
2 Solutions for CGI Optimization

Inspite of the shortcomings mentioned in the above section, all is not lost. In the next

sections, we will discuss the remedies and point out various techniques that can improve

CGI performance in various cases.

2.1 Efficiency in Perl

The first step towards CGI optimization is obviously to follow the guidelines outlined for

efficiency in the language of choice itself (which in our case is Perl). For frequently

accessed CGI's, using a Perl compiler (distributed with Perl 5.005) that generates C code

from Perl scripts, can significantly improve efficiency as there is no overhead of starting

up the Perl interpreter. Perl performance can also be significantly improved (and in

certain cases, even better than the compiled C code) when using mod perl module in

Apache.

CGI scripts, such as the ones using system() (which also reduces portability) or 'backtick'

notation are inefficient by their very nature, and very resource-intensive. There are ways

to reduce or eliminate all these overheads, but these tend to be operating system- or

server-specific (for which the best support seems to be in Apache).

2.2 I/O Buffering

I/O buffering has its advantages but for time-intensive computations, (for example,

searching a large database or creating images on-the-fly), it can be a bottleneck. You

could follow these steps to adjust I/O buffering:

1. Turn off I/O buffering in Perl by using #1 = 1.

2. Send the header information (at least the content-type) to the browser (else the

browser will go into a timeout and close the connection).

3. Turn on I/O buffering in Perl by using $j = 0.

4. Send the content.

Design of current Web Based Application Server 25

2.3 Reverse DNS Lookups

The server is given only the IP address of the browser making the request. The reverse

DNS lookups let the server use the full qualified name in CGIs. The problem with DNS is

that it uses blocking systems calls which hang the (parent) server process till a call is

completed. These calls can take a significant amount of time for a single user, resulting in

a sacrifice in performance, if many users are being served.

Explicit reverse DNS lookups are not needed as, if needed, CGIs can do a lookup

themselves using the environment variable. If possible, avoid runtime reverse DNS

lookups and use static IP addresses.

In some servers, such as recent versions of Netscape Enterprise, DNS lookups are set off

by default. To turn off reverse DNS lookups in Apache, you can do the following in

httpd.conf:

HostnameLookups = off

and the following in the AddLog directive:

iponly = 1

2.4 Non-Parsed Headers

Most Web servers buffer the output from the CGI script before sending it onward to the

browser. If the buffer size is large and the size of a page is small, then the script may

have to send several pages before the first one is sent to the browser, resulting in choppy

updating.

When a Content-type header is included in a CGI script, the server parses the output and

completes the header information (by adding the header information of its own) that it

considers may be useful to the browser. However, CGI scripts can override the header

information included by the server by generating a complete HTTP header on its own.

CGI scripts which bypass the server and generate the HTTP header information on their

own are known as non-parsed header (NPH) scripts.

The advantages of NPH CGI scripts are:

Design of current Web Based Application Server 26

• In contrast to ordinary CGI scripts, they can keep the connection between the

server and the browser open, and can output results over a relatively longer period

of time.

• They are slightly faster in response time for the user than ordinary CGI scripts,

since when a script returns a complete HTTP header, the output is presented

directly to the user. There is no interference on part of the server and hence no

overhead.

The limitations of NPH CGI scripts are:

• Including correct header information is the script developer's responsibility. If

there are any errors in the header information, the server will not be able to

circumvent them and the browser will not be able to interpret the output.

• The server can not log the size of the data returned through an NPH CGI script.

NPH scripts can be useful in instances that require "server-push." Examples are

animation programs that need to induce "continuity” when presenting image frames to the

user, and stock pricing programs which depend on constantly changing data.

2.5 Division of Labour

For multiple CGI's, an improvement in scalability can be achieved by running them on

different Web servers. If the CGI's do share data, then just the CGI's can be placed on

different systems. If the CGI is being used as frontend to other applications, such as a

database, then the backend program should be run on a separate server doing most of the

work, while the actual CGI simply carries messages.

2.6 Client-Side Processing

CGI is a server-side technology. For a task at hand, such as form validation, a CGI

doesn't have to do all the work involved in the process. The work could be shared with

client-side technologies such as JavaScript. Moving some of the processing from the

Design of current Web Based Application Server 27

server-side to the client-side by supplementing CGIs with client-side technologies has

various benefits:

• The browser, which spends most of its time idle, waiting for incoming requests.

By moving some of the work onto the browser reduces the amount of work

servers do, and hence the load on the server.

