

SECTION-I

Definitions and Results

In this section we give some basic definitions and results which will be used in further sections.

1.1: Definitions

<u>Def. 1.1.1</u> <u>Partially ordered set or poset</u> [5]: Let p be a nonvoid set. Define a relation \leq on P satisfying the following for all a, b, c \neq P.

(reflexivity)								a	a <	i)
(antisymmetry)	b	=	a	==>	a	ج	and b	ъ	a <	ii)
(transitivity)	с	\$	a	==>	C	٤	and b	(b	a ≼	iii)

The ordered pair (P, \leq) is called a poset or a partially ordered set.

A poset (P, \leq) is called as chain (or totally ordered set or linearly ordered set) if it satisfies following condition :

iv) $a \leq b$ or $b \leq a$ for all $a, b, c \in P$ (linearity)

Let $H \subseteq P$ a $\notin P$ is an upper bound of H if $h \leq a$ for all h \notin H. An upper bound of H is the least upper bound of H or supremum of H (join) if for any upper bound b of H we have $a \leq b$. We shall write a = Sup H or a = VH. The concept of lower bound or infimum is similarly defined. The latter is denoted by inf H or \wedge H. Def.1.1.2 Zero element or unit element of poset [5] :

A zero of poset P is an element $0 \notin P$ with $0 \leq x$ for all x $\notin P$. A unit element of a poset P is an element $1 \notin P$ with x ≤ 1 for all x $\notin P$.

<u>Def.l.1.3</u> Lattice as poset [5] : A poset (L, \leq) is a lattice if sup { a, b } or avb and inf { a, b } or a \land b in L exists for all a, b \in L.

<u>Def. 1.1.4</u> Lattice as an algebra [5]: An algebra < L; \land , \lor > is called as lattice if L is nonvoid set with two binary operations \land and \lor satisfying following properties for all a, b, c \leftarrow L

i)	ana ava a	(idompotency)
ii)	$a \wedge b = b \wedge a$, $avb = bva$	(commutativity)
iii)	$(a \land b) \land c = a \land (b \land c)$	
	(a v b) vc = av (bvc)	(associativity)
iv)	a∧(avb) = a	4 - L
	$av (a \land b) = a$	(absorption iden-
		tities)

<u>Def. 1.1.5</u> <u>Complete lattice</u> [5] : A lattice L is said to be complete if \wedge H and ν H exists for any subset H of L.

<u>Def. 1.1.6</u> <u>Semilattice</u> [5] : A poset P is a meet semilattice (dually join semilattice) if $infimum \{a, b\}$ or <u>a</u> (dually supremum $\{a, b\}$ or avb) exists for any two elements $a, b \in P$.

Def. 1.1.7 <u>O-distributive lattice</u> [5] : Let L be a lattice with O. L is said to be O-distributive if $a \wedge b = 0$, $a \wedge c = 0$ (a, b, c (L) ==> $a \wedge (bvc) = 0$

Def.1.1.8 O-distributive semilattice [9] : A meet semilattice $\langle S, \wedge \rangle$ with 0 is said to be O-distributive if $a \land x_1 = 0$, $a \land x_2 = 0$, ..., $a \land x_n = 0$; $x_1, x_2, \ldots, x_n \notin S$ (n finite) and $x_1 \lor x_2 \lor \ldots \lor x_n$ exists in S then $a \land (x_1 \lor x_2 \lor \ldots \lor x_n) = 0$.

Def. 1.1.9 [6] For any subset $A \subseteq S$ define,

 $A^{*} = \left\{ x \in S / x \land a = 0 \quad \text{for all } a \in A \right\}$ If $A = \left\{ x \right\}$ then $A^{*} = \left\{ x \right\}^{*} = (x)^{*} = \left\{ y \in S / x \land y = 0 \right\}$ and $A^{**} = (A^{*})^{*}$.

<u>Def. 1.1.10</u> <u>Ideal in a lattice</u> [5] : Let L be a lattice J is called as an ideal in L if and let J be a non-empty subset of [I, A] a, b (J) implies that avbe J and $a \in J, x \in L, x \leq a$ imply $x \in J$ <u>Def. 1.1.11</u> <u>Prime ideal in a lattice</u> [5]: A proper ideal I of L is a prime if a, b (L) and $a \land b \in I$ imply that a $(I \circ I) \in I$

Def. 1.1.12 Maximal ideal in a lattice [5] : Let L be

5

a lattice. A proper ideal of L is called as maximal if it is not contained in any other proper ideal of L.

Filter, prime filter, maximal filter in a lattice are defined dually.

Def. 1.1.13 Ideal in a semilattice [9] : A nonempty subset I of a semilattice S is called as an ideal if

- i) x < y in S and $y \in I ==> x \in I$
- if join of any finite number of elements of Iexists in S then it must be in I.

