
12 Appendix

12.1 Program Listing

At the heart of the compute engine is a protocol that allows jobs to be submitted to the

compute engine, the compute engine to run those jobs, and the results of the job to be

returned to the client. This protocol is expressed in interfaces supported by the compute

engine and by the objects that are submitted to the compute engine, as shown in the

following figure.

I submit task .
Client | Compute

1 return resultN----------------------
1

Engine

Here is the remote interface with its single method:

import java.rmi.*;

public interface AppServerlntf extends Remote

{
double executeTask(double dl, double d2) throws RemoteException;

}
By extending the interface java.rmi.Remote, this interface marks itself as one whose

methods can be called from any virtual machine. Any object that implements this

interface becomes a remote object.

As a member of a remote interface, the executeTask method is a remote method.

Therefore the method must be defined as being capable of throwing a

java.rmi.RemoteException. This exception is thrown by the RMI system during a remote

method call to indicate that either a communication failure or a protocol error has

occurred. A RemoteException is a checked exception, so any code making a call to a

remote method needs to handle this exception by either catching it or declaring it in its

throws clause.

Design of current Web Based Application Server

A Compute object can ran different kinds of tasks as long as they are implementations of

the Task type. The classes that implement this interface can contain any data needed for

the computation of the task and any other methods needed for the computation.

Here is how RMI makes this simple compute engine possible. Since RMI can assume that

the Task objects are written in the Java programming language, implementations of the

Task object that were previously unknown to the compute engine are downloaded by

RMI into the compute engine's virtual machine as needed. This allows clients of the

compute engine to define new kinds of tasks to be ran on the server machine without

needing the code to be explicitly installed on that machine. In addition, because the

executeTask method returns a java.lang.Object, any type of object can be passed as a

return value in the remote call.

The compute engine, implemented by the AppServerlmpl class, implements the

AppServerlntf interface, allowing different tasks to be submitted to it by calls to its

executeTask method. These tasks are ran using the task's implementation of the execute

method. The compute engine reports results to the caller through its return value.

Implementing a Remote Interface

Let's turn now to the task of implementing a class for the compute engine. In general the

implementation class of a remote interface should at least

• Declare the remote interfaces being implemented

• Define the constructor for the remote object

• Provide an implementation for each remote method in the remote interfaces

The server needs to create and to install the remote objects. This setup procedure can be

encapsulated in a main method in the remote object implementation class itself, or it can

be included in another class entirely. The setup procedure should

• Create and install a security manager

• Create one or more instances of a remote object

Register at least one of the remote objects with the RMI remote object registry (or

another naming service such as one that uses JNDI), for bootstrapping purposes

The complete implementation of the compute engine follows. The class implements the

remote interface Compute and also includes the main method for setting up the compute

engine.

Design of current Web Based Application Server 76

import java.rmi.*;

import java.rmi.server.*;

import java.util.*;

public class AppServerlmpl extends UnicastRemoteObject implements AppServerlntf

{

private ArrayList emailObjArray;

public AppServerImpl() throws RemoteException

{
emailObjArray = new ArrayListQ;

}

public double executeTask(double dl, double d2) throws RemoteException

{

new editorialBasedEmailNotification();

return dl+d2;

}

}

Now let's take a closer look at each of the components of the compute engine

implementation.

Declare the Remote Interfaces Being Implemented The implementation class for the

compute engine is declared as public class AppServerlmpl extends

UnicastRemoteObject implements AppServerlntf. This declaration states that the class

implements the Compute remote interface (and therefore defines a remote object) and

extends the class java.rmi.server.UnicastRemoteObject.

UnicastRemoteObject is a convenience class, defined in the RMI public API, which can

be used as a superclass for remote object implementations. The superclass

UnicastRemoteObject supplies implementations for a number of java.lang.Object

methods (equals, hashCode, toString) so that they are defined appropriately for remote

objects. UnicastRemoteObjectalso includes constructors and static methods used to

Design of current Web Based Application Server 77

export a remote object, that is, make the remote object available to receive incoming calls

from clients.

A remote object implementation does not have to extend UnicastRemoteObject, but any

implementation that does not must supply appropriate implementations of the

java.lang.Object methods. Furthermore, a remote object implementation must make an

explicit call to one of UnicastRemoteObject's exportObject methods to make the RMI

runtime aware of the remote object so that the object can accept incoming calls. By

extending UnicastRemoteObject, the ComputeEngine class can be used to create a simple

remote object that supports unicast (point-to-point) remote communication and that uses

RMI's default sockets-based transport for communication.

If you choose to extend a remote object from any class other than Unicast-RemoteObject

or, alternatively, extend from the new JDK 1.2 class java.rmi.activation.Activatable (used

to construct remote objects that can execute on demand), you need to export the remote

object by calling either the UnicastRemoteObject.exportObject or

Activatable.exportObject method explicitly from your class's constructor (or another

initialization method, as appropriate).