• If used for validation, it eliminates wasted CGI calls due to invalid input from the

user. Such user-centric validation can save enormous time. The CGI itself can

then be smaller. Besides validation, JavaScript could also be used for light

calculations on the client-side.

This solution also has certain limitations:

• Not all browsers support JavaScript.

• The trade-off (though small) is that the user has to download a little more data.

• There are different JavaScript implementations in different browsers.

Incompatible implementations can not only be inconvenient, but even lead to the

possibility that a JavaScript script may not work at all. One way to circumvent

this is for the CGI to generate all the JavaScript code in the application, and use

the USER_AGENT environment variable to serve customized JavaScript. If the

CGI script detects that the user's browser does not support JavaScript, it can

generate Web pages that do not require JavaScript at all. (This, however, does not

reduce the size of the CGI script, which, as mentioned above, is a benefit of

client-side processing.)

• The users can turn-off JavaScript-support in their browsers at any time.

JavaScript stops functioning if the user runs out of memory, which can mislead

the server to conclude that the input has been validated. In this case, the CGI

script need to check if the JavaScript is running, and take appropriate action

accordingly. One way to do that is to have JavaScript post the form to the CGI. So

if JavaScript is not running, the form cannot be posted. It includes a hidden form

field which tells the server whether client-side validation has been performed.

Design of current Web Based Application Server 28

Thus, JavaScript can not entirely remove the burden of validation from the server but, in

certain cases, it can reduce it.

Note that, one could also use VBScript for client-side validation but it is only supported

on Internet Explorer; JavaScript is supported on many more browsers and is moving

towards a standardization as ECMAScript (as defined by ECMA-262).

2.7 State Persistence Using Cookies

Cookies can eliminate repetitious validation of user information or their state, so that the

CGI does not have to look it up each time a page is accessed. The limitation of using

cookies are that the user can refuse cookies (for example, for reasons of privacy), they are

limited to 4K, and HTTP 1.0-based browsers do not support them.

2.8 Co-Processing

One way to avoid latency of CGI scripts, is to keep them running all the time as a co­

process. Intead of having CGI start in response to a query and die, it can be useful to

start-up a persistent CGI-like process along with the Web server. When the Web server

gets a request pointing at that process, it connects to the process, hands over the request,

and waits for the response while still being able to handle other requests.

One obvious limitation of co-processing is the risk of memory leak since the process has

to run all the time. Chances of this can be reduced with utilities that can detect and locate

the problematic areas in the script.

2.8.1 FastCGI
An alternative to the CGI protocol is the FastCGI, a standard protocol proposed by Open

Market, Inc. The idea behind FastCGI is co-processing. FastCGI is a simple

communications protocol that works as follows: it uses a single TCP socket to connect

the Web server and the FastCGI script (in contrast to the ordinary CGI method of using

pipes and environment variables). This connection provides a CGI-like environment and

other (I/O streams, error-specific) information, which is set-up at the beginning of each

request. (The environment variables and stdin data is directed to the application, and

stdout and stderr data is directed to the Web server.)

Design of current Web Based Application Server 29

The Web server runs FastCGI scripts as separate processes like ordinary CGI scripts.

However, once launched, these scripts don't immediately exit when they finish processing

the initial request. Instead, they go into an infinite loop that waits for new incoming

requests, processes them, and goes back to waiting.

The advantages of FastCGI are:

• FastCGI avoids CGI's problem of having to launch a new script to handle each

and every incoming request by keeping the connection open at all times. It creates

a single persistent process for each FastCGI script which eliminates the need to

create a new process for each request. So, unlike CGI, you do not have the

overhead of starting up a new process and doing application initialization (such

as, connecting to a database) each time somebody requests a document. By

keeping application processes running between requests, FastCGI gets a better

performance than CGI. Here is a FastCGI benchmark demo.

• FastCGI programs are scalable since they can run off systems different than the

Web server. An application can reside on a different machine from the Web

server, allowing applications to scale beyond a single box and providing easier

integration with existing systems.

• Like CGI, FastCGI applications can be written in a variety of languages,

including Perl, C, C++, Java, and Python.

• Existing CGI scripts can be adapted to use FastCGI by making a few changes to

the script source code. (For example, the Perl 5 CGI library, CGI.pm. provides a

simple way of doing that.)

Implementations of FastCGI in Apache was included (though not compiled in by default)

in distributions prior to versions 1.2 as the modJ'astegi module. It is not included now

due to the problem of synchronizing versions. Commercial implementations of FastCGI

are available for Netscape servers and Microsoft IIS from Fast Engines, Inc.). Fast.Serv is

another commerical implementation of FastCGI and is currently available for all

Netscape and Microsoft Web servers on Windows NT and all major UNIX platforms.

t

HUT 30Design of current Web Based Application Server

More information on FastCGI, including FastCGI server modules and application

libraries, is available at FastCGI Web site.

