs. The



frequency region between fc and fs is called transition band or skirt. Stop 

band is specified in terms of minimum allowable attenuation Amin.

Choice of approximation is important step in filter design. The 

approximation is nothing but finding a function whose loss characteristic 

lies within the permitted region. The function, which is selected, must be 

realizable using passive or active components. Order of function must be 

as small as possible to minimize the components required for design.

The steps in filter design are-

i) Filter specification selection

ii) Selection of rational function which satisfy the specifications.

iii) Realization of transfer function and calculations of component 

values.

iv) Construction and testing of filters.

In practice a suitable function which approximate the gain curve 

within specified tolerance and which are realizable as physical network is 

selected for filter design. A method of approximation based on Bode plot 

is suitable for low order filter design. More complex filter characteristics 

are approximated by using some well-described rational functions whose 

roots have been tabulated.

Butterworh, Chebyshev, Bessels and Elliptic are the approximation 

used in filter theory. These approximations are directly applicable to 

lowpass filter. Using frequency transformation techniques these
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approximations are used to design high pass, symmetrical bandpass and 

bandstop filters.

2.6.1) Butterworth Approximation

It is special form of Taylor series approximation in which 

approximating function t(w) and the specified function f(w) are identical at 

w=0. For this approximation Kn(w) is selected as-

Kn (w) = Bo + B! w + B2w2 +-----+ Bnwn 2.61

For Taylor series approximation the function Kn(w) must be 

maximally flat at the origin, (w = 0)

Hence as many derivatives of Kn(w) as possible must vanish at w=0 

Therefore for Butterworth approximation.

Kn(w) = w"

As order of filter is increased, the pass band is flat over wider 

intervals and stopband loss is increased.

2.6.2 Chebyshev Approximation

For obtaining the best approximation from a polynomial of a given 

degree the Butterworth function is not useful. Because it concentrate all 

the approximating ability of the polynomial at w = 0, instead of distributing 

it over the range 0 < w <1 . A better result in this regard may be obtained 

if we look for a rational function that approximate the constant value unity
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throughout this range in oscillatory manner, Chebyshev approximation 

does exactly this.

Chebyshev polynomials are defined as linearly independent 

solutions of the differential equations.

(l-w2)y wy-n2y = 0

one of the solution is-

Y = Tn(w) = cos (n cos'1 w) |w| < 1 2.62

Y = Tn(w) = cosh (ncosh-1 w) |w| > 1 2.63

Tn (w) is called Chebyshev polynomial. A power series expansion for 

Tn(w) can be obtained by rewriting equation

Tn(w) = Re |e^ (|> | = Re |Cos<|> + jsin<|>|n 2.64

Where <J> = cos'1 w

i.e. costj) = w sin <(> = Vl-w2

Binomial expansion of equation yields

Tn(w) = Re [w + j (1 -w2)]n 

v/'-nCn-l)

= ------------- w11'2 (1-w2) 2.65

2!
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+n(n-l) (n-2) (n-3)

4!

w (l-w2f

From which To (w) = 1 

T](w) = w

The properties of Chebyshev polynomial are :

(i) The zeros of the polynomial are all located in the interval |w| < 1

(ii) The Chebyshev poynomials passes special value at w = 0 

1 or -1 Tn(w) = (-1)11/2 for n = even

0 for n = odd

(iii) Tn(w) is either even or odd functions depending on whether n is 

even or odd.

The magnitude function |T(jw)|2 and attenuation function a (w) are 

given by

iT(w>r
l+C2w2n

a(w) = lOlog [1 + cV11] 2.66

C —> attenuation constant

The w should be interpreted as the frequency normalized with 

respect to passband edge w?
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|t Gw)|2 --------------------

1+ C2(w/wp)2n

a (w) = lOlog [ 1 + C2(w/wp)2n] 2.67

The frequency response of Butterworth filter for various values of n 

is shown in fig.

All the curves passes through the same point at w = wp and this

point is determined by ap

Fig. 2.8 (Frequency response of Butterworth low pass filter for
various values of n)

ap = lOlog [1 + C2 (wp/wp)2n] 

as = lOlog [1 + C2 (ws/wp)2n]

K = (ws/wp) = sensitivity parameter 

C2 = 10°'1<xp-l



c2

= 10olap - 1
K2n

10 Q-iap _i

K2n-
10 O.iap _i

^ 10 O.lap _i

K f
v10olap-l^

1/2

The discrimination parameters

logK,

n =---------

log K

The order of the filter n should be selected such that 

log Ki

n =--------- n = integer

log K

2.68

2.69

log Ki

If n =----------- the value of C obtained from equation are the same.

log K

logKj

If n = --------  the C can be selected to satisfy the passband edge or

log K stopband edge requirement exactly.
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iv) Every coefficient of Tn(w) is an integer and the one associated with

WnisZ""1

Thus the limit ‘w’ approaches infinity 

Tn (w) = Z n4 w2"

v) In the range -1 < w <1 all of the Chebyshev polynomials have the 

equal ripple property varying between maximum and minimum and 

outside this range their magnitude increase monotonically as w is 

increased and approaches infinity.

The even order chebyshev lowpass filter has a zero frequency loss 

which is equal to the pass band ripple maximum gain. However this 

implies that source resistance can not be equal to the load impedance. One 

restriction around this is to use a frequency transformation, which changes 

the loss at dc.