<u>Def. 1.1.14</u> Prime ideal in a semilattice [9]: A proper ideal I in a semilattice S is called as prime if $a \land b \leftarrow I$ implies a $\leftarrow I$ or b $\leftarrow I$.

Def. 1.1.15 Maximal ideal in a semilattice [9] : A proper ideal I in a semilattice S which is not contained in any other proper ideal in S is called as maximal ideal.

<u>Def. 1.1.16</u> <u>Minimal prime ideal in a semilattice</u> [9] : A minimal element in the set of all prime ideals of S is called as a minimal prime ideal.

<u>Def.1.1.17</u> Filter in a semilattice [9] : A filter F in S is a nonempty subset of S satisfying; a, b in F implies that $a \land b$ is in F. $a \land b \in F \Leftrightarrow a, b \in F$ Def. 1.1.18 Maximal filter in a semilattice [9] : A proper filter which is not contained in any other proper filter is called as a maximal filter.

Def. 1.1.19 Prime filter in a semilattice [9]: A proper filter F is called as prime if for any finite subset A of S, VA exists and is in F then a (+) for some a (+).

<u>Def.1.1.20</u> <u>Semifilter in a semilattice</u> [12] : Let F be any non-empty subset of S. F is said to be semi filter in S if $x \leq y$, $x \notin F$, $y \notin S \implies y \notin F$.

<u>Def.l.1.21</u> <u>Dense ideal in a semilattice</u> [6] : An ideal I in S is said to be dense idense if $I^* = \{0\}$.

An ideal which is not dense is called as nondense ideal in S.

<u>Def.1.1.22</u> <u>dense element in a semilattice</u> [6] : An element a in a semilattice S with O is said to be dense if (a)^{*} = $\{0\}$.

<u>Def.1.1.23</u> <u>Annihilator ideal in semilattice</u> [6]: An ideal J in semilattice. Lewith 0 is said to be annihilator if $J = J^{**}$. Some definition we carry in semilattice. <u>Def.1.1.24</u> [5] : Let $< L_1$; \land , $\lor \gg$ and $< L_2$; \land , $\lor >$ be any two lattices. Then f : $L_1 \longrightarrow L_2$ is called as homomorphism if

i) $f(a \vee b) = f(a) \vee f(b)$ ii) $f(a \wedge b) = f(a) \wedge f(b)$ for all $a, b \in L_1$

<u>Def.1.1.25</u> <u>Isotone map</u> [5] The map $\emptyset : \mathbb{P}_0 \longrightarrow \mathbb{P}_1$ is an isotone map (or order preserving map) of the poset \mathbb{P}_0 into the poset \mathbb{P}_1 if $a \leq b$ in \mathbb{P}_0 implies that $\emptyset(a) \leq \emptyset(b)$ in \mathbb{P}_1

Def.1.1.26 Closure operation :

A closure operation on a set I is an operator $X \longrightarrow \overline{X}$ on the subsets of I such that :

C1. $X \subset \overline{X}$ (Extensive)C2. $\overline{X} = \overline{X}$ (Idempotent)

C3. If $X \subset Y$, then $\overline{X} \subset \overline{Y}$

 $\{\underline{1.2}: \text{Results}\}$

<u>Result 1.2.1</u> [9]: Let S be semilattice with O. Then S is O-distributive if and only if A^* is an ideal for every $A \subseteq S, A \neq \emptyset$.

(Isotone)

Result 1.2.2 [9] : Let S be a O-distributive semilattice. A subset M of S is minimal prime ideal if and only if its set complement S-M is a maximal filter.

<u>Result 1.2.3</u> [9] : Let S be semilattice with O. A proper filter M in S is maximal if and only if (*) for any element $a \notin M$ (a f S), there exists an element b in M such that $a \wedge b = 0$.

<u>Result 1.2.4</u> [9] : Let S be semilattice with O. S is O-distributive if and only if for any filter F disjoint with $\{x\}^*$ (x (S), there exists a prime filter containing F and disjoint with $\{x\}^*$.

Result 1.2.5 [13] : Set of all dense elements is filter.

<u>Result 1.2.6</u> [9] : Let S be semilattice with 0. If $x \neq 0$ then there exists maximal filter F containing x.

<u>Result 1.2.7</u> [1]: The set of all ideals I(**s**) in a semilattice S form a lattice under the operations π and \underline{V} where i) I π J = I \cap J

ii) I Y J = (I U J]
 Let L, and L₂ be any two lattices. A bijective map from L, to L₂

 Result 1.2.8 [1]: f: L₁ -> L₂ is an isomorphism if and
 only if i) f is onto

ii) both f and f⁻¹ are isotone maps.

9