The AppServer engine example defines a remote object class that implements only a

single remote interface and no other interfaces. The AppServerlmpl class also contains

some methods that can be called only locally. The first of these is a constructor for

AppServerlmpl objects; the second is a main method that is used to create a

ComputeEngine and make it available to clients.

Define the Constructor

The AppServerlmpl class has a single constructor that takes no arguments. The code for

the constructor is

public AppServerImpl() throws RemoteException

{

emailObjArray = new ArrayList();

}

This constructor simply initializes an ArrayList. The superclass constructor gets called

even if omitted from the AppServerlmpl constructor, we include it for clarity.

Design of current Web Based Application Server 78

During construction, a UnicastRemoteObject is exported, meaning that it is available to

accept incoming requests by listening for incoming calls from clients on an anonymous

port.

Note: In JDK 1.2 you may indicate the specific port that a remote object uses to accept

requests.

The no-argument constructor for the superclass, UnicastRemoteObject, declares the

exception RemoteException in its throws clause, so the Compute-Engine constructor

must also declare that it can throw RemoteException. A RemoteException can occur

during construction if the attempt to export the object fails—due to, for example,

communication resources being unavailable or the appropriate stub class not being found.

Provide Implementations for Each Remote Method

The class for a remote object provides implementations for each of the remote methods

specified in the remote interfaces. The Compute interface contains a single remote

method, executeTask, which is implemented as follows:

public double executeTask(doubIe dl, double 62) throws RemoteException

{
new editorialBasedEmailNotificationO;

return dl+d2;

}

This method implements the protocol between the AppServer and its clients. Clients

provide the executeTask with some values, which has an implementation of the task's

execute method. The AppServerlmpl executes the Task and returns the result of the task's

execute method directly to the caller.

The executeTask method does not need to know anything more about the result of the

execute method than that it is at least an Object. The caller presumably knows more about

the precise type of the Object returned and can cast the result to the appropriate type.

12.1.1 Passing Objects in RMI

Design of current Web Based Application Server 79

Arguments to or return values from remote methods can be of almost any type, including

local objects, remote objects, and primitive types. More precisely, any entity of any type

can be passed to or from a remote method as long as the entity is an instance of a type

that is a primitive data type, a remote object, or a serializable object, which means that it

implements the interface java.io.Serializable.

A few object types do not meet any of these criteria and thus cannot be passed to or

returned from a remote method. Most of these objects, such as a file descriptor,

encapsulate information that makes sense only within a single address space. Many of the

core classes, including those in the packages java.lang and java.util, implement the

12.1.2 Serializable interface

The rules governing how arguments and return values are passed are as follows.

Remote objects are essentially passed by reference. A remote object reference is a stub,

which is a client-side proxy that implements the complete set of remote interfaces that the

remote object implements.

Local objects are passed by copy, using object serialization. By default all fields are

copied, except those that are marked static or transient. Default serialization behavior can

be overridden on a class-by-class basis.

Passing an object by reference (as is done with remote objects) means that any changes

made to the state of the object by remote method calls are reflected in the original remote

object. When passing a remote object, only those interfaces that are remote interfaces are

available to the receiver; any methods defined in the implementation class or defined in

nonremote interfaces implemented by the class are not available to that receiver.

For example, if you were to pass a reference to an instance of the AppServerlmpl class,

the receiver would have access only to the AppServerlmpl engine's executeTask method.

That receiver would not see either the AppServerlmpl constructor or its main method or

any of the methods in java.lang.Object.

In remote method calls objects—parameters, return values, and exceptions—that are not

remote objects are passed by value. This means that a copy of the object is created in the

Design of current Web Based Application Server 80

receiving virtual machine. Any changes to this object's state at the receiver are reflected

only in the receiver’s copy, not in the original instance.

Implement the Server's main Method

The most involved method of the ComputeEngine implementation is the main method.

The main method is used to start the ComputeEngine and therefore needs to do the

necessary initialization and housekeeping to prepare the server for accepting calls from

clients. This method is not a remote method, which means that it cannot be called from a

different virtual machine. Since the main method is declared static, the method is not

associated with an object at all but rather with the class ComputeEngine.

Create and Install a Security Manager

The first thing that the main method does is to create and to install a security manager,

which protects access to system resources from untrusted downloaded code running

within the virtual machine. The security manager determines whether downloaded code

has access to the local file system or can perform any other privileged operations.

All programs using RMI must install a security manager, or RMI will not download

classes (other than from the local class path) for objects received as parameters, return

values, or exceptions in remote method calls. This restriction ensures that the operations

performed by downloaded code go through a set of security checks.

