
8 RMI Architecture

The RMI system is designed to provide a direct, simple foundation for distributed object 

oriented computing. The architecture is designed to allow for future expansion of server 

and reference types so that RMI can add features in a coherent way.

When a server is exported, its reference type is defined. In the examples above we 

exported the servers as UnicastRemoteObject servers, which are point-to-point- 

unreplicated servers. The references for these objects are appropriate for this type of 

server. Different server types would have different reference semantics. For example, a 

MulticastRemoteObject would have reference semantics that allowed for a replicated 

service.

When a client receives a reference to a server, RMI downloads a stub that translates calls 

on that reference into remote calls to the server. As shown in Figure 3, the stub marshals 

the arguments to the method using object serialization, and sends the marshalled 

invocation across the wire to the server. On the server side the call is received by the RMI 

system and connected to a skeleton, which is responsible for unmarshalling the 

arguments and invoking the server's implementation of the method. When the server's 

implementation completes, either by returning a value or by throwing an exception, the 

skeleton marshals the result and sends a reply to the client's stub. The stub unmarshals the 

reply and either returns the value or throws the exception as appropriate. Stubs and 

skeletons are generated from the server implementation, usually using the program rmic. 

Stubs use references to talk to the skeleton. This architecture allows the reference to 

define the behavior of communication. The references used for UnicastRemoteObject 

servers communicate with a single server object running on a particular host and port. 

With the stub/reference separation RMI will be able to add new reference types. A 

reference that dealt with replicated servers would multicast server requests to an 

appropriate set of replicants, gather in the responses, and return an appropriate result 

based on those multiple responses. Another reference type could activate the server if it 

was not already running in a virtual machine. The client would work transparently with 

any of these reference types.

Design of current Web Based Application Server 57



8.1 RMI and the OSI Reference Model

Instead of working directly with Sockets, Client/Server applications can be developed 

using Java's Remote Method Invocation. Java RMI is a package that can be used to build 

distributed systems. It allows you to invoke methods on other Java Virtual Machines 

(possibly on different hosts). The RMI system is very similar to (but more general and 

easier to use) than the Remote Procedure Call (RPC) mechanisms found on other 

systems, in that the programmer has the illusion of calling a local method from a local 

class, where in fact all the arguments are shipped to the remote target, interpreted, and 

results are sent back to the callers.

One distinguishing aspect of RMI is its simplicity. The set of features supported by RMI 

are those that are most valuable for building distributed applications, namely: transparent 

invocations, distributed garbage collection, convenient access to streams. Remote 

invocations are transparent since they are identical to local ones, so their method 

signature is identical.

Design of current Web Based Application Server 58



The OSI Reference Model defines a framework that consists of seven layers of network 

communication. The figure below shows how this model can describe RMI.

The User's application is at the top layer, it uses a data representation scheme to 

transparently communicate with remote objects, possibly on other Java Virtual Machine 

hosts.

Developing Client/Server applications using sockets involves the design of a protocol 

that consists of a language agreed upon by the client and server. The design of protocols 

is hard and error-prone. Using Java Remote Method Invocation or JavaRMI, developing

Design of current Web Based Application Server 59



client-server applications is straight forward because remote invocations in RMI are 

identical to local ones, so their method signature is identical.

8.2 Safety and Security

There are clear safety and security implications when you are executing RMI requests. 

RMI provides for secure channels between client and server and the isolation of 

downloaded implementations inside a security "sandbox" to protect your system from 

possible attacks by untrusted clients.

First it is important to define your security needs. If you are executing something like the 

ComputeServer inside a secure corporate network, you may simply need to be able to 

know who is using the compute cycles so you can track down anyone abusing the system. 

If you wanted to provide a commercial compute server you would need to protect against 

more malicious acts. These will affect the exact design of the interface-intemally you 

may just require that each Task object come accompanied by a person's name and 

department number for tracking purposes. In the commercial case you would want tighter 

security, including a digitally signed identity and some contractual language that would 

let you kill off a rogue task that was consuming more than its allotted time.

You may need a secure channel between client and server. RMI lets you provide a socket 

factory that can create sockets of any type you need, including encrypted sockets. 

Starting with JDK 1.2, you will be able to specify requirements on the services provided 

for a server's sockets by giving a description of those requirements. This new technique 

will work in applets, where most browsers refuse permission to set the socket factory. 

The socket requirements can include encryption as well as other requirements. 

Downloaded classes present security issues as well. Java handles security via a 

SecurityManager object, which passes judgement on all security-sensitive actions, such 

as opening files and network connections. RMI uses this standard Java mechanism by 

requiring that you install a security manager before exporting any server object or 

invoking any method on a server. RMI provides an RMISecurityManager type that is as 

restrictive as those used for applets (no file access, only connections to the originating 

host, and so forth). This will prevent downloaded implementations from reading or 

writing data from the computer, or connecting to other systems behind your firewall. You

Design of current Web Based Application Server 60



can also write and install your own security manager object to enforce different security 

constraints.

8.3 Firewalls

RMI provides a means for clients behind firewalls to communicate with remote servers. 

This allows you to use RMI to deploy clients on the Internet, such as in applets available 

on the World Wide Web. Traversing the client's firewall can slow down communication, 

so RMI uses the fastest successful technique to connect between client and server. The 

technique is discovered by the reference for UnicastRemoteObject on the first attempt the 

client makes to communicate with the server by trying each of three possibilities in turn:

• Communicate directly to the server's port using sockets.

