
5 Distributed computing model

The two major distributed computing models available today are CORBA, developed by 

a non-profit consortium of vendors and users, and Microsoft's Distributed Component 

Object Model (DCOM).

Currently DCOM can only be deployed on PC platforms, while CORBA can be used on 

either PC or Unix platforms. Typically, the CORBA model is more open because of 

platforms and languages supported, but ORB vendors are beginning to provide CORBA 

to DCOM bridges.

5.1 Development language
The development language is important on two accounts. First, it may determines the 

application server platform. Second, it affects your choice for the appropriate distributed 

computing model.

For example, if the development language is Java and the platform is from Sun, the user 

has a choice of NetDynamics, Netscape Application Server, GemStone, and others. If the 

language is Visual Basic, the platform choice is a PC and Microsoft Transaction Service 

(MTS) naturally has an advantage. Generally, using Java as the development language 

offers the highest level of platform independence.

5.1.1 Platform

If you start the decision-making process at the platform level, you'll find that Unix 

platforms tend to scale better than the PC. Microsoft is working hard to change this over 

time, with coming offerings such as Windows 2000.

5.1.2 Achieving scalability across one or more systems:

The scalability issue applies within a single process, across multiple processes or across 

multiple systems. For an application to scale within a process, the run time has to be 

multithreaded or at least thread safe. The infrastructure to support multithreaded 

applications is normally part of the application server. Once an application is launched,

Design of current Web Based Application Server 44



the process environment—multithreaded or single-threaded—is determined from a 

configuration setup.

When scaling across multiple processes, the application server should ensure that 

applications can be assigned to a free process. If no free process is available, the 

application server should queue the request or initiate other processes.

The more difficult issue is whether or not an application can scale to another process in 

another system. The Netscape Application Server, for example, views processes running 

on multiple systems as a single entity. Through configuration data, an application can run 

on any process on any system within the configuration. The application server lets you 

add systems to the environment, rather than continuously upgrading a single system. 

Ultimately, there is a limit to the size a single system can be upgraded, and true 

scalability can only come from adding systems.

5.1.3 Services needed for application server environment

Application servers rely on a set of interfaces to invoke services such as database access, 

security, transaction integrity, and so forth. Look carefully at services before deploying 

an application server. For example, most offer basic services but may not provide 

transactional services. Some servers allow you to write your own services, using adapters 

or extensions.

Design of current Web Based Application Server lu
I--., ■ 45