The ComputeEngine uses a security manager supplied as part of the RMI system, the

RMISecurityManager. This security manager enforces a similar security policy as the

typical security manager for applets; that is to say, it is very conservative as to what

access it allows. An RMI application could define and use another SecurityManager class

that gave more liberal access to system resources or, in JDK 1.2, use a policy file that

grants more permissions.

Here's the code that creates and installs the security manager:

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

Make the Remote Object Available to Clients

Next, the main method creates an instance of the ComputeEngine. This is done with the

statement
,A<V

‘M
\

m] 3Design of current Web Based Application Server

Compute engine = new ComputeEngine();

As mentioned, this constructor calls the UnicastRemoteObject superclass constructor,

which in turn exports the newly created object to the RMI runtime. Once the export step

is complete, the ComputeEngine remote object is ready to accept incoming calls from

clients on an anonymous port, one chosen by RMI or the underlying operating system.

Note that the type of the variable engine is Compute, not ComputeEngine. This

declaration emphasizes that the interface available to clients is the Compute interface and

its methods, not the Compute-Engine class and its methods.

Before a caller can invoke a method on a remote object, that caller must first obtain a

reference to the remote object. This can be done in the same way that any other object

reference is obtained in a program, such as getting it as part of the return value of a

method or as part of a data structure that contains such a reference.

The system provides a particular remote object, the RMI registry, for finding references

to remote objects. The RMI registry is a simple remote object name service that allows

remote clients to get a reference to a remote object by name. The registry is typically

used only to locate the first remote object an RMI client needs to use. That first remote

object then provides support for finding other objects.

The java.rmi.Naming interface is used as a front-end API for binding, or registering, and

looking up remote objects in the registry. Once a remote object is registered with the RMI

registry on the local host, callers on any host can look up the remote object by name,

obtain its reference, and then invoke remote methods on the object. All servers running

on a host may share the registry, or an individual server process may create and use its

own registry, if desired.

The AppServer Engine class creates a name for the object. This name includes the host

name, host, on which the registry (and remote object) is being run and a name, Compute

that identifies the remote object in the registry. The code then needs to add the name to

the RMI registry running on the server. This is done later (within the try block) with the

statement

Naming.rebind("AddServer", addServerlmpl);

Calling the rebind method makes a remote call to the RMI registry on the local host. This

call can result in a RemoteException being generated, so the exception needs to be

Design of current Web Based Application Server 82

handled. The AppServer class handles the exception within the try/catch block. If the

exception is not handled in this way, RemoteException would have to be added to the

throws clause (currently nonexistent) of the main method.

Note the following about the arguments to the call to Naming.rebind.

The first parameter is a URL-formatted java.lang.String representing the location and the

name of the remote object. You will need to change the value of host to be the name, or

IP address, of your server machine. If the host is omitted from the URL, the host defaults

to the local host. Also, you don't need to specify a protocol in the URL. For example,

supplying Compute as the name in the Naming.rebind call is allowed. Optionally a port

number may be supplied in the URL; for example, the name //host:1234/objectname is

legal. If the port is omitted, it defaults to 1099. You must specify the port number only if

a server creates a registry on a port other than the default 1099. The default port is useful

in that it provides a well-known place to look for the remote objects that offer services on

a particular host.

The RMI runtime substitutes a reference to the stub for the remote object reference

specified by the argument. Remote implementation objects, such as instances of

ComputeEngine, never leave the VM where they are created, so when a client performs a

lookup in a server's remote object registry, a reference to the stub is returned. As

discussed earlier, remote objects in such cases are passed by reference rather than by

value.

Note that for security reasons, an application can bind, unbind, or rebind remote object

references only with a registry running on the same host. This restriction prevents a

remote client from removing or overwriting any of the entries in a server's registry. A

lookup, however, can be requested from any host, local or remote.

Once the server has registered with the local RMI registry, it prints out a message

indicating that it's ready to start handling calls and then the main method exits. It is not

necessary to have a thread wait to keep the server alive. As long as there is a reference to

the ComputeEngine object in another virtual machine, local or remote, the

AppServerlmpl object will not be shut down, or garbage collected. Because the program

binds a reference to the AppServerlmpl in the registry, it is reachable from a remote

client, the registry itself! The RMI system takes care of keeping the Engine's process up.

Design of current Web Based Application Server 83

The Engine is available to accept calls and won't be reclaimed until its binding is

removed from the registry, and no remote clients hold a remote reference to the

ComputeEngine object.

The only exception that could be thrown in the code is a RemoteException, thrown either

by the constructor of the class or by the call to the RMI registry to bind the object to the

name Compute. In either case the program can't do much more than exit after printing an

error message. In some distributed applications it is possible to recover from the failure to

make a remote call. For example, the application could choose another server and

continue operation.

Creating a Client Program

The appserver engine is a pretty simple program: it runs tasks that are handed to it. A

client needs to call the methods provided by the interface on the server, but it also has to

define the task to be performed by the server. The client is a simple GUI application that

invokes methods on the remote objects registered with the application server.

