
10 Multithreading

10.1 Benefits of multithreading

Because each thread runs independently, multithreading the code can:

10.1.1 Improve application responsiveness

Any program in which many activities are not dependent upon each other can be 

redesigned so that each activity is fired off as a thread. For example, a GUI in which you 

are performing one activity while starting up another will show improved performance 

when implemented with threads.

10.1.2 Use multiprocessors more efficiently

Typically, applications that express concurrency requirements with threads need not take 

into account the number of available processors. The performance of the application 

improves transparently with additional processors.

Numerical algorithms and applications with a high degree of parallelism, such as matrix 

multiplications, can run much faster when implemented with threads on a multiprocessor.

10.1.3 Improve your program structure

Many programs are more efficiently structured as multiple independent or semi­

independent units of execution instead of as a single, monolithic thread. Multithreaded 

programs can be more adaptive to variations in user demands than are single threaded 

programs.

10.1.4 Use fewer system resources

Programs that use two or more processes that access common data through shared 

memory are applying more than one thread of control. However, each process has a full 

address space and operating systems state. The cost of creating and maintaining this large 

amount of state makes each process much more expensive than a thread in both time and 

space. In addition, the inherent separation between processes can require a major effort 

by the programmer to communicate between the threads in different processes or to 

synchronize their actions.

Design of current Web Based Application Server 70



10.1.5 Improve performance

The operation of creating a new process is over 30 times as expensive as creating an 

unbound thread, and about 5 times the cost of creating a bound thread consisting of both 

a thread and a LWP (Solaris).

10.2 The Multithreaded Execution Model

The multithreaded execution model combines the exploitation of program locality offered 

by the von Neumann model with the latency tolerance via task switching of the dataflow 

model. This is accomplished by increasing the granularity of a dataflow node (hence 

called a thread) to include several instructions. For this reason, multithreading is often 

referred to as coarse-grained dataflow. The result of multithreading is that dataflow 

execution occurs between threads while von Neumann execution occurs within a thread. 

The scheduling of threads is performed dynamically by the run-time system while the 

compiler statically determines the scheduling of instructions within a thread. (Note that a 

superscalar microprocessor which supports multithreading could blur this distinction by 

providing out-of-order execution at the intra-thread level).

There are two forms of multithreaded execution: non-blocking (strict) execution and 

blocking (non-strict) execution. In the non-blocking thread model, a thread cannot begin 

execution until all of its operands have arrived. Once executing, the thread runs to 

completion without suspension. In the blocking model, a thread may begin executing 

before all of its operands have arrived. When a missing operand is needed or a 

synchronization is required, the thread will suspend (block) and its execution will be 

resumed at a later time. The processor will store all of the necessary state information and 

load another ready thread for execution. The blocking thread model provides a more 

lenient approach to thread generation (often resulting in the possibility of larger threads) 

at the expense of requiring additional hardware mechanisms for the storage of blocked 

threads.

Design of current Web Based Application Server 71



Each node represents an instruction and each gray region represents a thread. The 
instructions within each thread are statically scheduled while the threads themselves are 

dynamically scheduled. If an instruction stalls, the thread stalls but other threads can
continue execution.

Advantages of Multithreaded Execution:
• Offers latency hiding of interthread dataflow execution.

• Exploits data locality via intrathread von Neumann execution.

• Threads are dynamically scheduled.

• Efficient memory usage via thread allocation and deallocation.

• Amount of parallelism statically controlled by thread size.

Disadvantages of Multithreaded Execution:
• Some parallelism sacrificed in creating threads.

• Requires thread management hardware.

In summary, the objective of multithreading is to combine the efficient instruction level 

locality of the von Neumann model and the latency tolerance and efficient 

synchronization of the dataflow model.

Design of current Web Based Application Server 72


