Introduction

In [10] Vawlet has introduced the concept of 0-distributive lattices as a generalization of both pseudocomplemented and distributive lattices. Generalizing 0-distributivity in semilattices Pawar [9] has defined 0-distributive semilattice as a semilattice with O satisfying the following condition $\langle S, \land \rangle$ if a $\land x_1 = 0$, a $\land x_2 = 0$, a $\land x_n = 0$; a, $x_1, x_2, \ldots, x_n \notin S$ (n finite) and $x_1 \lor x_2 \lor \ldots \lor x_7$ exists in S then a $\land (x_1 \lor x_2 \lor \ldots$... $\lor x_n$) = 0.

Venkatanarasimhan [12] has defined an ideal I in a semilattice S as, a nonvoid subset of satisfying following conditions :

- i) $x \leq y, y \in I \implies x \in I$
- ii) If $x_1, x_2, \dots x_7 \in I$ and $x_1 \vee x_2 \vee \dots \vee x_n$ exists in S then $x_1 \vee x_2 \vee \dots \vee x_n \in I$

We define α -ideal I in O-distributive semilattices as an ideal satisfying x \in I ==> $(x)^{**} \subseteq$ I

where $(x)^* = \{y \in S / x \land y = 0\}.$

 α -ideals in distributive lattices were defined and studied by W.H.Cornish [2]. As O-distributive lattice is a generalization of distributive lattice, C.Jayaram [6] studied in detail α -ideals in O-distributive lattices and obtained necessary and sufficient conditions for **a-i**deal to be an annihilator ideal in O-distributive lattices.

In this dissertation we have generalized some to results of Comish [2.] and C.Jayaram [G_{Λ}^{0} -distributive semilattices and 0-distributive lattices. For convenience we divide the dissertation into four sections.

Section I deals with the basic definitions and results which are required for further study.

Several examples of α -ideals are given in Section II. It is also proved that every annihilator ideal is an α -ideal. But converse of this need not be true. Using α -ideals a characterization of quasicomplemented semilattices is also furnished.

Section III contains several, both-algebraic and topological characterizations of α -ideals.

In Section IV our setting is shifted to 0-distributive lattices. A study of α -map is carried out in 0-distributive lattices. α -maps are used to characterize α -ideals in 0-distributive lattices on the lines of Cornish [2,]