• If this fails, build a URL to the server's host and port and use an HTTP POST 

request on that URL, sending the information to the skeleton as the body of the 

POST. If successful, the results of the post are the skeleton's response to the stub.

• If this also fails, build a URL to the server’s host using port 80, the standard 

HTTP port, using a CGI script that will forward the posted RMI request to the 

server.

Whichever of these three techniques succeeds first is used for all future communication 

with the server. If none of these techniques succeeds, the remote method invocation fails. 

This three-stage back off allows clients to communicate as efficiently as possible, in most 

cases using direct socket connections. On systems with no firewall, or with 

communication inside an enterprise behind a firewall, the client will directly connect to 

the server using sockets. The secondary communication techniques are significantly 

slower than direct communication, but their use enables you to write clients that can be 

used broadly across the Internet and Web.

8.4 RMI in an Evolving Enterprise

You can use RMI today to connect between new Java applications (or applets) and 

existing servers. When you do this, you allow your organization to benefit incrementally 

from expanded Java use over time. When parts of your systems are rewritten in Java,

Design of current Web Based Application Server 61



RMI allows the benefits of Java to flow from the existing Java components into the new 

Java code. Consider the path of a single request in a two-tier system from the client to the 

server and back again

Using RMI means that you can get Java benefits throughout your system by using RMI 

as the transport between client and server, even if :he server remains in non-Java code for 

some time. If you choose to rewrite some or all of your servers in Java, you will get 

leverage from your existing Java components. Some of the most important Java 

advantages you maintain are:

• Object oriented code reuse. The ability to pass objects from client to server and 

server to client means that you can use design patterns and other object oriented 

programming techniques to enhance code muse in your organization.

• Passing behavior. The objects passed between client and server can be of types 

not previously seen by the other side. Implementations will be downloaded to 

execute the new behavior.

• Type safety. Java objects are always type safe, preventing bugs that would occur 

if a programmer makes a mistake about the type of an object.

• Security. Java Classes can be run in a secure fashion, allowing you to interact 

with clients that may be running in an untrusted environment. Here is that 

diagram showing a client written in Java using RMI to talk to the server. The 

"request" arrow has been shaded to show where you get Java's safety, object 

oriented, and other advantages:

A small amount of Java code connects to a "legacy wrapper" that uses the existing 

server's API. The legacy wrapper is the bridge between Java and the existing API, as 

shown in the implementations of getUnpaid and shutDown above. In this diagram we 

show it written using JNI, but as shown above the legacy wrapper could use JDBC or, 

when it is available, TwinPeaks.

Contrast the above diagram with one in which a language neutral system using an 

interface definition language (commonly called an DDL) introduces a least-common- 

denominator connection between the client and server

Design of current Web Based Application Server 62



A legacy wrapper must still be written to connect the IDL-defined calls to the existing 

server API. But with an IDL-based approach the benefits of Java have been isolated on 

the client side-because the client's Java is reduced to the least common denominator 

before crossing to the server. Suppose you decide that rewriting some of the server in 

Java would be useful to you. This might be for any reason, such as wanting the improved 

reliability of a safe Java system, or because you want to reduce porting costs. Or possibly 

the vendor from whom you bought some of your server Implementation has provided an 

upgrade that takes advantage of Java. Here is how the RMI based picture now looks:

More of the request now benefits from having Ja\a. The objects that you pass across the 

wire between client and server can now have mere benefits to the overall system. You 

could, for example, start passing behavior across the same remote interfaces you have 

already defined to enhance the value of client and server. Compare this to the IDL-based 

approach:

You would have achieved benefits of Java that are local to the server, but you cannot 

leverage expanded value of Java for the client-server connection. The benefits of Java are 

cut off at the IDL boundary because IDL cannot assume that Java is on the other side of 

the connection. You cannot get the full benefits o: Java in your system without throwing 

out the IDL work and rewriting it using RMI.

This lost opportunity becomes greater as you use Java in more of your enterprise. Using 

RMI you get benefits of Java all the way through the system:

Using an IDL-based approach, rewriting the server in Java still only gives you localized 

benefit isolated to the server alone:

You can use RMI today to connect to your servers without rewriting it in Java. RMI is 

simple to use, so it is easy to create the server-side RMI class. The legacy wrapper is of 

similar complexity in either case. But if you use an IDL-based distributed system you 

will create isolated pockets of Java that share no benefits with each other. RMI lets you

Design of current Web Based Application Server



connect easily now, and as you decide to expand your use of Java, you will get expanded 

benefits from the synergy of having Java on both sides of the wire.

8.5 Conclusion on RMI

RMI provides a solid platform for truly object oriented distributed computing. You can 

use RMI to connect to Java components or to existing components written in other 

languages. As Java proves itself in your environment, you can expand your Java use and 

get all the benefits-no porting, low maintenance costs, and a safe, secure environment. 

RMI gives you a platform to expand Java into any part your system in an incremental 

fashion, adding new Java servers and clients when it makes sense. As you add Java, its 

full benefits flow through all the Java in your system. RMI makes this easy, secure, and 

powerful.

Design of current Web Based Application Server 64