/*

*A simple graphical user interface that connects to the Appserver and invokes methods

^defined in the remote interface.

*/

import java.awt.*;

import java.awt.event.*;

import java.rmi.*;

public class AppFrame extends Frame {

TextField a, b ,result;

Button btn;

protected static boolean DEBUG = true;

public AppFrame() {

super(" AppClient");

setSize(400, 200);

setLayoutfnew FlowLayout());

add(new Label("Send Request to Server..."));

Design of current Web Based Application Server 84

a = new TextField("0", 4);

b = new TextField("0", 4);

result = new TextField("0", 4);

btn = new ButtonfSEND");

add(a); add(b);add(result); add(btn);

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent e) {

a. setText(String.valueOf(e.getX()));

b. setText(String.valueOf(e.getY()));

}

});

addWindowListener(new WindowAdapterQ {

public void windowClosing(WindowEvent e) {

setVisible(false);

dispose();

System.exit(O);

}

});

btn.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

try

{

String appServerURL="rmi://loealhost/AddServer";

AppServerlntf

appServerIntf=(AppServerIntf)Naming.lookup(appServerURL);

result.setText(""+appServerIntf.executeTask(10, 11));

}

catch (java.rmi.NotBoundException exc) {

if (DEBUG) {

Design of current Web Based Application Server 85

System.err.println("Couldn't find Server running on host");

System.err.println("RMI seems to be running fine.");

}

} catch (java.rmi.UnmarshalException exc) {

System.err.println("Unmarshal exception on host"

+

System.err.println("Try recompiling everything and starting over?");

} catch (java.rmi.ConnectException exc) {

if (DEBUG) {

System.err.println("RMI isn't running on "

+ "•");

System.err.println("Or maybe it is, but it"

+ "started after this program.");

}

} catch (Java.rmi.UnknownHostException exc) {

System.err.println("Unknown host");

} catch (java.rmi.ConnectlOException exc) {

System.err.println("Couldn't get to host"

+ "•");

} catch (Exception exc) {

System.err.println("Unexpected exception ");

System.err.println("Exception type:"

+ exc.toStringO);

exc .prints tackTrace();

}

}
});

}

public static void main(String[] args) {

AppFrame app = new AppFrame();

app. setVisible(true);

Design of current Web Based Application Server 86

}
}

There is a multithreaded process which creates and few XML files and writes to the file

system. This is a fake service provided by this application server for the purpose of

demonstration.

//This pool is used to initiate worker threads and manage their life cycle.

//Also the pool creates a Update thread that deals with database tractions.

//

//Worker threads are in wait state and are deposited to an ArrayList "threads"

//after they are finished the work. When a new task comes in, the pool pulls

//a worker thread from the end of list to perform the work.The worker thread is

//waken up when being handed over the work.

//The pool monitors one conditions for the "threads" arraylist: No_empty. If

//"threads" list has no thread left and there is a new task coming in, the

//requestor of that task must wait until there is a worker thread retunring.

//Upon notification as terminateNow function being called, the pool notifies

//every worker thread in the list and the returning worker threads to stop.

//The maximum wait time for worker thread to stop is set by the variable

//called maxTimeToWait.

//After all the worker threads are stopped or wait time is out, the pool notifies

// the update thread to stop too.

import java.util.*;

public class WorkerThreadPool

{
ArrayList threads= new ArrayList();

DeliveryThread d;

Design of current Web Based Application Server 87

MailPool mailPool;

int threadCount;

private int successfulHtmlMails=0;

private int suceessfulTextMails=0;

private int unSuccessfulMails=0;

//wait maximum 100 seconds for all the workerThread to terminate

private static final int maxTimeToWait=100;

//Warning: Modifications in any of the following sections may result in improper

//execution of the application such as race condition, deadlock, trash

//buildup and/or other runtime unexpected errors. Please use care.

public WorkerThreadPool(MailPool mailPool, DeliveryThread d, int count)

{

this.mailPool = mailPool;

this.d=d;

threadCount=count;

for (int i=0; iccount; i++)

{
new WorkerThread(this, i);

}

}

public WorkerThreadPool()

{}

public synchronized WorkerThread getWorker()
{

if(threads.size()>0)
{

Design of current Web Based Application Server 88

}
else
{

return (WorkerThread)threads.remove(threads.size()-l);

}

try
{

whi le(threads .size()==0)
waitQ;

}
catch(InterruptedException ie)
{

ie.printStackTrace();
}

return (WorkerThread)threads.remove(threads.size()-1);

public int getThread()
I

return threads.size();
}

public synchronized void deposit(WorkerThread worker)
{

//System.out.println("Depositing workerThread..");
if(worker.getSubnId()!= -999 && worker.getLastDeliveryStatusQ)
{

if(worker.getMailFormat()==editori alBasedEmailNotification.HTML)
successfulHtmlMails++;

else if(worker.getMailFormat()==editorialBasedEmailNotification.TEXT)
successfulTextMails++;