2.63 Elliptic Filter Approximation

To improve the performance of achieved by the Chebyshev filter, the 

equiriple response in both passband and stopband is allowed. This leads to 

narrower transition band. Such filters are designed by using Elliptical 

function and refereed as “Elliptical filters”. The approximation is called 

“Elliptical approximation”. The elliptic approximation is rational function 

with finite number of poles and zeros. In this approximation the location of 

poles must be chosen to provide the equiripple stopband characteristics. 

The poles closest to the stopband edge significantly increase the slope in
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the transition band. The further poles are needed to maintain the required 

level of stopband attention.

By using the finite poles the elliptic approximation able to provide a 

considerably higher flat level of stopband less than the Butterworth and 

Chebyshev approximations. Thus for a given requirement the elliptic 

approximation will in general requires a lower order than the Butterworth 

or Chebyshev.

2.64 Bessels’Approximation

In all approximation discussed so far concentrated on approximating 

the magnitude of transfer function. In many signal-processing applications, 

linearity of the phase or constant phase delay is an important factor. The 

phase distortion is more in Chebyshev filter than the Butterworth filter. An 

equiripple filter has greater amount of phase distortion than the maximally 

flat filter.

For Bessel approximation the stop band has poor response so that 

Bessel approximation is not useful for practical implementation for most 

filtering applications. Therefore the alternate solution to this problem is to 

obtaining a flat delay characteristic by the use of delay equalizers. The 

Bessel approximation is a polynomial that approximates this ideal

characteristic.
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In this approximation the delay at the origin is maximally flat i.e. as 

many derivatives are possible are zero at origin. It is covinient to consider 

approximation of the normalized function, with the dc delay To = 1 that is

H(s) = es

The Bessel approximation to this normalized function is

Bn(s)
H (S) = -------- 2.70

Bn (o)

Where Bn(s) is the nth order Bessel polynomial which is defined by 

following equation.

Bu(s) =1

Bn (s) = S + 1

Bl(s) = (2n-l)Bn(Sl) + B2Bn(S2) 2.71

The polynomial B(s) is called Bessel’s polynomial of order n. The 

delay error of Bessel’s approximation are shown in fig.2.9

Fig. 2.9 (Delay error in Bessel Approximation)



2.7 COMPARISON OF BUTTERWORTH, CHEBYSHEV AND
ELLIPTIC RESPONSE

Butterworth response maximizes the flatness of the magnitude 

response with the passband. The response is extremely flat near dc and 

somewhat rounded near cutoff frequency f0 and approaches an ultimate 

rolloff rate of - 20n dB/decade in the stopband.

There are applications in which sharp cutoff is more important than 

maximum flatness Chebyshev filter maximizes the transition band cutoff 

rate at the prize of introducing passband ripples. Thus compared to the 

Butterworth response, which exhibits appreciable departure from it ,dc 

value only at the upper end of the passband. The Chebyshev response 

improves the transition band characteristics by spreading equal sized 

ripples throughout the passband. The number of ripples increases with n. 

Although both response exhibit an ultimate rolloff rate that depends only 

on n.

The Chebyshev response can achieve a given transition band cutoff 

rate with a lower order reducing filter complexity and cost. In the limit of 

O dB passband ripple the Chebyshev response becomes the Butterworth 

response.

Elliptic filters also called Cauer filters ,carry the Chebyshev 

approach one step further by accepting ripples in both the passband and the 

stop band in order to achieve an even sharper characteristics in the 

transition band. The idea is to follow on already sharp lowpass response
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with a notch just above the cutoff frequency to sharpen the response even 

further. To be effective notch must be narrow, indicating that the curve 

will come backup just past the notch itself. At this point another notch is 

created to press the curve back down and the process is repeated until the 

net profile within the stopband is pushed below the prescribed minimum 

attenuation level. Amin.

2.8 FILTER SENSITIVITY

Practically the filter performance is affected by the component 

tolerance, drift and aging and nonlinearities of operational Amplifier. The 

filter parameters like cutoff frequency, Quality factor and gain find 

departure from theoretical values due to component tolerance drift, aging 

and nonlinearities of Op.Amp.

The drift parameters are reduced by tuning the parameters. For 

parameters tuning trimmers are required. The tuning can be time 

consuming and expensive. The careful designer reduces the need of tuning 

through suitable choice of circuit topology as well as component quality.

Suppose y is the filter parameter (fo, Q or gain) and x is the circuit 

component (resistance or capacitance). It is important to know the 

fractional parameter change Ay/y caused by fractional component change 

Ax/x. If fractional changes are multiplied by 100, we obtain percentage 

change.

14410
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Sensitivity is defined as the percentage change in parameter with 

respect to percentage change in component value and is represented by-

dy/y x dy

xSy ■ = ------= ..............
dx/x y dx

2.81

Partial derivatives are used because filter parameters usually depends 

on more than just one component.

If value of sensitivity xSy is known, from that percentage parameter 

change is calculated.

Ay Ax
100-----= 100 xsy ------

y x

The interdependence of a given parameter y and a given component 

x is of the type

y = Axk 2.82

A is appropriate expression that is independent of x and k is a 

suitable exponent.

dy
— =KA x k'1

KAxk

Ky/x 2.83
dx X

xSy =K
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Sensitivities constitute important factor in weighing different 

realizations of the some filter function for the purpose of selecting the one 

best suited to the application. Sensitivities help the designer to specify the 

component tolerance required to meet the design objectives.