The limitations of FastCGI are:

• FastCGI does not work natively with some Web servers and requires a specific

add-on which can reduce performance advantage.

• FastCGI has the problem of process proliferation: there is at least one process for

each FastCGI program. It needs to switch context to another heavyweight process.

• If a FastCGI program is to handle concurrent requests, it needs a pool of

processes, one per request. If each of these requests is executing a Perl interpreter,

this approach does not scale well. (This problem can be circumvented somewhat

as FastCGI can distribute its processes across multiple servers, but then that

requires extra resources.)

• FastCGI, like CGI, does not interact with the Web server.

• FastCGI programs are only as portable as the language they are written in.

2.9 Preprocessing and Caching

If the number of possible inputs and state combinations is small, one can run the CGI for

all possible input offline and cache each result in a static HTML document.The limitation

to this approach is that it may not work if the browser does not cache documents. Also,

there are cases such as outputs of CGI scripts, which should not be cached. In such cases,

the scripts need to specify the appropriate header (Pragma:Nocache in HTTP 1.0 or

Cache-Control in HTTP 1.1), and as a result put load on the server.

2.9.1 Server Redirection

When CGI scripts retrieve and return an existing document (on any server), it is known

as server-redirection. It can be done using the HTTP Location: response header pointing

to the static HTML document. In Apache, you can also redirect an entire server or

Design of current Web Based Application Server 31

directory to a single URL using the Apache module modjewrite. (The CGI approach for

redirection is preferred if any information is being POSTed to the redirected URL.)

Server-redirection can have various applications, such as, returning a standard response

page when a user submits a feedback form. When there are large number of inputs but a

small number of frequently requested documents, caching is possible via server-

redirection.

2.10 Embedded Interpreters

A solution to the CGI performance problem is using embedded high-level interpretive

languages in their servers. Embedded interpreters often come with CGI emulation layers,

allowing scripts to be executed directly by the server without the overhead of invoking a

separate process. An embedded interpreter also eliminates the need to make dramatic

changes to the server software itself. In many cases (and in contrast to server proprietary

APIs), an embedded interpreter provides a smooth path for speeding-up CGI scripts

because little or no source code modification is necessary.

2.10.1 mod_perl

One of the most important developments (and natural choice both from the language and

the server standpoint) in the embedded interpreter arena has been the provison of

including a Perl interpreter within the Apache Web server.

mod , perl is an Apache server module that embeds a copy of the Perl interpreter into the

server executable. With modjperl, Perl becomes the extension language for the Web

server, providing a complete access to the Perl functionality within Apache. One can then

write Perl snippets or CGI scripts, which do not require a new Perl interpreter process to

be invoked (since Perl is not built-in the server). Instead, a new thread executes a

precompiled Perl program. Since the CGI scripts (in Perl) are precompiled by the server

and executed without forking, they running more quickly and efficiently. (Usually, it is

not the size of the script itself but the fork/exec overhead that slows a CGI down.)

For Web servers under Windows NT there are other solutions. PerlScript is an ActiveX

scripting engine that lets you embed Perl code in you Web pages (in a manner similar to

JavaScript or VBScript). Perils is an ISAPI DLL that runs Perl scripts directly from

Microsoft IIS and other ISAPI-compliant Web servers, providing significant benefits.

Design of current Web Based Application Server 32

Both these solutions are from Active Ware, which also provide prebuilt Perl binaries for

Windows 9x/NT.

2.11 Goodbye to Performance

Last but not least, it almost goes without saying that the program scripts should be kept as

small as possible (but not smaller). It has various advantages such as ease of testing,

debugging and maintainance. These factors are directly/indirectly related to performance.

Optimization in code size also means using a context dependent approach and avoiding

"overkill." The moral: "Keep It Small, Silly" (or say goodbye to performance).

2.12 Conclusion

CGI is inflicted with various limitations. However, some of these can be circumvented

just by ca reful scripting, with using the strengths and knowing the weaknesses of the

language of choice.

There are other (server-side) alternatives to CGI for creating dynamic content, such as

serve extension APIs, Servlets, Active Server Pages (ASP), Server-Side JavaScript and

enhancements to Server-Side Includes. Some of these avoid almost all the problems

inherent in the CGI but come with other trade-offs.

Design of current Web Based Application Server 33