}
else if(worker.getSubnId()!= -999)
{

unSuccessfulMails++;
}
if(worker.getContent() != null)
mailPool .pushRecycle(worker. getContent());
worker. setContent(null);
threads.add(worker);
if(threads. size()== 1)

notifyQ;
//System.out.println("Waking up deliveryThread..");

}

Design of current Web Based Application Server 89

public void setErrorFlagQ
{

d.setErrorFlag();
terminateNow();

}

public void terminateNow()
{

int threadsTerminated=0;
1 ong then=S ystem.currentT imeMilli s ();

while((System.currentTimeMillis()-then)<maxTimeToWait)
{

synchronized(this)
{

while(threads.size()>0)
{

((W orkerThread)threads.remove(threads. size()-1)). stop();
++threadsTerminated;

}
}
if(threadsTerminated>=threadCount)

break;
else
{

try
{

Thread.sleep(50); //Wait before retrying.
}
catch(InterruptedException i)
{

i.printStackTrace();
threads=null;
break;

}

}

}

d.updateSuccessfulTextMails(successfulTextMails);
d.updateSuccessfulHtmlMails(successfulHtmlMails);
d.updateUnSuccessfulMails(unSuccessfulMails);

Design of current Web Based Application Server

MailPool.java
/**

* This pool hold the SubnContentDetail object.The pool helps to recycle the scd objects.

* There are method like pushRecycle() and getRecycle() that are used to manage this

pool.

* Once a new scd object is created the push() method in this class can be used to register

* that object with this class.
**/

import java.util.*;

public class MailPool
{

private volatile ArrayList scdArray;
private volatile ArrayList scdRecycleArray;

private int poolSize=4;
private boolean stop=false;

public MailPool(int poolSize)
{

if(poolSize>0 && poolSize<10)
this.poolSize=poolSize;

scdArray=new ArrayList(poolSize);
scdRecycleArray = new ArrayList();

}

/*
*This method Stores an scd object from the pool and removes it from the

pool.This method
*is synchronized as there could be at any given time multiple number of threads

attempting
*to modify the pool.
*@ return void
*/

public synchronized void push(SubnContentDetail scd)
{

while(scdArray.size()==poolSize)
{

try
1

waitQ;

Design of current Web Based Application Server 91

}

}
catch(InterruptedException ie)
I

ie.printStackTrace();
}

scdArray. add(scd);

if(scdArrav.size()==l)
{

notifyO;
}

}

/*
♦Once the worker thread has finished processing the task it returns the scd to the

ol
♦for reuse.
*@param SubnContentDetail object.
*/

public void pushRecycle(SubnContentDetail scd)
{

scdRecycleArray.add(scd);
1

/*
♦To get an scd object from the pool for reuse. Returns null if the pool is empty.
* ©return SubnContentDetail object.
*/
public SubnContentDetail getRecycle()

{
try
{

return
(SubnContentDetail)scdRecycleArray.remove(scdRecycleArray.size()-l);

}
catch(IndexOutOfBoundsException idx)

}

return null;

/*
♦Confirm is the pool has any scd available for processing.

Design of current Web Based Application Server 92

* ©return boolean.
*/
public synchronized boolean hasltems()
{

return scdArray.size()>0;
}

/*
* Reads the size of the pool.
*@retum pool size.
*/
public int getScd()

{
return scdArray.sizeQ;

/*
* Reads the size of the recycle pool.
* ©return recycle pool size.
*/
public int getscdRecycleArrayO
{

return scdRecycleArray.sizeQ;
}

/*
*Retums an scd object from the pool and removes it from the pool.This method is
* synchronized as there could be at any given time multiple number of threads

attempting
*to pick up the scd object.
* @return recycle pool size.
*/

public synchronized SubnContentDetail get()
{

SubnContentDetail scd=null;

whilefscdArray. size()==0)
{

iffstop)
return null;

try
{

waitQ;
iffstop)

return null;
}

Design of current Web Based Application Server 93

catch(InterruptedException ie)
{

ie.prints tackTrace();
}

}

scd= (SubnContentDetail)scdArray.remove(scdArray.size()-l);

if(scdArray.size()==poolSize-l)
{

notifyO;
}

return scd;
}

public synchronized void setStopQ
{

stop=true;
notifyO;

}
}
EditorialBasedEmailNotification.java

import java.sql.*;

import java.util.*;

import java.text.SimpleDateFormat;

import javax.naming.*;

import j avax .ejb.FinderExcepti on;

import java.rmi.*;

import java.rmi.RemoteException;

import j avax .rmi .PortableRemoteObj ec t;

import java.lang.*;

public class editorialBasedEmailNotification

{

private MailPool mailPool[];

private static DeliveryThread deliveryThread[];

Design of current Web Based Application Server 94

public final static int TEXT= 1;

public final static int HTML= 2;

public long subnThreadCount=0;

public int threadCount=0;

public int mailPoolSize=0;

private HashMap contentHM = new HashMapO;

private SimpleDateFormat formatter = new SimpleDateFormat ("EEEE, MMM d,

yyyy");

private SimpleDateFormat SQLDateFormatter = new SimpleDateFormat("yyyy-MM-

dd HH:mm:ss");

private static boolean errorFlag=false; //error from lower levels,

private static ArrayList subnThreadArray=new ArrayList();

public editorialBasedEmailNotification()

{

subnThreadCount = 2;

threadCount = 2;

mailPoolSize = 2;

long maxSubnId=0;

mailPool = new MailPool[mailPoolSize];

deliveryThread = new DeliveryThreadfmailPoolSize];

for(int i=0; i <mailPool.length; i++)

{

mailPool[i] = new MailPool(4);

deliveryThread[i]=new

DeliveryThread(this,mailPool[i],threadCount);

}

SubscriptionThread subnThread;

long SubnIdIncrement=maxSubnId/subnThreadCount;

Design of current Web Based Application Server 95

for (int i=0; i<subnThreadCount-l; ++i)

{

subnThread=new

SubscriptionThread(i,i*SubnIdIncrement+l,(i+l)*SubnIdIncrement);

subnThreadArray. add(subnThread);

subnThread. start();

}

subnThread=new SubscriptionThread((int)subnThreadCount-l,(subnThreadCount-

l)*SubnIdIncrement+l,maxSubnId);

subnThreadArray. add(subnThread);

subnThread. start();

}

public void setErrorFlagO

{

errorFlag=true;

System.out.println("A non-recoverable error has occured and the application " +

"has to stop now. The cause can be some supporting files missing.");

}

public static void main(String[] arg)

{

long then=System.currentTimeMillis();

try
{

for (int i=0; i<subnThreadArray.size(); i++)
{

((SubscriptionThread)subnThreadArray.get(i)).join();
}

if(!errorFlag)
{

Design of current Web Based Application Server 96

for (int i=0; i<deliveryThread.length; i++)
{

deli veryThread[i] .terminate();
}

}

for (int i=0; i<deliveryThread.length; i++)
{

deliveryThread[i].join();
}

}
catch(InterruptedException ie)
{

ie .printStackTrace();
}

System.out.println("\n\nTotal time spent was +
(System.eurrentTimeMillis()-then)/(1000.0*60) + " minutes.”);

class SubscriptionThread extends Thread

{

long startlndex;

long endlndex;

int id;

private SubnContentDetail scd;

public SubscriptionThread(int id, long from, long to)

{

startIndex=from;

endIndex=to;

this.id=id;
System.out.println("SubscriptionThread " + id + " was created, (from: "+

from + ” to: " +to+")");
}

public void run()
{

int count = 0;
try

Design of current Web Based Application Server 97

{
for (int i=0; i <= 100; i++)
{

if(errorFlag)
break;
scd = mailPool[++count%mailPool.length].getRecycle();
if (scd == null)

scd = new SubnContentDetail();
scd. setS ubnld(i);
scd.setEmail("test@hotmail.com");
int format_id=l;
if (format Jd == 1)
{

scd.setMailFormat(TEXT);
}
else if (formatjd == 2)
{

scd. setMailFormat(HTML);
}
mailPool [count%mailPool .length] .push(scd);

}
System.out.println("SubscriptionThread done

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx");
}
catch (Exception ex)
{
ex.printStackTraceQ;

}
}
}

}
Deli veryThread.j av a
import java.util.*;

public class DeliveryThread implements Runnable
{

private static int successfulHtmlMails=0;
private static int successfulTextMails=0;
private static int unSuccessfulMails=0;

boolean beTerminated=false;
WorkerThreadPool workerThreadPool;
WorkerThread worker;
SubnContentDetail scd;
Thread t;
MailPool mailPool;
private boolean errorFlag=false;

Design of current Web Based Application Server 98

editorialBasedEmailNotification driver;
private static int counterForEmail = 0;
private static Object counterForNumEmailSentLock = new ObjectQ;

public DeliveryThread(editorialBasedEmailNotification driver, MailPool mailPool, int
threadCount)

{
this. mailPool=mai IPool;
this. dri ver=dri ver;

synchronized(counterForNumEmailSentLock)
{

counterForEmail++;
}

if(threadCount<0)
threadCount=2;

else if(threadCount>=10)
threadCount=5; //max 5 worker threads.

workerThreadPool=new WorkerThreadPool(mailPool,this, threadCount);

t=new Thread(this);
t.start();

}

public void setErrorFlagO
{

driver. setErrorFlagO;
errorFlag=true;
terminateO;

}

public synchronized void updateSuccessfulTextMails(int successfulTextMails)
{

this.successfulTextMails += successfulTextMails;
}

public synchronized void updateSuccessfulHtmlMails(int successfulHtmlMails)
{

this. successfulHtmlMails += successfulHtmlMails;
}

public synchronized void updateUnSuccessfulMails(int unSuccessfulMails)
{

this.unSuccessfulMails += unSuccessfulMails;
}

Design of current Web Based Application Server 99

public synchronized void terminateQ
{

mailPool.setStopO;
long then=System.currentTimeMillis();
while(mailPool.hasItems() && (System.currentTimeMillis()-then)<300)
{

try
{

Thread. sleep(1000);
}
catch(InterruptedException ie)
{

ie.printStackTrace();
}

I
beTerminated=true;
notify();

}

public void join() throws InterruptedException
{

t.joinQ;
}

public void run()
{

int count = 0;
while(true)
{

if(beTerminated)
break;

scd=mailPool. get();
if(scd!=null)
{

worker=workerThreadPool. getW orker();

worker. setContent(scd);
//System.out.println("Waking up worker.");

worker.resume();
count++;
if(count %20 == 0)
{

System.out.print("MailPool Recycle
:"+mailPool.getscdRecycleArray()+"Waiting MailPool :"+mailPool.getScd());

System.out.print("ThreadPool
:"+workerThreadPool.getThread());

Design of current Web Based Application Server 100

if(!errorFlag)
workerThreadPool.terminateNow();

try
{

Thread. sleep(500);
}
catch(IntemiptedException ex)
{}
synchronized(counterForNumEmailSentLock)
{

counterForEmail—;
}

System.out.println("DeliveryThread is stopping..");
}

}

Running the client and server

Start the rmiregistry

To start the registry, Windows users should do the following (assuming that your java\bin

directory is in the current path):-

start rmiregistry

To start the registry, Unix users should do the following:-

rmiregistry &

Compile the server

Compile the server, and use the rmic tool to create stub files.

Start the server

From the directory in which the classes are located, type the command to run the server

Start the client

You can run the client locally, or from a different machine. In either case, you'll need to

specify the hostname of the machine where you are running the server. If you're running

it locally, use localhost as the hostname.

Design of current Web Based Application Server 101

12.2 Typical Performance Characteristic

Data Source: CNET News.com, Dec. 8,1999

Figure 4 : Performance Characteristic

12.2.1 Emerging Market

The term "application server" has become one of the hottest buzzwords of the decade. It

is being used to describe a wide variety of products that offer a broad spectrum of

features and capabilities. Application servers have grown out of a number of different

Revenue by App Server Vendor, 1998
(millions of dollars)

Pe
rs

ist
en

ce

Si
lv

er
St

re
am

O
ra

cl
e

Fo
rt

e
(S

un
/A

O
L

)

W
eb

O
bj

ec
ts

(A
pp

le
)

C
ol

d
Fu

sio
n

(A
lla

ir
e)

Pa
rl

ay
 (I

BI
)

N
et

D
yn

am
ic

s
(S

un
/A

O
L)

N
et

sc
ap

e
(S

un
/A

O
L)

W
eb

Lo
gi

c
(B

EA
)

Sa
pp

hi
re

/W
eb

(B
lu

es
to

ne
)

G
em

st
on

e

o
o

o
o

10

to
c
m

Design of current Web Based Application Server 102

product groups, including Web servers, database servers, TP monitors, and CORBA

runtime systems. The one feature that these products have in common is that they provide

an optimized execution environment for server-side application components.

12.2.2 Product Trade-Offs

Each application server offers a different set of features and capabilities. No single

application server is the right choice for all circumstances. The right choice is determined

by the specific requirements of a particular installation, but some reasonable guidelines

can help narrow the field. Certain application servers offer better scalability, but often

with a comparable increase in complexity and license fees. Other applications servers

offer simplicity and ease-of-use, but they may not support extended services, such as

heterogeneous transactions or fault tolerance.

Company
Name

1
Product
Name Web Site

i

Interfac
e
Method

(Allaire ColdFusion

%..j"u.."jjjj,,"li....... 1.... jM"u........................... "........ 1.....1.....u J...... 1i
http://www.allaire.com/products/coldfusion/40/

ActiveX,
C++,
Java

Apple Web Objects http://www.apple.com/webobjects/
ANSI C,
C++,
Java j

Art
jTechnology
Group

Dynamo
Personalizatio
n software

http://www.atg.com/products/highlights/highlights_main.htm
1 Java ||

BEA Web
Login Tengah http://www.weblogic.com/products/tengah/tengahabout.html

j

Java

Blue Stone Sapphire http://www.bluestone.com/products/sapphire/
___ _ ---

i (|
Java |

Bullet Proof
Corporation JDesigner Pro http://www.bulletproof.com/

I /j^\
.... ..—......—..-...... —.—...—...—...

Java |

a '-P\
LIBFUqvl^l

* V V J”
103 JDesign of current Web Based Application Server

Elemental
Software

Drumbeat
2000

http://www.drumbeat.com/ ActiveX

GemStone
Software

|cemStone/J
http://www.gemstone.eom/products/j/main.html Java

HAirr
IhAHT Site

Application
(Server

1
http://www.haht.com/Go.html?Page=HS_Pr_HSOverview

ANSI C,
C++,
ActiveX

Halcyon
Software I-ASP http://www.halcyonsoft.com/asp/whitepaper.html Java

IBM WEB
SPHERE

http://www.software.ibm.com/webservers/appserv/ Java

Inprise
Inprise
Application
Server

http://www.inprise.com/appserver/ Java

Intemova Colibri Engine http://www.intemova.com/colibri/main.asp Java,
ActiveX

Intersolv NetExpress http://www.microfocus.com/products/enterapp.htm C++

Lona
Technologie
s

Orbix OTM http://
www.iona.com/products/transactions/orbixotm/index.html Java

Lotus Domino http://www.lotus.com/home.nsf/tabs/domino ActiveX

Micorsoft MTS/HS http://www.microsoft.com
______ _____ _ ____ _ _____

ActiveX

Netscape Application
Server http://www.netscape.eom/appserver/v2.l/index.html Java

New Atlanta Servlet Exec
2.0 http://www.newatlanta.com/products.html Java

Novera J Business http://www.novera.com/jbusiness.html Java

Open
Connect
System

WebConnect http://www.openconnect.com/pressrel/120898.html Java

Oracle Oracle WAS http ://www. oracle. com/products/asd/oas/oas .html Java

Design of current Web Based Application Server 104

Pervasive
Software Tango

-- 1
http://tango.pervasive.com/products/tango/webjump/

:

Java,
ActiveX

Pramati
technologies Proton http://www.pramati.com/products.htm Java

Progress
Softwares Aptivity http://www.progress.com/java/apptivity/apptivity.htm Java

Prosyst Enterprise
Beans Server

http://www.prosyst.com/prosyst/champion.htm Java

Seagate
Software

Seagate Info
APS http://www.seagatesoftware.com/crystalinfo/ ANSI C,

C++

Secant
Technologie
s

Secant
Extreme
Server

http://
w w w. sec ant.com/sec ant/extreme_enterpri se_server_ejb. htm Java

SilverStream Silver Stream http://www.silverstream.com/information/press/v2press_f.ht
m Java

Sun NetDynamics http://www.netdynamics.com/ Java

Sybase
Enterprise
Application
Server

http://www.sybase.com/products/application_servers/

ActiveX,
ANSI C,
C++,
Java

Tempest
Tempest
Messanger
System

http://www.tempest.com/products.html
ANSI C,
C++,
Java

Unifv Vision App
Server http://www.unify.com/Products/vision.htm ANSI C,

ActiveX

[unify Ewave Engine http://www.unify.com/Products/ewave/index.htm Java

IVisient Arabica EJB
Server http://www.visient.com/Arabica_server_main.htm Java !

Vision Jade http://www.vision-soft.com/products/products.htm Java |

Vi si soft Inc. Com Studio http://www.visisoft.com/cando.htm C++ |
______1

Table 1 : List of Application Servers

Design of current Web Based Application Server 105

12.3 Specification Summary

Load Balancing: - Ability to send the request to the to different servers depending upon
the load and availability of the server.

Fault Tolerence Ability of the Application server with no single point of failure, defining
policies for recovery and fail-over recovery in case of failure of one object or group of
objects.

Transaction Management

Mulithreaded Architecture

Managability

Security like support for SSL, Firewall X.509 certificates,Access Control Lists (ACL)

Security Level i.e. ServerLevel, Service Level, Directory Level,Object Level etc

Development and Support Tools i.e. Any development Environment.

CORBA Support

Application Portablility for e.g. Application developed in one application server
environment can be easily be ported on to other application server environment is
possible or not.

EJB Support

External Data Integeration Support like support to Integrate with legacy systems
via: CICS,IMS,Tuxedo, MQ Series

Distributed Standards Protocols Supported

Platforms Supported like support for Windows , Solaris etc

Protocol Support like CORBA,HOP,LDAP,JNDI,RMI,HTTP,SMTP,SNMP,NSAPI and
ISAPI etc

Database Supported like support for ODBC, JDBC, Oracle, Sybase, MS-Access etc.

Modeling Tool Supported like support for Rational Rose etc

Component Management: - Provides the manager for handling all the components and
run time services like session management, svnchronous/asvnchronous client

Design of current Web Based Application Server 106

